
SH

∞

Seminar Report

Scalable logging and log-file analysis

Linus Weber

MatrNr: 21418903

Supervisor: Christoph Hottenroth

Georg-August-Universität Göttingen
Institute of Computer Science

March 28, 2023

Abstract
Servers and applications generate large amounts of logging data that is useful for debug-
ging and also for monitoring services.

However, this data resides on the machines themselves which makes it difficult to
analyze or recover in case of an incident.

A number of architectures and software stacks exist that tackle these problems, ranging
from custom architectures developed in-house to service components used in a variety of
contexts.

Standardized approach was chosen that allows the organization to adapt and expand
the logging and log-file analysis processes to their needs.

An ’Elastic stack’ was set up on a virtual machine from a GWDG-hosted cluster, and
a couple of machines that run a number of services were set up and connected to the
logging service. First, different kinds of log-files were ingested into the logging service in
order to explore its capabilities. Then, it was investigated if it is possible to control the
detail with which logging-data was collected, analysed and visualized.

Because there is a wide range of ’Beats’ file-shippers available and users can also write
their own shippers to suit their requirements, it is possible to collect and analyze all kinds
of log-files. Controlling the detail-level of log-collection and -analysis, however, proved to
be difficult, especially because there is no way to issue these commands from within the
web-interface.

i

Contents

List of Figures iii

List of Abbreviations iv

1 Introduction 1
1.1 Contributions . 1
1.2 Outline . 1

2 Research 2
2.1 Log files . 2
2.2 Manual logging . 2
2.3 Semi-automated logging . 2
2.4 Why scalable logging . 2
2.5 Scalable parameters . 3
2.6 Types of Services . 4

2.6.1 Custom solutions . 4
2.7 Typical Architecture . 4

2.7.1 Buffering . 5
2.8 Available self-hosted services . 5

2.8.1 Elastic stack . 6

3 Setup 7

4 Evaluation 8

5 Results 9

6 Discussion 10

7 Conclusion 10

A Code samples A1

ii

List of Figures
1 Typical architecture of a logging service . 5
2 Typical architecture of a logging service with buffers 6
3 Simplified overview of the setup . 7
4 Example screenshot from the Kibana web-interface 9

iii

List of Abbreviations
HPC High-Performance Computing

GWDG Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen

SaaS Software-as-a-Service

HTTP Hypertext Transport Protocol

HTTPS Hypertext Transport Protocol Secure

TLS Transport Layer Security

XML Extensible Markup Language

iv

Scalable logging and log-file analysis

1 Introduction
Servers and applications generate large amounts of logging data that is useful for debug-
ging and also for monitoring services.

However, this data resides on the machines themselves which makes it difficult to
analyze or recover in case of an incident.

A number of architectures and software stacks exist that tackle these problems, ranging
from custom architectures developed in-house to service components used in a variety
of contexts. Most of the custom-tailored solutions, however, are employed to serve an
infrastructure that is unique to the company that built it and usually comprises of services
that are all part of one product which is not the kind of environment that is comparable
with the GWDG.

Instead, a more standardized approach was chosen that allows the organization to
adapt and expand the logging and log-file analysis processes to their needs. The Elastic
stack includes log-file shippers called ’Beats’, a file-aggregator called ’Logstash’, a database
called ’Elasticsearch’ and a visualization platform called ’Kibana’. This technology stack
was chosen as its components are also used in a range of other stacks and custom-tailored
solutions and promise to be well adaptable to the needs of the organization.

The Elastic stack was set up on a virtual machine from a GWDG-hosted cluster, and
a couple of machines that run a number of services were set up and connected to the
logging service. First, different kinds of log-files were ingested into the logging service in
order to explore its capabilities. Then, it was investigated if it is possible to control the
detail with which logging-data was collected, analysed and visualized.

Because there is a wide range of ’Beats’ file-shippers available and users can also write
their own shippers to suit their requirements, it is possible to collect and analyze all kinds
of log-files with small amounts of effort. The ’Kibana’ web-interface offers many options
to filter, sort, analyze and aggregate data. Controlling the detail-level of log-collection
and -analysis, however, proved to be difficult, especially because there is no way to issue
these commands from within the web-interface.

1.1 Contributions

Documentation for how to set up a functioning Elastic stack in a GWDG-hosted cluster
that can be used for further studies and to implement features that are needed to fulfill
the organization’s requirements is provided in section 3. Example configuration files for
Docker and an nginx proxy can be found in appendix A.

1.2 Outline

Section 2 gives a summary of the initial search for candidate logging and log-file analysis
solutions. A brief description of how the service was set up is presented in section 3. Then,
section 4 describes how the chosen solution was tested and evaluated. Section 5 contains
the results of that evaluation and they are discussed in section 6. Finally, a conclusion
summarizes the findings of this report in section 7.

Section 2 Linus Weber 1

Scalable logging and log-file analysis

2 Research
2.1 Log files

A wide range of approaches to logging and log-file analysis are employed in different
organizations or even within organizations.

Most commonly, services running on Linux servers print log messages to files in the

/var/log

directory. This directory includes logs from system services such as the package man-
ager, low level system services, but also services that are installed natively on the machine.

Some log files, however, reside in other directories, depending on the installation
method. For example, dockerized applications might store their log files in the docker
volume that was assigned to them which typically resides in

/var/lib/docker/volumes.

2.2 Manual logging

Most commonly, the log files are analyzed using tools and filters such as grep in order
to collect relevant information. This can be done with minimal effort, but provides little
options for log aggregation and analysis. Moreover, all logs remain on the machines
themselves which means that they may be lost in case of an incident.

2.3 Semi-automated logging

One way to automate the log-file analysis process is to use scripts that employ the same
tools used in the manual process. It is feasible to send alerts to system administrators
if there are critical error messages in the logs or certain metrics such as the number of
active connections to a web-service exceed a predefined threshold. Log-files can also be
transferred to a central server for safekeeping, but techniques such as log-file-rotation
make it very time consuming to code a custom-tailored solution for the organization.

2.4 Why scalable logging

The extend of logging and log-file analysis is constrained firstly by the capability of the
infrastructure and secondly by the extend of information the engineers that use the logging
system need and are able to process. There are a few examples of when an organization
might decide to change how much information from the logs is collected and analyzed.

• Different environments: depending on whether the monitored server is a develop-
ment, test, staging, or production machine, different levels of logging might be
appropriate. Development servers should make logs available that include low level
messages that can be helpful to developers but would be unnecessary noise for the
operations team.

Section 2 Linus Weber 2

Scalable logging and log-file analysis

• New instance: when a new system is set up, engineers might require a a higher level
of logging in order to spot deficiencies early on. Introducing a new component to
an environment could affect other services as well if, for example, integration with
another microservice fails.

• System update: similar to adding a new instance, updating systems introduces
change to an infrastructure. Often, these updates are rolled out rapidly with a large
number of systems migrating to the new version in a short amount of time.

• Traffic peaks: there might be a regular increase in traffic during a certain time of the
day, or there might be unexpected peaks due to external events. In some cases, these
circumstances could push the logging infrastructure to its limits as the might not
be enough network-bandwidth or processing power to process the increased amount
of logs generated.

• Unexpected failure: it is expected that an infrastructure will generate lots of error
messages in its logs when a component fails. For the engineers it would be beneficial
to have a lot of messages to gather information from as long as they have the ability
to filter out unnecessary ones.

2.5 Scalable parameters

A range of methods exist in order to increase or decrease the resolution with which logging
of an infrastructure is done.

• File selection: each machine generates a range of log files for services like the package
manager, font collection or applications that are run on the server. Some of those
files might or might not be relevant to the engineers. Moreover, services like the
nginx web-server generate an access.log file which contains information about
incoming requests and an error.log file which contains information on internal
problems.

• Log level: there is no one standardized format for log-files, but there is - to a degree -
a shared terminology for how to label levels of log messages: debug, info, warning,
error. While debug messages are relevant to developers in their own development
environments, warning and error messages are important for operations engineers
as well.

• Filters: log messages can be excluded based on filters like regular expressions or
other operations. That is useful in situations where specific types of errors should
be ignored or, conversely, singled out because they are being worked on.

• Aggregation: Instead of storing details for every single log-message, individual val-
ues can be aggregated into a single value. For example, counting the number of
accesses from a continent instead of accesses from an IP address, or counting the
number of accesses from a certain device. While aggregation can provide valuable
information, if it is done to reduce the storage space required it will inevitably reduce
the resolution of information that can be gathered from the aggregated data.

• Metrics polling interval: in cases where network bandwidth or computing power of
the logging-service is limited, a way to reduce usage of those resources is to increase

Section 2 Linus Weber 3

Scalable logging and log-file analysis

the time between collecting new data from the log-files. However, the more time
there is between rounds the less up to date the information in the logging-service is.

• Retention period: Data can be deleted from the machine hosting the logging-service
after an amount of time that fits the requirements of the organization. A short
lifespan of the data could undermine the engineers’ ability to track medium- to long
term trends.

2.6 Types of Services

Organizations operating a server infrastructure have a number of options available to
them when it comes to logging services.

Software-as-a-Service models allow the organization to outsource part of their infras-
tructure to another service provider. A SaaS solution could comprise all parts of the
logging service, or just single components could be hosted by the service provider so that
the service can be integrated into the organization’s logging pipeline. Examples for such
service providers include Google Cloud Logging1, Sumo Logic2 and Loggly3.

One alternative to the Software-as-a-Service model would be self-hosted applications -
some of which could also be available in a SaaS model but allow hosting private instances
under an open license. Some example applications are explored in section 2.8.

2.6.1 Custom solutions

The third alternative are custom-tailored solutions that employ existing services such
as Redis4, Apache Kafka5, Elasticsearch6, InfluxDB7 or applications that are developed
in-house.

One such example can be found in a case-study8 from the company Carousell who
developed their own log-file shipper for the worker servers and a log-service using Redis
that collects the log-messages before passing them on to an Apache Kafka instance and
then ingesting them into the Google Cloud Logging platform which is provided using the
SaaS model.

2.7 Typical Architecture

A logging architecture typically consists of four major components:

1. Shipper: an agent running on the worker server finding files that should be passed
on to the next stage, performing some initial filtering operations. Often, shippers
parse the log-files to turn them into a format that can be processed by the later
stages such as json or XML.

1https://cloud.google.com/logging
2https://www.sumologic.com/
3https://www.loggly.com/
4https://redis.io/
5https://kafka.apache.org/
6https://www.elastic.co/de/elasticsearch/
7https://www.influxdata.com/
8https://medium.com/carousell-insider/scalable-logging-for-microservices-1043d3d17c18

Section 2 Linus Weber 4

Scalable logging and log-file analysis

2. Collector: a software component that serves as the target for the submissions from
the shipper agents. These components are able to integrate data from a variety of
sources including but not limited to the shipper agents. Data from log-files can be
aggregated and filtered in this step.

3. Storage: specialized databases that hold data for further analysis. There are some
storage systems that are especially good at searching the data in the system, while
others specialize in ingesting a large amount of input streams simultaneously. At
this point, the file retention period may be specified to achieve scalability of the
logging system.

4. Visualization & Analysis: a web-interface that allows engineers to chart log-data as
graphs, display, sort and search log-files from individual servers or even groups of
servers at once and apply advanced analyses such as machine-learning techniques to
the logging data. This is usually the main interface between human users and the
logging infrastructure.

Figure 1 shows the typical generalized architecture of a logging service.

Shipper 2

Shipper 3

Shipper 1

Collector Storage
Visualization &

Analysis

XML

json

yml

Database

Webinterface

Figure 1: Typical architecture of a logging service.

2.7.1 Buffering

A situation may arise in which the network or individual machines are overloaded with
work. Therefore, it is commonly seen that buffer services are employed in order to prevent
data loss as messages that cannot be processed are lost. The first position where a buffer
could be used is between the individual shippers and the collector, and the second position
is between the collector and the storage system. Depending on the complexity of the
infrastructure, even multiple collectors and multiple buffers might be used.

An example of a generic logging architecture employing buffers is shown in figure 2.

2.8 Available self-hosted services

A number of software components that can be used in logging and log-file analysis services
have already been listed in the sections above.

Section 2 Linus Weber 5

Scalable logging and log-file analysis

Shipper 2

Shipper 3

Shipper 1

Collector Storage
Visualization &

Analysis

XML

json

yml

Database

WebinterfaceBuffer

Buffer

Buffer

Buffer

Figure 2: Architecture of a logging service including buffers.

Nagios Log Server9 is a service that requires a paid license starting at 4,000 $ per year
for a single instance to operate. It provides an extensive set of capabilities and integrates
with other solutions from the same provider.

Another self-hosted solution that provides a variety of capabilities as described in
section 2.7 and integrates with other services such as InfluxDB, Elasticsearch and others
is Icinga10.

2.8.1 Elastic stack

The Elastic stack11, formerly known as the ELK stack, has one software service for each
of the components described in section 2.7.

1. Beats: shippers are called ’Beats’ in the Elastic stack. There a many different kinds
of Beats used for different purposes: Filebeat sends data from log-files, Metricbeats
sends server metrics such as system load or memory usage, Packetbeat sends data
about individual network packages and Winlogbeat can be used to send log data
from Windows systems.

2. Logstash: ’Logstash’ is a data collector that can ingest data from many different
sources such as Beats, Kafka, redis or .csv files. Logstash is also able to perform
certain operations such as filtering or aggregation on the data it collects.

3. Elasticsearch: this is a no-SQL database designed specifically to provide powerful
search features such as full-text search, fuzzy searches and offers results based on
scores that gauge how likely an item is to fit to a given query. Elasticsearch is used
not only in logging services but also in many other fields that make us of its search
features.

4. Kibana: this is the interface that allows users to discover the data they have collected
and build dashboards based on logs and also aggregated and analyzed data from
Logstash. Some functionalities for the other components are integrated into the
Kibana web-interface as they don’t offer graphical user interfaces themselves.

9https://www.nagios.com/products/nagios-log-server/
10https://icinga.com/products/metrics-and-logs/
11https://www.elastic.co/de/elastic-stack/

Section 2 Linus Weber 6

Scalable logging and log-file analysis

Single components of the Elastic stack are used not only by various custom-built solu-
tions, but also serve as the foundation for services such as Graylog12. It is built on Elas-
ticsearch and can integrate other Elastic stack components such as Beats and Logstash.
However, it comes with its own user-interface that offers capabilities for processes such as
reporting.

3 Setup
The Elastic stack was set up on a virtual machine using Docker13. An nginx14 reverse
proxy that is in the same docker network as the Elastic stack components forwards web
traffic to the Kibana application and redirects HTTP requests to use TLS. A certbot15

client checks daily (cronjob) if the TLS certificates need to be renewed. The certificates
are mounted into the nginx docker container in a volume.

Figure 3 shows a simplified version of how the logging system and test systems that
feed log-files were set up.

Filebeat Logstash

Elasticsearch

Kibana

Worker Virtual Machine Elastic Virtual Machine

Docker

nginx

certbot certificate

Docker

nginx

SEEK solr

mysql

Figure 3: Simplified overview of the setup used in the practical part of the seminar.

The cronjob used to check the validity of the TLS certificate:

@daily certbot renew -pre-hook "docker compose -f \\
/opt/docker/docker-elk/docker-compose.yml down" \\
--post-hook "docker compose -f \\
/opt/docker/docker-elk/docker-compose.yml up -d"

The dockerized application must be shut down when renewing the certificates.
The following snippet shows how the nginx proxy was set up. The config file and the

certificates are mapped into the nginx container. Ports 80 for HTTP and 443 for HTTPS
are mapped to the host system ports, and the container is in the ’elk’ network - the same
as the other applications in the stack.

12https://www.graylog.org/
13https://www.docker.com/
14https://nginx.org/en/
15https://certbot.eff.org/

Section 3 Linus Weber 7

Scalable logging and log-file analysis

nginx:
image: nginx:latest
volumes:

- ./nginx.conf:/etc/nginx/nginx.conf
- /etc/letsencrypt/:/etc/letsencrypt/

ports:
- 80:80
- 443:443

networks:
- elk

restart: unless-stopped

The nginx proxy is configured to redirect incoming HTTP traffic to HTTPS and
encrypt all traffic using the TLS certificate acquired using certbot.

server {
server_name c111-042.cloud.gwdg.de;
listen 80;

return 301 https://$host$request_uri;
}

For testing purposes, an nginx webserver and a dockerized instance of FAIRDOM-
SEEK16 was set up on a separate virtual machine. FAIRDOM-SEEK is a Ruby on Rails17

appication that uses MySQL18 as a database (although substitutes may also be used) and
Apache Solr19 for indexing and searching.

Different Filebeat modules (manual, nginx, mysql) were installed to collect data both
from the webserver and FAIRDOM-SEEK.

The application in this case was not secured by HTTPS because they are only tem-
porary instances used for testing and no sensitive data is transmitted.

At times, components of the applications or even virtual machines were deleted and
set up again in order to reset them to a clean and working state.

Dashboards and other overviews were added automatically when setting up the filebeat
assets. They depend on the modules that were enabled.

4 Evaluation
For evaluating the Elastic stack a few approaches were chosen:

• Webserver: basic data from an nginx webserver’s access.log and error.log were
ingested into the logging system. This was done to explore the systems, their capa-
bilities and get a general overview of its inner workings.

16https://seek4science.org/
17https://rubyonrails.org/
18https://www.mysql.com/de/
19https://solr.apache.org/

Section 4 Linus Weber 8

Scalable logging and log-file analysis

• Provoked errors: for example, config files that contain errors were loaded by the
webserver in order to provoke error messages in the logs. This was done specifically
to see whether information displayed in Kibana would be useful for figuring out
mistakes and fixing them.

• Regular use: The FAIRDOM-SEEK application was used regularly (uploading files,
creating projects and institutions, etc.) in order to simulate normal usage and see
how many and which kinds of logs would be collected.

• API calls: Using FAIRDOM-SEEK’s API, a lot more log messages could be gen-
erated, and some specific errors could be provoked (known bug when the logging
service cannot generate an error message if a request has an unsupported HTTP
method specified in its header).

Configuration options and capabilities of the stack in regards to scalable logging were
explored with the parameters specified in section 2.5 in mind. Possible ways to automati-
cally change those parameters and interfaces to integrate them into the Elastic stack were
considered.

5 Results
Figure 4 illustrates how investigation access and error log-files from an nginx webserver
looks like.

Figure 4: Example screenshot from the Kibana web-interface when inspecting access and
error log-files from an nginx webserver.

It is easy to collect data from new sources because a variety of Filebeat modules
are available that cover most use-cases. There’s also the possibility to define custom
Filebeats in order to integrate self-developed applications into the logging infrastructure.
Pre-defined processes can be reused as part of the data extraction pipeline.

The Kibana web-interface offers easy to use tools to explore the data sources and
inspect errors and log-files in detail. Log files can be sorted and filtered so that only
relevant data ist displayed. Through the charts, users can interactively select the time-
frame from which data should be displayed, allowing better focused investigations.

Both Beats and Logstash offer many configuration options that allow engineers to
modify each server individually according to their needs. Together with the options

Section 5 Linus Weber 9

Scalable logging and log-file analysis

available on the Kibana web-interface and the Elasticsearch database, all parameters
defined in section 2.5 can be set to the desired levels.

There is, however, no convenient way to change these settings from within the user
interface of the Elastic stack. Users may only select which data is displayed in the Kibana
web-interface. This does help engineers cut down the mass of messages that are delivered
to them. But it does not help with avoiding network or computing bottlenecks in the
entire infrastructure.

External programs would be necessary to modify the configuration files for the Beats,
for Logstash and for Elasticsearch, and subsequently restart the services. Additionally,
a convenient user interface is needed that would allow engineers to control how much
information individual servers provide and how it is aggregated, stored and analyzed.

6 Discussion
The Elastic stack provides many options and features for log-file analysis. However, it
does not offer convenient ways to modify the level of logging of the worker servers and
the way in which the collected data is aggregated, stored and analyzed. That might not
be the case with alternative solutions presented in sections 2.6 and 2.8. They could be
explored in further projects.

The capabilities of Logstash were explored only on the surface and might offer more
potential for scalable logging.

While there is currently no way to control individual or groups of Beats from within
the Kibana web-interface, one option for further work could be to add those features as
an extension to the interface.

Alternatively, a custom solution to scalable logging could be developed that would
fully address the challenge. However, this would probably be to the detriment many
log-file analysis features that the Elastic stack or similar solutions offer.

7 Conclusion
This project report gives an overview of the capabilities and limitations of the Elastic
stack for scalable logging and log-file analysis. Different available options for logging
infrastructure are listed and general concepts and patterns are presented. It is explained
how the Elastic stack and an application server for testing purposes can be set up, and
ideas for further work aiming to overcome the limitations of existing logging solutions for
scalable logging are provided.

Section 7 Linus Weber 10

Scalable logging and log-file analysis

A Code samples
Elastic stack docker-compose.yml (modified from https://github.com/deviantony/docker-
elk):

version: '3.7'

services:

The 'setup' service runs a one-off script which initializes users inside
Elasticsearch — such as 'logstash_internal' and 'kibana_system' — with the
values of the passwords defined in the '.env' file.
#
This task is only performed during the *initial* startup of the stack. On all
subsequent runs, the service simply returns immediately, without performing
any modification to existing users.
setup:

build:
context: setup/
args:

ELASTIC_VERSION: ${ELASTIC_VERSION}
init: true
volumes:

- ./setup/entrypoint.sh:/entrypoint.sh:ro,Z
- ./setup/lib.sh:/lib.sh:ro,Z
- ./setup/roles:/roles:ro,Z
- setup:/state:Z

environment:
ELASTIC_PASSWORD: ${ELASTIC_PASSWORD:-}
LOGSTASH_INTERNAL_PASSWORD: ${LOGSTASH_INTERNAL_PASSWORD:-}
KIBANA_SYSTEM_PASSWORD: ${KIBANA_SYSTEM_PASSWORD:-}
METRICBEAT_INTERNAL_PASSWORD: ${METRICBEAT_INTERNAL_PASSWORD:-}
FILEBEAT_INTERNAL_PASSWORD: ${FILEBEAT_INTERNAL_PASSWORD:-}
HEARTBEAT_INTERNAL_PASSWORD: ${HEARTBEAT_INTERNAL_PASSWORD:-}
MONITORING_INTERNAL_PASSWORD: ${MONITORING_INTERNAL_PASSWORD:-}
BEATS_SYSTEM_PASSWORD: ${BEATS_SYSTEM_PASSWORD:-}

networks:
- elk

depends_on:
- elasticsearch

elasticsearch:
build:

context: elasticsearch/
args:

ELASTIC_VERSION: ${ELASTIC_VERSION}
volumes:

- ./elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml:ro,Z

Section A Linus Weber A1

Scalable logging and log-file analysis

- elasticsearch:/usr/share/elasticsearch/data:Z
ports:

- 9200:9200
- 9300:9300

environment:
node.name: elasticsearch
ES_JAVA_OPTS: -Xms512m -Xmx512m
Bootstrap password.
Used to initialize the keystore during the initial startup of
Elasticsearch. Ignored on subsequent runs.
ELASTIC_PASSWORD: ${ELASTIC_PASSWORD:-}
Use single node discovery in order to disable production mode and avoid bootstrap checks.
see: https://www.elastic.co/guide/en/elasticsearch/reference/current/bootstrap-checks.html
discovery.type: single-node

networks:
- elk

restart: unless-stopped

logstash:
build:

context: logstash/
args:

ELASTIC_VERSION: ${ELASTIC_VERSION}
volumes:

- ./logstash/config/logstash.yml:/usr/share/logstash/config/logstash.yml:ro,Z
- ./logstash/pipeline:/usr/share/logstash/pipeline:ro,Z

ports:
- 5044:5044
- 50000:50000/tcp
- 50000:50000/udp
- 9600:9600

environment:
LS_JAVA_OPTS: -Xms256m -Xmx256m
LOGSTASH_INTERNAL_PASSWORD: ${LOGSTASH_INTERNAL_PASSWORD:-}

networks:
- elk

depends_on:
- elasticsearch

restart: unless-stopped

kibana:
build:

context: kibana/
args:

ELASTIC_VERSION: ${ELASTIC_VERSION}
volumes:

- ./kibana/config/kibana.yml:/usr/share/kibana/config/kibana.yml:ro,Z
expose:

Section A Linus Weber A2

Scalable logging and log-file analysis

- 5601
environment:

KIBANA_SYSTEM_PASSWORD: ${KIBANA_SYSTEM_PASSWORD:-}
networks:

- elk
depends_on:

- elasticsearch
restart: unless-stopped

nginx:
image: nginx:latest
volumes:

- ./nginx.conf:/etc/nginx/nginx.conf
- /etc/letsencrypt/:/etc/letsencrypt/

ports:
- 80:80
- 443:443

networks:
- elk

restart: unless-stopped

networks:
elk:

driver: bridge

volumes:
setup:
elasticsearch:

Config for nginx reverse-proxy serving Kibana web-interface:

For more information on configuration, see:
* Official English Documentation: http://nginx.org/en/docs/
* Official Russian Documentation: http://nginx.org/ru/docs/

user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log;
pid /run/nginx.pid;

Load dynamic modules. See /usr/share/doc/nginx/README.dynamic.
include /usr/share/nginx/modules/*.conf;

events {
worker_connections 1024;

}

http {
log_format main '$remote_addr - $remote_user [$time_local] "$request" '

Section A Linus Weber A3

Scalable logging and log-file analysis

'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;

sendfile on;
tcp_nopush on;
tcp_nodelay on;
keepalive_timeout 650;
types_hash_max_size 2048;
client_max_body_size 20m;

include /etc/nginx/mime.types;
default_type application/octet-stream;

Load modular configuration files from the /etc/nginx/conf.d directory.
See http://nginx.org/en/docs/ngx_core_module.html#include
for more information.
#include /etc/nginx/conf.d/*.conf;

server {
server_name c111-042.cloud.gwdg.de;
listen 80;

return 301 https://$host$request_uri;
}

server {
server_name c111-042.cloud.gwdg.de;
listen 443 ssl;
ssl_certificate /etc/letsencrypt/live/c111-042.cloud.gwdg.de/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/c111-042.cloud.gwdg.de/privkey.pem;

location / {
proxy_pass http://kibana:5601;

}
}

}

Section A Linus Weber A4

	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Contributions
	Outline

	Research
	Log files
	Manual logging
	Semi-automated logging
	Why scalable logging
	Scalable parameters
	Types of Services
	Custom solutions

	Typical Architecture
	Buffering

	Available self-hosted services
	Elastic stack

	Setup
	Evaluation
	Results
	Discussion
	Conclusion
	Code samples

