
SH

∞

Seminar Report

Application and System Benchmarks

Johannes Michael Richter

MatrNr: 21555844

Supervisor: Marcus Merz

Georg-August-Universität Göttingen
Institute of Computer Science

March 31, 2023

Abstract
This report will provide an introduction and presentation into the concept of Application
Benchmarks in the context of High-Performance Computing (HPC). It is written in the
scope of the course High-Performance Computing System Administration conducted by
the univerity of Göttingen and the Gesellschaft für wissenschaftliche Datenverarbeitung
mbH Göttingen (GWDG). HPC gains in importance year by year and there is no end in
sight. It refers to the usage of massive computing resources in form of super-computers
and clusters of servers to solve complex problems. Benchmarks, in HPC context, are
designed to provide an analysis of the performance of this massive computing resources
and all its aspects which depends on highly parallelized programs. The main purpose of
this report is to describe and interpret the function, the deployment and the execution of
benchmarks in a HPC environment and also evaluate instructions and results for those.
The two benchmarks Gadget and GPAW will be presented in the course of this report.

i

Contents

List of Figures iii

List of Listings iii

List of Abbreviations iv

1 Introduction 1

2 High Performance Computing 2
2.1 Summary . 2
2.2 Local System . 2

3 The Concept of Benchmarking 3

4 Challenges and possible Approaches 5
4.1 Upcoming Challenges . 5
4.2 Regression Testing . 5
4.3 Approaches . 5

5 Benchmark Deployment 5
5.1 Prerequisites . 5

5.1.1 Module system . 6
5.1.2 Spack . 6
5.1.3 SLURM and sbatch . 6

5.2 Gadget . 8
5.2.1 Gadget-4 . 8
5.2.2 Dependencies and Compilation . 8

5.3 Gpaw . 11
5.3.1 Dependencies and Compilation . 11

6 Execution and Results 11
6.1 Gadget . 12
6.2 Gpaw . 14

7 Conclusion 16

References 17

A Code samples A1

ii

List of Figures
1 A Cluster . 7
2 Gadget Output: Technical Details . 12
3 Gadget Output: Last lines . 13
4 Gadget Output: cpu.txt . 13
5 Gadget Output: All runs graph . 14
6 GPAW Output: Filtered Output . 15
7 GPAW Output: All runs . 15

List of Listings
1 Example sbatch script for SLURM . 7
2 Gadget Makefile: modified part . 9
3 Gadget Makefile.comp.cascadelake-openmpi 10
4 Gadget Makefile.path.cascadelake-openmpi 10
5 Gadget-Benchmark: Build script . A1
6 Gadget-Benchmark: Example sbatch script A2
7 GPAW-Benchmark: Example sbatch script A3

iii

List of Abbreviations
HPC High-Performance Computing

SCC Scientific Compute Cluster

GWDG Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

FLOPS Floating Point Operations per second

IOPS Input/Output operations per second

CPU Central Processing Unit

GPU Graphics processing unit

RAM Random access memory

MPI Message Passing Interface

UEABS Unified European Applications Benchmark Suite

SSH Secure Shell

GÖNET Göttinger Wissenschaftsnetz

HDF5 Hierarchical Data Format

FFTW Fastest Fourier Transform in the West

GSL The GNU scientific library

GNU GNU’s Not Unix

HWLOC Hardware locality library

MB megabyte

DFT Density functional theory

TD-DFT Time-dependent density functional theory

PAW Projected Augmented Wave

BLAS Basic Linear Algebra Subprograms

BLACS Basic Linear Algebra Communication Subprograms

LAPACK Linear Algebra PACKage

ScaLAPACK Scalable Linear Algebra PACKage

Libxc Library of exchange-correlation functions for density-functional theory

ASE Atomic Simulation Environment

iv

Application and System Benchmarks

1 Introduction
The goal of this course High-Performance Computing System Administration was to learn
about the various concepts of High-Performance Computing and the work a system-
administrator has to do in this context. In detail, each of the participants did choose
on of the concepts to work on. In my case, I did choose the topic Application and System
Benchmarks. The objective was to learn about benchmarking and to try to install and
test Application Benchmarks on a HPC system. In this case this system is the Scientific
Compute Cluster (SCC) which is a local Tier-2 HPC system of the GWDG that is used
by researchers of the Max-Planck-Institute and the university of Göttingen and in our
case also students of the university and employees of the GWDG.

HPC makes use of massive computing resources which are realized in form of super-
computers and clusters of servers where the hardware is highly efficient interconnected
and supports highly parallel running applications. They exceed the capabilities of normal
desktop PCs by a factor of one million. HPC systems become more and more important
in our times with the availability of unimaginable amounts of information (Internet, So-
cial Media) and data which has to be processed in acceptable time. This is most notably
important for research and large-sized companies like Google or Microsoft.

Benchmarks in general, are applications specifically designed to characterize the per-
formance of a system, in this case the SCC system. These results can then be used to
rank and compare different systems to improve the own system, identify problems and
then monitor the process of fixing these problems. A famous example of such a ranking
would be the Top500 list. Usually, a benchmark can not characterize all aspects of a sys-
tem but only single ones like Floating Point Operations per second (FLOPS), execution
time, et cetera. Benchmark-Suites solve this problem by gathering multiple benchmarks
that all target different aspects of the system. There exist numerous types of benchmarks
like Algorithmic benchmarks, Parallel benchmarks which are especially used in HPC and
many more.
Before one can build and execute a benchmark, it is important to understand the purpose
of the benchmark, how many dependencies do exist, the various parameters of execution
and whether and how results can be verified or not. The executions of the benchmarks
will be reviewed in a regression testing style.

In the main part of the report, benchmark deployments of the two benchmarks Gad-
get and GPAW will be described as well as general prerequisites like the module system
and spack, SLURM and sbatch. The module system and spack provide tools for simplified
installations of for example dependencies and even a whole benchmark system. SLURM
and sbatch aid with regard to the execution of benchmarks via allocating a program in the
SCC system by delivering multiple Message Passing Interface (MPI) processes to various
computing nodes and its Central Processing Unit (CPU)s.
Finally, the outputs and results of the benchmarks will be presented, evaluated and in-
terpreted with regard to purpose and expected behaviour. I will also evaluate given
instructions and tools for compilation of the programs and the verification of their re-
sults. In the end, I will conclude the main results and my thoughts on the whole course
on its own.

Section 1 Johannes Michael Richter 1

Application and System Benchmarks

2 High Performance Computing
2.1 Summary

High Performance Computing refers to the use of powerful computing resources to solve
complex computational problems that require massive amounts of processing power and
data storage. HPC involves the use of supercomputers, clusters of servers, and specialized
software to achieve high speeds and efficiency in performing computations. HPC systems
are designed to handle large-scale simulations, data analysis, and modeling tasks that
would be impossible or prohibitively expensive to perform with traditional computing re-
sources. HPC system are more than a million times faster than the most powerful desktop
PC’s, laptops or servers.
Applications of HPC include scientific simulations, DNA sequencing and machine learn-
ing. The sequencing of the human genome for example took 13 years on the first attempt
but with HPC this task can be done in less a day. [IBM]
HPC systems are typically built with high-performance processors, high-speed intercon-
nects, and large amounts of memory and storage. HPC applications require specialized
software that is optimized for parallel processing and can take advantage of the system’s
architecture. An example for such software is MPI which is contained in many programs
that are designed for HPC.
HPC systems require specialized knowledge to operate and maintain, including system ad-
ministration, programming, and algorithm design. This course was created o learn about
the aspect of system administration. These systems also consume significant amounts
of energy and resources, which has led to efforts to develop more energy-efficient and
sustainable HPC systems. There is for example the Green500 [TOP22a] which ranks the
supercomputers of the Top500, which will be explained in Section 3: The Concept of
Benchmarking , in terms of energy efficiency.
In recent years, there has been a trend towards making HPC resources more accessible
to a wider range of users, including small and medium-sized businesses and academic
researchers. Cloud-based HPC services and web-based interfaces have made it easier to
access and use HPC resources without requiring specialized knowledge or infrastructure.
Overall, HPC is a critical tool for advancing scientific research, engineering, and inno-
vation, and is expected to continue to play a important role in our future in terms of
technology and society. The main terms in this context are Artificial Intelligence, Social
Media and massive amounts of available data in various research fields.

2.2 Local System

It was my task to install and test benchmarks on the SCC which belongs to the GWDG
and is located in Göttingen. It provides the integration of multiple systems like CPU
and GPU-Clusters and supports individual applications. This leads to a heterogeneous
environment which requires detailed knowledge about the system and specialised scripts
for in my case the execution of benchmarks. The system consists of 7 racks, 4 of them
water-cooled, 2 Graphics processing unit (GPU)-nodes are air-cooled and one CPU-rack
is air-cooled. Overall, there are 18.376 CPU Cores and 99TB RAM distributed over 410
compute nodes. The Interconnect consists of 56GBit/s FDR Infiniband and 100 GBit/s
Omni-Paths. [23]

Section 3 Johannes Michael Richter 2

Application and System Benchmarks

3 The Concept of Benchmarking
As already mentioned in Section 1 Introduction, benchmarks are in particular designed to
analyze the performance of various aspects of a HPC system from which some important
ones are listed below.

1. Processing speed in FLOPS

2. Execution time

3. Throughput in Input/Output operations per second (IOPS)

4. Power Consumption

5. Environmental Impact

In contrast to measuring instructions per second, FLOPS are a more accurate type of
measurement which benchmarks the performance of the CPU. It is used for everything
involving floating-point operations and handling very large or very small real numbers
which means for example scientific computational research and in our case benchmarking.
FLOPS for a HPC system can be calculated with the formula below.

FLOPS = racks× nodes
racks

× sockets
nodes

× cores
sockets

× cycles
second

× FLOPs
cycle

[Wik23]
Throughput or its synonyms "bandwidth" or "transfer rate" is measured in IOPS which
analyses the performance of the storage system by counting the Input and Output op-
erations. Power consumption and environmental impact are important aspects of HPC
especially in times of climate change and the problems of availability of resources because
HPC systems consume large amounts of energy and cost large amount of money.

By the analysis of all these different aspects, HPC systems can be ranked and then
compared with each other. In the case of processing speed in FLOPS there is the famous
TOP500 project that ranks and maintains a list of the 500 most potent non-distributed
HPC systems in this aspect. This list is updated twice a year since June 1993. All sys-
tems are evaluated by their performance on the LINPACK benchmark. This benchmark
was released in 1973 and solves dense system of linear equations by measuring the per-
formance in 64bit-FLOPS. It is very suitable because the problem size is scalable and
the problem itself is very regular. A similar project which aims to analyze throughput
in HPC storage systems is the IO500. In this benchmark a score is constructed from
multiple measurement. For example the bandwidth with read/write operations and the
metadata with create, stat and delete operations.[TOP22b]
There a multiple types of benchmarks for example Algorithmic benchmarks with the al-
ready mentioned LINPACK benchmark, Microbenchmarks that analyse small parts of the
system like bandwidth, latency or communication, Database benchmarks which analyze
throughput and response time of databases. Most importantly to mention are Parallel
Benchmarks that are used in HPC systems because they can be executed on multiple
Nodes, should be able to be scaled according to that and for that make use of MPI. [19]

Section 3 Johannes Michael Richter 3

Application and System Benchmarks

Benchmarks are limited by the fact that they usually cover just one aspect of a system.
If one want to analyze multiple aspects of their system one can make use of benchmark
suites. These contain numerous benchmarks which can measure different aspects of a
system. In my case, I used the benchmark suite Unified European Applications Bench-
mark Suite (UEABS) [Lio22] which currently contains 13 Application Benchmarks that
are taken from the pre-existing benchmark suites PRACE and DEISA. The goal was to
provide a Benchmark Suite which contains currently relevant and publicly available ap-
plication codes and datasets of sizes that can be realistically run on large HPC systems.
Each application code has multiple test cases, in the most cases 2. One Testcase A, de-
signed for Tier-1 systems, that can be run on 1,000 x86 cores, or equivalent and a Testcase
B, designed for Tier-0 systems, that can be executed on up to around 10,000 x86 cores,
or equivalent. In my case, I worked on the SCC system so I worked with the first or the
first two test-cases designed for lower tier systems.

To complete the introduction of benchmarks, I provide a list of the most important prop-
erties which all benchmarks should provide.

1. Relevance

2. Representativeness

3. Equity

4. Repeatability

5. Cost-effectiveness

6. Scalability

7. Transparency

[DB19]
In the presentation of the benchmarks I installed and tested, I will try to check them
with regard to this properties. Relevance means that the most important aspects of the
system should be analysed by the benchmark. With Representativeness, the results of
benchmark should be accepted by academia and the industry, so companies can safely
test their products and researchers can compare their findings and projects like Top500
are possible. With respect to this, most of the systems should be fairly comparable which
means equity. The results should be repeatable and verifiable and very importantly, they
should be transparent and be understandable by the user. Scalability is one of the most
important aspect with regard to HPC because to be executable on this systems they must
be scalable with regard to the amount of computing nodes and MPI processes. Cost-
effectiveness is similar important like Power Consumption and Environmental Impact
especially in today’s times.

Section 3 Johannes Michael Richter 4

Application and System Benchmarks

4 Challenges and possible Approaches
4.1 Upcoming Challenges

First of all, the most important things when deploying software like benchmarks in a
system like the SCC, is to understand the benchmark, learn about the dependencies and
then comprehend in which ways the software can be executed. This is necessary to be
able to install the software in the right way and correctly execute it. If one is new in
this field like me and even if not, the developers of the software should always provide
adequate documentation so one is able to understand all these aspects. If this is not the
case and for example the exact versions of essential dependencies are not given, installing
such software can quickly become very difficult. Another examples would be if there are
too few instructions of the execution of a software and one has to figure out the right
configuration on themselves. To overcome such problems or handle updates of a given
software, regression testing is the method of choice.

4.2 Regression Testing

Regression testing is a highly important testing technique in software development to
assure that a software after being updated or receiving any form of changes still functions
on the system and no additional unintentional bugs occurred. This technique involves the
rerunning of previous conducted test cases of the modified software to check whether some
problems occur in terms of system stability, execution of the program or the quality of the
provided results. There exist automated tools that can do this testing in a automatized
way rather than manual testing. This is very efficient given that it saves time, minimizes
human errors and provides reliable results. Additionally, many test cases can be performed
in parallel. It is indispensable to run regression tests during the life cycle of development
and every time before updates of the software are about to be pushed.

4.3 Approaches

Nonetheless, I conducted these test cases, which in this case would be the testing of some
benchmarks on the SCC system with various changing parameters, rather in the manual
way than in a automatized way. In this way I had the overview of all the parameters for
example different versions of dependencies or varying configurations of the sbatch script
which will be explained in section 5.1.3 and could learn about them. The running of
test cases will involve the execution of the benchmarks and validation of the results, the
performance and integrity of the programs.

5 Benchmark Deployment
5.1 Prerequisites

First of all, before one can start to work in an environment attached to HPC, there are
some systems worth to know which facilitate the work to do, in this case the deployment
of benchmarks in the SCC system. These systems are listed below:

Section 5 Johannes Michael Richter 5

Application and System Benchmarks

1. Module system

2. Spack

3. SLURM and sbatch

However, before one can work on the SCC one has to get access to the system. In our case
every participant of the course got the necessary information, like a Secure Shell (SSH)
key and an account name, to access the cluster via SSH where one can connect from home
via a proxy to connect to SCC over login.gwdg.de or directly if beforehand one is working
on a device in Göttinger Wissenschaftsnetz (GÖNET).

5.1.1 Module system

Effectively, on a HPC system there is more software installed then any user could ever
utilize. Additionally to that, every program might have various dependencies and and
there might be programs whose dependencies could mutually exclude each other. Fur-
thermore, each software has different settings according to $PATH and $LD_LIBRARY_PATH.
Also, different users may want to execute the same software but in differentiating versions
which usually cannot be installed or used at the same time.
Because of these reasons, the module system has a vast amount of software preinstalled
on the system and the user can load and unload desired programs in an encapsulated
user environment with module load and module unload. Additionally, already installed
packages can be listed with module list and further information about a package can be
displayed with module info package among various other commands retrievable with
module –help. These modules should not be confused with modules like in python.

5.1.2 Spack

Spack is a tremendously useful package manager especially developed for supercomputers
in Linux and macOS and in its functionality similar to the module system. According to
github, spack consists to 98.2% of python scripts. However, with Spack one can easily
install desired software which is not preinstalled on the system. This massively diminish
the work one has to do because software can be really complex and difficult to install.
Spack takes the job and does everything for the user, including the installment of all
the dependencies. One can retrieve information of the package spack info package and
install it with spack install package. The user can specify various parameters with
regard to the installation of software. It is possible to specify the package by customizing
version, compilers,compiler flags, CPU architecture and dependencies. Then, similarly
to module, one can load and unload the installed software into an encapsulated user
environment with spack load package and spack unload package. [End22]

5.1.3 SLURM and sbatch

When the user logs in via SSH, one is located at a front-end node from which for example
a benchmark program can be delivered to various compute nodes visualized in Figure 1.
SLURM is a workload manager/job scheduler system that takes requests for computation
from various user’s front-end nodes and distributes each requests to the computation
nodes, where parallel programs can be computed. Each request is prioritized by the
scheduler depending for example on requested number of nodes and requested memory

Section 5 Johannes Michael Richter 6

Application and System Benchmarks

Figure 1: Simplified visualization of a cluster.
Introduction to Slurm [Kel+22]

size. It is then queued among all other requests and eventually begins to compute on the
nodes.
The user can submit requests with srun to the batch-system slurm where one can specify
the configuration and distribution of HPC resources for computation. To make lifes easier
it is recommended to submit a srun request via a sbatch script which is shown below.

1 #!/bin/bash
2 ### selected partition [medium, fat, fat+, gpu]
3 #SBATCH -p medium
4 ### for parallel job on multiple nodes
5 #SBATCH --nodes=5
6 ### for MPI, only one process per CPU
7 #SBATCH --cpus-per-task=1
8 ### no hyper-threading
9 #SBATCH --ntasks-per-core=1

10 ### number of processes per node
11 #SBATCH --ntasks-per-node=10
12 #SBATCH -o job-%J.out // generating outputfile
13

14 module purge
15 module load openmpi
16 module load spack-user
17 source $SPACK_USER_ROOT/share/spack/setup-env.sh
18

19 srun benchmark

Listing 1: Example sbatch script for SLURM

Parameters for srun are given in lines starting with the phrase #SBATCH. These commands
have to be at the beginning of the script otherwise they will not be read in. All param-

Section 5 Johannes Michael Richter 7

Application and System Benchmarks

eters can be accessed with $ srun - -help The script is then submitted via $ sbatch
srun_script.sh. Submitting a job directly via srun in the command line forces the user
to be logged in as long as the job is running but there are jobs that might run for days.
The solution is such a script which, as soon as submitted, is queued and the user is free to
log out. As soon as the job is submitted, there are commands available to get information
about this job.

1. $ squeue -u <user_id>:
returns information about the queue status like expected starting time

2. $ scancel <job_id>:
will abort a request

3. $ sacct:
information about past and current jobs are accessed

5.2 Gadget

The benchmark Gadget provides information about the scalability and performance of
the gadget-4 -code, made for the astrophysical community. The code, written in C++,
packaged in the UEABS as tarballs and is accessible on the respective GitHub repository at
https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gadget. It uses
MPI and the libraries Hierarchical Data Format (HDF5), The GNU scientific library
(GSL) and Fastest Fourier Transform in the West (FFTW).

5.2.1 Gadget-4

Gadget-4, the program to be benchmarked, calculates N-body/hydro-dynamical cosmo-
logical simulations in general by being able to process plain Newtonian dynamics, or
cosmological integrations in arbitrary cosmologies. It is realized as massively parallel
code written in C++ and by that perfectly suitable for HPC. That means it is possible to
run the code parallel on multiple nodes and with that should also scale this way. The code
was mainly written by Volker Springel from the Max-Planck-Institute for Astrophysics in
Garching.
The acronym Gadget stands for (GA laxies with D ark matter and G as int E rac T)
and points to the former purpose of the code to study galaxies collisions and is able to
run collision-less simulations and smoothed particle hydrodynamics on massive HPC sys-
tems. All processes of the program communicate by means of MPI and shared-memory
access on multi-core nodes and its compatibility has been confirmed on a large number of
Linux/UNIX-based systems. [Spr21]

5.2.2 Dependencies and Compilation

First of all, the corresponding script for the build and compile process of the main code
and the test cases, described in this section, is located in the appendix A. Before one can
start to build and compile the benchmark, some requirements must be fulfilled.

1. GNU gcc 4.x or later

2. Python

Section 5 Johannes Michael Richter 8

https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gadget

Application and System Benchmarks

3. OpenMPI/4.0.3

4. HDF5-1.12.1

5. FFTW-3.3.8

6. GSL-2.7

The versions restrictions are highly important. To deviate from these might result in a
broken build or it simply will not compile. The GNU’s Not Unix (GNU) gcc compiler is
needed to compile the program that is written in C++ alongside of Python that aids the
building process of the program. OpenMPI is responsible for essential virtual topology,
synchronization, and communication functionality between a set of processes that will
be mapped to compute nodes and by that enables parallel computing of the benchmark.
FFTW is necessary for simulations requiring the TreePM algorithm. To read or write
snapshots in the HDF5-format, which we will see in the output files of the benchmark
in the results section 6.1 the correspondent library is needed. At last, the library GSL
permits for a few cosmological integrations at the start-up of the program.
At first, OpenMPI 4.0.3 has to be installed and loaded with Spack whereas compatible
versions of FFTW, GSL and HDF5 are available in the module system and can simply
be loaded by using it. This has to be done before we can start to build the Test Case
A executable. Now, the files gadget4-case-A.tar.gz and gadget4-benchmarks.tar.gz are
needed to build the executable by simply cloning the UEABS repository. Decompressing
the gadget4-benchmarks.tar.gz gives us the master folder gadget4-benchmarks. In this
folder the files Makefile.systype and Makefile must be modified. In Makefile.systype the
line SYSTYPE="cascadelake-openmpi" is added, under this name, paths and compilers
will be added tailored to the SCC system. Then, the Makefile is modified under #define
available Systems#.

1 ##########################
2 #define available Systems#
3 ##########################
4 ifeq ($(SYSTYPE),"cascadelake-openmpi")
5 include buildsystem/Makefile.comp.cascadelake-openmpi
6 include buildsystem/Makefile.path.cascadelake-openmpi
7 endif

Listing 2: Gadget Makefile: modified part

Next, the two files in buildsystem have to be created. Makefile.comp.cascadelake-
openmpi can be copied from the existing file Makefile.comp.gcc.

Section 5 Johannes Michael Richter 9

Application and System Benchmarks

1 CPP = mpicxx -std=c++11 # sets the C++-compiler
2 OPTIMIZE = -ggdb -O3 -march=native -Wall -Wno-format-security
3

4 ifeq (EXPLICIT_VECTORIZATION,$(findstring EXPLICIT_VECTORIZATION,
5 $(CONFIGVARS)))
6 # enables generation of AVX instructions (used through vectorclass)
7 CFLAGS_VECTOR += -mavx -fabi-version=0
8 CPV = $(CPP)
9 else

10 CFLAGS_VECTOR =
11 CPV = $(CPP)
12 endif

Listing 3: Gadget Makefile.comp.cascadelake-openmpi

Here, mpicxx is the wrapper for the MPI C++-compiler, in this case from OpenMPI 4.0.3.
I discovered that version and MPI software per se are highly relevant. Using Intel-MPI
will cause compiler errors and using OpenMPI 4.1.1 by utilizing module load openmpi
will indeed lead to successful compiling and building but in the end in execution will end
up in a ’MPI INIT FATAL ERROR’.
Furthermore, in Makefile.path.cascadelake-openmpi the paths of the dependencies have to
be configured via environment variables. Here we need the sub-folders lib and include for
each dependency, Hardware locality library (HWLOC) is a tool which allows the program
to run on and enabling individual cores but we do not need it for the benchmark.

1 GSL_INCL = -I$(GSL_ROOT)/include
2 GSL_LIBS = -L$(GSL_ROOT)/lib
3 FFTW_INCL = -I$(FFTW_ROOT)/include
4 FFTW_LIBS = -L$(FFTW_ROOT)/lib
5 HDF5_INCL = -I$(HDF5_ROOT)/include
6 HDF5_LIBS = -L$(HDF5_ROOT)/lib
7 #HWLOC_INCL = -I$(LIB_DIR)/hwloc/build/include
8 #HWLOC_LIBS = -L$(LIB_DIR)/hwloc/build/lib

Listing 4: Gadget Makefile.path.cascadelake-openmpi

Finally, the gadget4-case-A.tar.gz is uncompressed with a Config.sh in the resulting folder
which is needed for compilation. The executable is generated via the compiling process
started with:
make CONFIG=../gadget4-case-A/Config.sh EXEC=../gadget4-case-A/gadget4-exe.
One can now execute the benchmark with srun and the param.txt as input. Details
about this topics are given in the following chapter about results and outputs of the
gadget benchmark in section 6.1.

Section 5 Johannes Michael Richter 10

Application and System Benchmarks

5.3 Gpaw

GPAW is an acronym for "A Projected Augmented Wave code". It is a package of
programs designed to calculate electronic structures by means of Density functional the-
ory (DFT) and Time-dependent density functional theory (TD-DFT). DFT is used for
analysis of ground state properties such as energetics and equilibrium geometries and
TD-DFT enables the calculation of excited state properties such as optical spectra. As
seen in the acronym, GPAW uses Projected Augmented Wave (PAW) to exclude the
main electrons which allows to do the calculations solely with soft pseudo valence wave
functions. These functions do not need to be normalized which allows more efficient cal-
culations. Since we are in the field of HPC it is essential to parallelize the problem. This
is possible because in DFT and TD-DFT it is possible to parallelize over electronic states.
The program is written in Pyton and C++ and parallelized with MPI. [Lus22]

5.3.1 Dependencies and Compilation

Aside from Python 3.6-3.9, MPI and a suitable C++-compiler, the dependencies of the
newest version of GPAW are:

1. Basic Linear Algebra Subprograms (BLAS)

2. Linear Algebra PACKage (LAPACK)

3. Basic Linear Algebra Communication Subprograms (BLACS)

4. Scalable Linear Algebra PACKage (ScaLAPACK)

5. FFTW

6. Library of exchange-correlation functions for density-functional theory (Libxc)

7. Atomic Simulation Environment (ASE)

Additionally, the Python packages NumPy ≥ 1.9 and SciPy ≥ 0.14 are necessary. This
is a rather long list of dependencies and the manual installation would be a big task, but
luckily Spack contains the package py-gpaw which exactly is the desired program. Hence,
the user just has to install and load the program via Spack with spack install py-gpaw
and spack load py-gpaw.

6 Execution and Results
In this section, the results, e.g. outputs of 2 out of the 4 benchmarks I deployed, are
presented in different test cases and computing configurations. I will provide details about
the corresponding output files of the benchmarks and the results of the benchmarks which
are execution times, Input/Output performance and verification data.

Section 6 Johannes Michael Richter 11

Application and System Benchmarks

6.1 Gadget

I used a sbatch script tailored to the given program to successfully execute the gadget
benchmark. At first, we have the corresponding #SBATCH lines that define the srun
parameters. The most important one is to provide sufficient Random access memory
(RAM) memory which in this case are 2000 megabyte (MB) defined in the param.txt.
An example script is given in Listing 6. If not explicitly given as a srun-parameter, the
benchmark will fail because there is no sufficient shared-memory for the program. The first
command after the srun parameters is a module purge to provide a clean environment.

Figure 2: Gadget Output: Technical Details.

For every nodes that is allocated for computation the benchmark reserves one MPI process
for node-to-node communication. That means, in this example, if one wants to compute
the benchmark on 10 nodes with effectively 500 MPI process which are calculating, one
needs to reserve 51 tasks per node. The following results belong to Testcase A provided

Section 6 Johannes Michael Richter 12

Application and System Benchmarks

in the UEABS where also instructions for the compiling process were provided. This
test-case simulates structures in the universe over time in a small box of linear length,
involving dark matter and gravity. Sadly, and I must criticise this, there were flaws in
the description and also a wrong param.txt for Testcase B so I couldn’t test this one.
Additionally, there were some typos which irritated me.
In Figure 2 the first page of the benchmarks output is shown. It displays used compiler
flags, compiler settings, information about the srun settings and an overview about al-
located memory. This summary is followed by a list of the parameter settings of the
benchmark itself and then calculation summaries begin. The steps of the calculations are
summarized in sync-points. It is possible to interrupt and restart the benchmark if the
user wants to. Snapshots are created to realize this and in the end there is a small I/O
performance that evaluates loading and saving of this snapshots and the final running
time, showed in Figure 3 below.

Figure 3: Gadget Output: The last lines.

Figure 4: Gadget Output: cpu.txt

Section 6 Johannes Michael Richter 13

Application and System Benchmarks

In addition to that, there is a whole directory containing various files about different
aspects of the output provided by the program. These files can be used by experts to
verify the results of the benchmark. In the UEABS was no information provided to verify
the results for me, as I am not an expert for astrophysics. Figure 4 shows the cpu.txt
that displays which methods of the program used how many capacities of the CPU. It
becomes clear that treegraves needs the most of the computational power. It calculates
and simulates gravitation in this Testcase A. In the following Figure 5 I plotted the running
times for different amounts of MPI processes. One can observe a flattening curve and can
apply the elbow criterion where at around 250 to 300 MPI processes the benchmark does
not scale was well as in the beginning.

100 150 200 250 300 350 400 450 500
MPI processes

30

40

50

60

70

80

90

100

Ru
nt

im
e

in
 se

co
nd

s

Execution times of the Gadget benchmark
Testcase A

Figure 5: Gadget Output: All runs output

6.2 Gpaw

The UEABS provides three test-cases to run the GPAW-benchmark on.

1. Case A (small): Carbon nanotube: scales up to 10 nodes and/or 100 MPI tasks

2. Case B (medium): Copper filament: scales up to 100 nodes and/or 1000 MPI tasks

3. Case C (large): Silicon cluster: scales up to 1000 nodes and/or 10000 MPI tasks

I ran the first two test-cases but chose to not try the last test-case because the requirements
seemed not to be realizable with the SCC system . For verification, for each test-case four
parameters are given to check the results of the benchmark e.g Number of iterations,
Dipole (3rd component), Fermi level and Extrapolated energy. This comes pretty handy
because one can check the results and do not necessarily be an expert for physics. Listing
7 displays an example sbatch script to run the GPAW-benchmark. A script is provided
to extract this parameters from the output-file which is an advantage over the Gadget
benchmark . An example is given in Figure 6.

Section 6 Johannes Michael Richter 14

Application and System Benchmarks

Figure 6: GPAW Output: Filtered Output

There exists also the full output of the benchmark which consists of compilation and
calculation details and also provides a pseudo-3D visualisation of the simulated molecule.
A visualization of all my runs on both test-cases is given on the following Figure 7.

60 80 100 120 140 160 180 200
MPI processes

30

40

50

60

70

Ru
nt

im
e

in
 se

co
nd

s

Execution times of the GPAW benchmark
Testcase A: carbon-nanotube

100 200 300 400 500 600
MPI processes

300

400

500

600

700

800

900

1000

Ru
nt

im
e

in
 se

co
nd

s

Execution times of the GPAW benchmark
Testcase B: copper-filament

Figure 7: GPAW Output: All runs output

Similar to Figure 5, we can here also observe a flattening curve. Testcase A should scale
up to 100 MPI processes but we can see that it scales further than that. Testcase B should
scale up to 1000 MPI processes but it seems that the curve flattens at around 500 MPI
jobs but that is just an assumption because I did not test with up to 1000 MPI processes.

Section 6 Johannes Michael Richter 15

Application and System Benchmarks

7 Conclusion
All things considered, I think the course worked out very well, especially considering that
it was its first iteration. In my opinion, the importance and relevance of HPC in the
current time is very clear and omnipresent. Primarily with the continuous emergence of
Artificial Intelligence, the enormous growing amount of data in the internet and examples
in biology like DNA where also always new and massive amounts of data are emerging.
With this in mind, also benchmarks inherit this importance because they are indispens-
able for maintenance and analysis of a HPC systems performance and integrity. This
monitoring of the systems performance is important because a HPC cluster runs 24 hours
a day , 7 days a week and is often used to capacity, which leads to abrasion of the hard-
ware.
Regarding the installation and management of software in HPC, the module system and
Spack are helpful tools and essential with respect to the time one has to invest as shown
in 5.2.2 and 5.3.1. Both Gadget and GPAW were interesting benchmarks to work with
in the context of deployment and execution and their purposes. I also would have like to
present code_saturn and cp2k, both benchmarks I also worked with and tested, but it did
not fit in the scope of this report. I focused on the presented benchmarks because Gadget
had to be compiled manually and provided very interesting outputs and GPAW could be
build easily by means of Spack and provided also interesting but especially user-friendly
outputs and verification tools. A downside of Gadget was, that verification was not really
possible because I am not an expert in astrophysics, whereas GPAW solved this with
simple verification parameters. The UEABS was a very helpful tool to investigate a range
of benchmarks but was also a bit overwhelming in its scope. It provided test-cases and
helpful instructions for compilation and execution of the programs but in case of Gadget
there were confusing typos and faults in the instructions and also the script to extract
results from the output file did not function. On the other hand, the execution of GPAW
worked out very well, instructions and a given script for validation and extraction of re-
sults functioned as well. The SCC system also worked as intended both in its utilization
environment and its HPC performance. The evaluation of the results of the benchmarks
confirms this observation.
Finally, all of the aspects, the course, the SCC system and the benchmarks I presented,
worked out as intended and granted meaningful insight into the massive topic HPC and
confirmed its major importance.

Section 7 Johannes Michael Richter 16

Application and System Benchmarks

References
[19] Benchmarks. 2019. url: https://hpc-wiki.info/hpc/Benchmarks.

[23] Scientific Compute Cluster (SCC). 2023. url: https://hpc-neu.gwdg.de/
hpc/systems/scc/.

[DB19] Wei Dai and Daniel Berleant. “Benchmarking Contemporary Deep Learn-
ing Hardware and Frameworks: a Survey of Qualitative Metrics”. In: 12-14
(Dec. 2019). url: https://dberleant.github.io/papers/Benchmarking%
20ContemporaryDeepLearningHardwareAndFrameworks.pdf.

[End22] Laura Endter. Spack. 2022. url: https://hps.vi4io.org/_media/teaching/
summer_term_2022/pchpc_spack_slides.pdf.

[IBM] IBM. What is High Performance Computing? url: https://www.ibm.com/
de-de/topics/hpc.

[Kel+22] Ruben Kellner et al. High-Performance System Administration Introduction
to Slurm. 2022. url: http://hps.vi4io.org/_media/teaching/autumn_
term_2022/hpcsa-slurm.pdf.

[Lio22] Walter Lioen. Unified European Applications Benchmark Suite. 2022. url:
https://repository.prace-ri.eu/git/UEABS/ueabs.

[Lus22] Kurt Lust. GPAW - A Projected Augmented Wave code. 2022. url: https:
//repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gpaw.

[Spr21] Volker Springel. Introduction to GADGET-4. 2021. url: https://gitlab.
mpcdf.mpg.de/vrs/gadget4/-/blob/master/documentation/01_index.
md.

[TOP22a] TOP500.org. GREEN500. 2022. url: https://www.top500.org/lists/
green500/.

[TOP22b] TOP500.org. TOP500. 2022. url: https://www.top500.org/.

[Wik23] Wikipedia. FLOPS. 2023. url: https://en.wikipedia.org/wiki/FLOPS.

Section Johannes Michael Richter 17

https://hpc-wiki.info/hpc/Benchmarks
https://hpc-neu.gwdg.de/hpc/systems/scc/
https://hpc-neu.gwdg.de/hpc/systems/scc/
https://dberleant.github.io/papers/Benchmarking%20ContemporaryDeepLearningHardwareAndFrameworks.pdf
https://dberleant.github.io/papers/Benchmarking%20ContemporaryDeepLearningHardwareAndFrameworks.pdf
https://hps.vi4io.org/_media/teaching/summer_term_2022/pchpc_spack_slides.pdf
https://hps.vi4io.org/_media/teaching/summer_term_2022/pchpc_spack_slides.pdf
https://www.ibm.com/de-de/topics/hpc
https://www.ibm.com/de-de/topics/hpc
http://hps.vi4io.org/_media/teaching/autumn_term_2022/hpcsa-slurm.pdf
http://hps.vi4io.org/_media/teaching/autumn_term_2022/hpcsa-slurm.pdf
https://repository.prace-ri.eu/git/UEABS/ueabs
https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gpaw
https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gpaw
https://gitlab.mpcdf.mpg.de/vrs/gadget4/-/blob/master/documentation/01_index.md
https://gitlab.mpcdf.mpg.de/vrs/gadget4/-/blob/master/documentation/01_index.md
https://gitlab.mpcdf.mpg.de/vrs/gadget4/-/blob/master/documentation/01_index.md
https://www.top500.org/lists/green500/
https://www.top500.org/lists/green500/
https://www.top500.org/
https://en.wikipedia.org/wiki/FLOPS

Application and System Benchmarks

A Code samples

1 #!/bin/bash
2 module purge
3 module load fftw/3.3.8
4 module load gsl
5 module load hdf5
6 module unload openmpi
7 module load spack-user
8 source $SPACK_USER_ROOT/share/spack/setup-env.sh
9 spack load openmpi@4.0.3

10 tar xvf gadget4-benchmarks.tar.gz
11 tar xvf gadget4-case-A.tar.gz
12 cd gadget4-benchmarks
13 cat Template-Makefile.systype > Makefile.systype
14 sed -i '17 s/.*/SYSTYPE='cascadelake-openmpi'/' Makefile.systype
15 sed -i 's/^PYTHON.*/PYTHON = python/g' Makefile
16 sed -i '112 i \\nifeq ($(SYSTYPE),'cascadelake-openmpi')\ninclude \
17 buildsystem/Makefile.comp.cascadelake-openmpi\ninclude \
18 buildsystem/Makefile.path.cascadelake-openmpi\nendif' Makefile
19 cd buildsystem
20 cat Makefile.comp.gcc > Makefile.comp.cascadelake-openmpi
21 echo -e 'GSL_INCL = -I\$(GSL_ROOT)/include\nGSL_LIBS = \
22 -L\$(GSL_ROOT)/lib\nFFTW_INCL = -I\$(FFTW_ROOT)/include\nFFTW_LIBS \
23 = -L\$(FFTW_ROOT)/lib\nHDF5_INCL = -I\$(HDF5_ROOT)/include\nHDF5_LIBS\
24 = -L\$(HDF5_ROOT)/lib\n#HWLOC_INCL = -I\$(LIB_DIR)/hwloc/build/include\n\
25 #HWLOC_LIBS = -L\$(LIB_DIR)/hwloc/build/lib' \
26 > Makefile.path.cascadelake-openmpi
27 cd ..
28 make CONFIG=../gadget4-case-A/Config.sh EXEC=../gadget4-case-A/gadget4-exe
29 cd ..
30 cd gadget4-case-A
31 echo -e '#!/bin/bash\n#SBATCH -p medium\n#SBATCH --time=02:00:00\n\
32 #SBATCH --job-name=DM_L50-N512\n#SBATCH --output=g_%j.out\n#SBATCH \
33 --error=g_%j.error\n#SBATCH --nodes=4\n#SBATCH --ntasks-per-node=31\n\
34 #SBATCH --cpus-per-task=1\n#SBATCH --mem-per-cpu=2000\nmodule purge\n\
35 module load fftw/3.3.8\nmodule load gsl\nmodule load hdf5\nmodule \
36 unload openmpi\nmodule load spack-user\nsource \
37 $SPACK_USER_ROOT/share/spack/setup-env.sh\nspack load \
38 openmpi@4.0.3\necho\necho "Running on hosts: $SLURM_NODELIST"\necho \
39 "Running on $SLURM_NNODES nodes."\necho "Running on $SLURM_NPROCS \
40 processors."\necho "Current working directory is `pwd`"\necho\nsrun \
41 ./gadget4-exe param.txt' > slurm_script.sh

Listing 5: Gadget-Benchmark: Build script

Section A Johannes Michael Richter A1

Application and System Benchmarks

1 #!/bin/bash
2 #SBATCH -p medium
3 #SBATCH --time=02:00:00
4 #SBATCH --job-name=DM_L50-N512
5 #SBATCH --output=g_%j.out
6 #SBATCH --error=g_%j.error
7 #SBATCH --nodes=10
8 #SBATCH --ntasks-per-node=51
9 #SBATCH --cpus-per-task=1

10 #SBATCH --mem-per-cpu=2000
11 module purge
12 module load fftw/3.3.8
13 module load gsl
14 module load hdf5
15 module unload openmpi
16 module load spack-user
17 source $SPACK_USER_ROOT/share/spack/setup-env.sh
18 spack load openmpi@4.0.3
19 echo
20 echo "Running on hosts: $SLURM_NODELIST"
21 echo "Running on $SLURM_NNODES nodes."
22 echo "Running on $SLURM_NPROCS processors."
23 echo "Current working directory is `pwd`"
24 echo
25 srun ./gadget4-exe param.txt

Listing 6: Gadget-Benchmark: Example sbatch script

Section A Johannes Michael Richter A2

Application and System Benchmarks

1 #!/bin/bash
2 #SBATCH -p medium
3 #SBATCH --output=gpaw_%j.out
4 #SBATCH --error=gpaw_%j.error
5 #SBATCH --nodes=2
6 #SBATCH --ntasks-per-node=40
7

8 module purge
9 module load spack-user

10 source $SPACK_USER_ROOT/share/spack/setup-env.sh
11 spack load py-gpaw
12

13 echo
14 echo "Running on hosts: $SLURM_NODELIST"
15 echo "Running on $SLURM_NNODES nodes."
16 echo "Running on $SLURM_NPROCS processors."
17 echo "Current working directory is `pwd`"
18 echo
19

20 srun gpaw python input.py

Listing 7: GPAW-Benchmark: Example sbatch script

Section A Johannes Michael Richter A3

	Contents
	List of Figures
	List of Listings
	List of Abbreviations
	Introduction
	High Performance Computing
	Summary
	Local System

	The Concept of Benchmarking
	Challenges and possible Approaches
	Upcoming Challenges
	Regression Testing
	Approaches

	Benchmark Deployment
	Prerequisites
	Module system
	Spack
	SLURM and sbatch

	Gadget
	Gadget-4
	Dependencies and Compilation

	Gpaw
	Dependencies and Compilation

	Execution and Results
	Gadget
	Gpaw

	Conclusion
	References
	Code samples

