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Incident Response and Forensic Tools

1 Introduction
Cyber crime is a critical issue with increasing number of cases. By shifting to hybrid office
models following the COVID-19 pandemic, the attack surface was widened, and as a result,
the number of cyber-attacks targeting organizations and corporations increased [1]. The
FBI’s Internet Crime Complaint Center reported that during the COVID-19 pandemic,
complaints in the United States increased from 1,000 to 4,000 complaints per day [2].
In addition, the German Bundeskriminalamt (BKA) registered 85.960 new cybercrime
cases in 2017 that rose to 124.137 cases in 2021, increasing by 44% alone in Germany
[3]. A new study by the anti-virus specialist McAfee estimates the monetary loss by
cybercrime to be $945 billion and an additional $145 billion for investment in cyber
security measures, totaling in an estimate of over $1 trillion costs for the global economy
[4]. Especially High-Performance Computing (HPC) clusters are particularly promising.
In HPC clusters, hundreds of individual computers contribute to substantial computing
performance, which allows cybercriminals to exploit these systems for malicious purposes,
such as mining cryptocurrency or maintaining botnets. That these are not only theoretical
considerations show the attacks on HPC clusters in Europe [5] and Norway [6]. While HPC
systems are also susceptible to many of the same attack vectors used against conventional
IT systems, they also possess their own vulnerabilities due to exotic hardware and software
that are implemented in these systems [6]. Since HPC clusters are accessed by a large
number of users and security patches are often delayed, they require extra attention when
it comes to security.

Typical attack vectors for HPC systems involve users not protecting their passwords
or using passwords that are easily exploitable, such as ’password123 ’. A attacker may
then attempt to escalate their privileges by triggering a local root exploit and elevating
their privileges during the escalation. From this foundation, attackers may exploit other
systems that are not open to the public network and attempt to conceal the path of their
attack. Because of this, detection may be delayed and may only occure due to a significant
difference between the behavior of hackers and that of the account owner [7].

The need for incident response (IR) plans is essential for providing fast and effective
solutions to such occurrences. The implementation of a organized and well-established IR
framework will assist in countering the steady trend of attacks. The framework should
ensure that the organization’s information assets are confidential, trustworthy, and avail-
able, as well as guide investigators in a predefined manner so that a standard procedure
is established [8]. The purpose of this research is to address exactly this niche within the
IT security field.

The report is based on the assumption that an attacker has already compromised a
legitimate user account as a result of an attack. Therefore, the methods presented will
be based on this scenario. However, IR may also start with endpoint protection alerts or
the detection of security gaps in the environment. This work will give recommendations
regarding IR procedure, highlight possible pitfalls and present appropriate tools for anal-
ysis. This study will not examine the actual digital forensic analysis process associated
with investigating malicious assets, and will therefore only briefly touch on this subject
when appropriate.

The paper starts with section 2 describing theoretical frameworks of attack and defense
behaviour. Furthermore, section 3 presents the practical side of IR by introducing disk
and memory image acquisition and the importance of timestamps in a forensic analysis.

Section 1 Dominik Mann 1
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The section also includes descriptions on the incident response script that was developed
for this project. In section 4 we will talk about how incident response can be scaled
to include characteristics of HPC environments. We conclude the paper with a brief
summary in section 5.

2 Theoretical Incident Response
This section should present a theoretical foundation for incident response procedures and
provide insight into the way defenders approach an incident. There will be two key
concepts introduced in this article that are important in understanding the process of
planning and executing IR playbooks.

2.1 Threat Intelligence

Prior to discussing practical applications, it is necessary to review the theoretical founda-
tions of IR in order to gain a thorough understanding of why some practical procedures
are carried out. First we will look onto the attackers side and introduce the kill chain
before reviewing the defenders side and talking about the six-step IR plan.

To detect and mitigate intrusions, it is essential to understand the attacker’s perspec-
tive so that a plan for upcoming events can be created and appropriate measures can
be taken. Consequently, intrusion analysis approaches have been developed to map and
illustrate attacker behavior during an attack. Over the years, three models have distin-
guished themselves from the rest, namely the Diamond Model [9], the Cyber Kill Chain
(CKC) [10] and the MITRE ATT&CK framework [11]. In this work, we will focus on the
CKC as it describes high-level adversary objectives that are easier understandable in an
introduction into cybersecurity and IR without losing important information (for a deep
level complementary see [11]). In practise however, combining the models can provide
even deeper understanding of attacks and is commonly proposed by the authors of the
models [9], [11].

Based on military doctrines, the CKC outlines the stages an attacker must pass
through in order to accomplish their objectives. The CKC consist of the following in-
dividual steps:

1. Reconnaissance: Gather data on target organization (E-Mail, IP addresses, open
ports, etc.).

2. Weaponization: Craft malicious payload and bundle it with backdoor.

3. Delivery: Delivering weaponized bundle to the victim through open security gaps.

4. Exploitation: Exploit a vulnerability to execute code in victim’s system.

5. Installation: Installing malware and obtain credentials.

6. Command Control: Set up command channel for remote manipulation of system.

7. Actions on Objectives: Obtain ultimate objective and persistence.

Section 2 Dominik Mann 2
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Essentially, an intrusion is a process by which an aggressor develops a payload to breach
a trusted boundary, establish presence within an environment, and then directly act upon
that presence in order to achieve their objectives. Each step in the kill chain must be
completed successfully by the adversary in order to penetrate the network. Deviation
from these steps will result in a disruption on the achievement of the desired objective
[10]. In contrast, a defender can use kill chain analysis to determine which information
is available for a defensive response. In the event that analysts find indications that
adversaries have achieved a certain stage, they may assume they have also completed the
previous stages and search for indicators of compromise (IOC) in order to prevent future
breaches. Additionally, incident responders have a guideline to follow when preparing for
an incident. When receiving a report of a new attack method (such as OpenIOC1 or
MISP2), a defender is able to determine what kinds of IOCs or attack techniques would
be reasonable to be produced or employed when attacking a specific system [12].

2.2 Incident Response Plan

Following our examination of the incident from the perspective of the attackers, we will
move on to the perspective of the defenders.

Every security incident is unique in its nature and IR should adapt
accordingly. To give incident handlers a direction while investigating, the IR process

should be guided by a general framework, yet it must remain flexible throughout. In
practise, two IR plans stand out, the NIST Incident Handling Guide [13] and the SANS
Incident Response Plan [5]. When compared side-by-side, NIST groups containment,
eradication, and recovery from a security incident in one phase, which means that these
three steps take place simultaneously, while SANS separates them. In this work, we will
focus on the SANS IR Plan, as separating each phase into individual steps will provide
a thoroughly understanding of the concept. Additionally, the concept incorporates the
dependence among phases, as each step can have an impact on previous steps when new
IOCs are encountered. As we will see, a recovered system is monitored and if malicious
behavior persists, the system will be contained again [5].

As visualized in Figure 1, the response plan can be divided into six steps that follow
a linear sequence. The definition of the steps are as following [5]:

1. Preparation: A team should be able to respond to incidents in a timely manner.
Adequate tools and equipment are provided and sensitive assets are identified.

2. Identification: In this step, deviations from normal behavior are evaluated by
gathering telemetry such as log files, error messages and other resources. When an
incident is discovered, the IR team will be notified and the event is classified in its
severity.

3. Containment: This phase is intended to limit the extent of current damage and
prevent further damage from occurring by isolating affected servers from the network
in the short term. Additionally, a forensic image of the system is created to preserve
important evidence. In the long term, accounts and backdoors left over from the
attack will be removed and security patches will be installed to all systems.

1https://www.mandiant.com/resources/blog/openioc-basics
2https://www.misp-project.org/
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Figure 1: The SANS Incident Response Plan (based on [14])

4. Eradication: In this phase, the actual root cause of the malicious incident will
be removed, as well as any other illicit content on the affected system. Moreover,
improvements will be incorporated based on the learned attack vector. At this stage,
a system should be fully operating again.

5. Recovery: During this phase, affected systems will be carefully reintroduced into
the production environment. In order to prevent a recurrence of the incident due to
same causes, tests and monitoring of affected systems are essential. If the system
shows abnormal behavior again, it will be put back into the containment phase.

6. Reporting: Concluding, lessons learned from the incident are being discussed and
documentation of the event is completed. An informative report should be able to
answer the Who, What, Where, Why and How questions. Overall, the goal is to
learn from incidents within an organization in order to improve security as well as
serve as a reference for subsequent incidents.

3 Practical Incident Response
After examining the theoretical aspects of IR, we shall now discuss practical considerations
of the IR process. As there are numerous characteristics that need to be taken into
account, this section provides valuable insights into important IR characteristics and
provides guidance through the incident investigation process.

3.1 Forensic Image

For incident response analysts, it is essential to have a solid understanding of the facets
of forensic imaging. In order to ensure proper evidence handling, an analyst must be
familiar with tools, techniques, and procedures. This will ensure that the evidence is
handled properly and that the evidence can be trusted [12]. In order to preserve data in
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its original state, the hard drive of a system needs to be copied for analysis. It is advised
to create a master copy and a working copy. Additionally, all steps taken to record a copy
should be documented [15]. The incident handler may then analyze the disk without
having to worry about metadata changes (timestamps, permissions, etc.) or that data
may be altered. In such a scenario, the analyst can always go back to the master copy to
restore it to its original state. In every scenario, the analyst should at least document the
hash of the original disk and the hash of the copy. These two hashes should be identical
and ensure that the disk content is not altered.

Luttgens et al. [16] distinguishes between three types of forensic images - the physical
image, a partition image and a logical image. A physical copy of a disk is a bit-by-bit copy
of every addressable allocation unit on the original disk. Therefore, a storage medium
the same size or larger is required. Advantages of the physical image are the capturing of
all data on a drive, consequently spaces like file slack space (unused space reserved for a
file; it may contain residual data such as portions of deleted files) and unallocated space
is captured. An examiner is able to access all these blocks, being able to recover deleted
files in unallocated space or access hidden data in slack space. Although a physical disk
image is nearly always preferred because of its all-encompassing nature, all three images
have their purposes. Which image type is selected depends on the specific use case. A
partition image refers to a bit-by-bit copy of a single partition of a disk that illustrates
a subset of a physical image. When the indicators originate exclusively from a particular
partition, it can provide significant time saving during the imaging process. A logical disk
image is a simple copy of active data on a partition of a hard drive. It neglects spaces that
are not occupied with data, and therefore the possibility of file carving is not provided. A
logical image, on the other hand, allows the investigator to quickly scan the contents of a
hard drive for files and folders relevant to the investigation and can save the investigator
a substantial amount of time.

In practise, a hard drive should always be attached to the forensic workstation through
some kind of write blocker, ideally a hardware write blocker, to prevent accidentally
altering data while imaging. If the hardware is not available, the investigator should
disable the auto mount option of the workstation. After connecting the hard drive with
the workstation, the block device of the attached disk can be printed with the dmesg
command. To ensure file integrity, it is advised to calculate the hash sum of the disk before
and after creating a image. To create an image of the disk, several methods via software
are available. Common command line tools are dd, dcfldd3 and dc3dd4. The advantage
of dd is that it is available on nearly every Unix system. Due to the fact that most
Unix-based systems display hard disks and other hardware as files, it is possible to copy
them forensically sound using the dd command [16]. Drawbacks of dd are the inability to
calculate checksums of the image and the lack of user feedback during the image process.
Therefore, enhanced versions of dd where developed by the U.S. Department of Defense
Computer Forensics Laboratory (dcfldd) and the Defense Cyber Crime Center (dc3dd).
They enable writing logs, using hashing algorithms, file splitting and provide progress bars
to users. Listing 2 provides sample commands for creating an image with these tools. The
hash of /dev/sdb is calculated for verification after image creation. The commands will
produce images based on the disk provided in /dev/sdb with a block size of 4096 bytes
per block. The two advanced methods will additionally calculate the SHA-256 hash of the
output image and automatically verify the integrity. dd and dcfldd additionally can be

3sourceforge.net/projects/dcfldd
4sourceforge.net/projects/dc3dd
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provided with the conv argument, specifying that a corrupt block should be padded with
nulls to preserve the full length of the original data and noerror ensures the continuity
after such an error occurred. To created an image remotely, one can use netcat to open
a connection between the compromised system and the workstation and executing the
command.

As all of the aforementioned methods produce a raw image format, these images can
be used with nearly all Unix and forensic tools, however, they are large and cumbersome
to work with. To provide solutions to these drawbacks, additional image file formats
were developed. A common file format used is the EnCase Evidence File or short .e01.
Like dd and its descendants, it uses a physical bit stream of the data to produce an
image. However, the file format supports compression and contains metadata that stores
information about the drive type, operating system and timestamps of image creation.
Moreover, a key feature is the Cyclical Redundancy Check that ensures file integrity by
verifying each 64 KB block of data over the entire image and additionally supports MD5
hashes [12]. This type of image can be easily created with the AccessData FTK Imager5 or
Guidance Software EnCase6 that provide a GUI to guide through the process of creating
an image.

Another option is to use a boot disk with a pre-installed operating system such as
CAINE 7. The system should be booted from the provided boot device. A target source
(USB-Stick or another drive) for saving the image should be mounted as read-write.
CAINE provides easy management of partitions with the pre-installed software Mounter.
After that, the disk can be imaged with the software of choice (dd, dcfldd, Guymager,
EnCase, etc.8; an extending description can be found in [17]).

To mount a raw image, it is important to remember that an image should always be
mounted read-only. This is achieved by providing the ro mount parameter. Additionally,
the noload parameter should be passed as the manual for mount states that a system
may still try write to a device by replaying the journal if the filesystem is dirty. The
noload option prevents this kind of behavior. In some cases, when the disk contains a
complex partition table, an offset needs to be specified that is calculated by multiplying
the block size with the starting value of the specific partition that needs to be analyzed
(this can be located with fdisk -l or mmls from the Sleuthkit). Assuming that the a
block is the size of 512 bytes and the partition to analyze starts at block 2048, a typical
command can look like:

1 # 512*2048=1048756
2 $ mount -t ext4 -o ro ,noload ,loop ,offset =1048576 image.dd /mnt/evidence

Listing 1: Forensic Image Mounting

As an alternative, the partitions can be mounted automatically as loop devices with the
command losetup -Pr image.dd and then the loop device can be mounted to the desired
mount point.

To mount an .e01 image, the ewfmount tool from the ewf-tools package is needed.
It mounts the .e01 file automatically as read-only. As the file format acts as a container,
the underlying raw image can be mounted with the former methods.

To analyze an image, no special forensic operating system is needed. However, distri-
5www.accessdata.com
6www.guidancesoftware.com/forensic
7https://www.caine-live.net/
8NIST provides a catalog for forensic tools (https://toolcatalog.nist.gov/search/index.php?ff_id=1)
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butions like Kali Linux 9, CAINE, or SIFT10 provide a range of preinstalled forensic tools
and activated settings to ensure forensically sound operation, including auto-mounting
disabled and extended file system support.

3.2 Memory Image

A disadvantage of focusing exclusively on offline acquisitions is the loss of volatile data
that only exists in memory. The volatile data contains important evidence such as network
connections, running processes, open files, login sessions, etc., all of which are lost when
the system is shut down, particularly in HPC systems where the system often resides in the
memory rather than on the hard drive. Especially systems compromised with malware or
platforms such as MetaSploit, evidence of the malicious software is only contained within
the memory. Moreover, the creation of a hard drive copy of every system takes time,
however, in the case of an active incident time is a crucial factor. [12].

An important characteristic of memory acquisition is that alteration of RAM while
attempting to create an image is unavoidable. Since the system is still running, data in the
memory is constantly moving and changing. The act of simply looking at the contents of
memory alters the contents of the memory [18]. In addition, executing a tool to collect the
memory writes to the RAM. In Linux systems, memory can typically be accessed through
the /dev/mem and /proc/kcore files. The first file contains raw physical contents of
memory, the second contains the same contents but in the core file format [18]. The
script that will later be introduced uses the open-source tool Acquire Volatile Memory
for Linux 11 (AVML) written in Rust and released by Microsoft. AVML is capable to
acquire a raw memory dump (in LiME format) in kernel space without knowing the
target operating system or kernel a priori. It does so with the least possible interaction,
however the LiME kernel module needs to be loaded in the kernel space which disturbs
the system. It then tries to create dumps from /dev/crash, /proc/kcore or /dev/mem.
AVML does also provide compression; however, when there is only one try available, it is
recommended that the normal raw format should be used to maximize success rates. To
analyse the memory image, frameworks like Volatility12, Rekall13 or Project Freta14 can
be used. Volatility uses profiles for operating systems where the memory image originated
from and executes plugins to extract information. Rekall is a fork of Volatility and extends
the framework by introducing automated detection of suitable profiles and constructs new
profiles if required [19]. Project Freta is a complementary to AVML and is also developed
by Microsoft. In contrast to the latter two frameworks, Project Freta provides a GUI and
provides automated full-system memory inspection.

When a corresponding plugin exists, the memory can be analyzed as it would be on
the system. However, finding relevant information can be difficult when confronted with
large image dumps [18]. Based on Johansen’s [12] borderline examination methodology,
the following six items should be included in a memory analysis:

1. Identify rogue processes

2. Identify file handles and associated files of the rouge process
9https://www.kali.org/

10https://www.sans.org/tools/sift-workstation/
11https://github.com/microsoft/avml
12https://www.volatilityfoundation.org/
13http://www.rekall-forensic.com/
14https://www.microsoft.com/en-us/research/project/project-freta/
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3. Dump suspicious process content and drivers for later analysis

4. Review network artifacts for active or listening malicious connection

5. Examine evidence of code injection

6. Check signs for rootkits

It is important to note that these steps are not set in stone, but should serve as a guideline
for beginning an analysis of memory without further IOCs.

3.3 Timestamps in Digital Forensics

It is difficult for humans to perceive digital evidence. It is quite possible that important
pieces of digital evidence may be overlooked by examiners who are not fully aware of how
seemingly useless data can be converted into evidence of great value. When considered
independently, timestamps are of little value, however, when linked to other events, they
reveal their true potential, allowing investigators to form causal relationships between
these events. Additionally, timestamps can act as an alternative if log files are corrupt or
not available [20]. The amount of available timestamps depend on the implemented file
system type. In Linux file systems, file system types like Ext3 and NFS use three types
of timestamps, whereas Ext4 and Lustre support four different timestamps. The three
shared timestamps include:

• Access time: Last time the file was read.

• Modification time: Last time the file’s content has been modified.

• Change time: The Last time the file’s inode has been changed (e.g. changing
permission, ownership, file name, etc.).

The fourth timestamp that is newly introduced is the Creation time that refers to the
time of creation of a file. These timestamps are stored as 32-bit integers each and represent
the seconds since Unix epoch [21].

To parse the timestamps, the Unix tool stat or Sleuthkit’s istat can be used. As
stat does not always displays the creation time, debugfs can be utilized. When using
debugfs the file system of the investigated file needs to be known. Entering the debugfs
prompt with debugfs -w </dev/sdX> and executing the command stat /path/to/file
will display all four timestamps. It is important to note that debugfs as well as stat does
display the nanoseconds, however in the case of debugfs this not directly obvious. The
nanoseconds can be obtained by converting the hexadecimal after the colon to decimal
and dividing it by four. Comparing the value to the value of stat will reveal that it is in
fact the nanosecond.

Timestamps can help analyzing the attackers behavior. When a malicious file has
been identified on a system, timestamps can be used to search for new files that have been
created during the same period of time. The same applies to instances when a malicious
network connection has been detected. The creation of files at the time the connection
occurred can be an indicator of malicious activity [19]. For that purpose, analysts can
create timelines that illustrate a temporal image of the system’s activity. Based on this
motivation, two tools were created: Plaso15 and Autopsy’s timeline feature16. The general

15https://github.com/log2timeline/plaso
16http://wiki.sleuthkit.org/index.php?title=Timeline
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idea behind these tools is to gather temporal data of each file and save it to into a body
file format. Afterwards, the body file will be merged and sorted into a single file that can
be viewed either in a CSV editor or with the Timeline Explorer 17 for further analysis.

A drawback of this kind of analysis is shown in Listing 12. If attacker gain administra-
tive rights on a system, they are capable of altering the timestamps in their favor. Despite
the fact that some attackers may not consider altering timestamps, modifying the access
and modification times is relatively easy to accomplish using the touch command. An
alteration of change and creation times is more advanced, and can assist in identifying in-
consistencies if these were not modified. For example, there may be inconsistencies when
the access time is older than the creation time, indicating malicious intend. Moreover,
when a binary is replaced with a trojanized version, timestamps may be considerably later
than expected (for example the system installation time) [19]. Inspecting all three/four
timestamps of the relevant file, as well as related files, is advised.

3.4 Hashset

As already mentioned in subsection 3.2, preserving volatile data is important for the
investigation. As creating and analyzing memory images again may take considerable
time or may not be possible due to the lack of profiles in the analysis tools, an additional
method is to collect the volatile data directly from the system. Moreover, it can help in
deciding if a full hard drive duplication is necessary and therefore help triaging systems
into relevant and non-relevant systems for the investigation. Although this collection can
be conducted manually, it is recommended that this task is automated using a script in
order to ensure uniformity and minimize changes made to the system [12]. Furthermore,
to perform a profitable analysis, the analyst should know the normal behavior of the
investigated system as to distinguish between suspicious artifacts and typical actions [13],
[19].

According to Kent et al. [15], volatile data should be collected in the following order
of importance:

1. Network connections

2. Login sessions

3. Contents of memory

4. Running processes

5. Open files

6. Network configurations

7. Operating system time

To collect these kind of information, a script was developed to ensure consistent and
least-interfering contact with the system. Additionally, a hashset of known good binaries
of the Rocky 8.7 and Rocky 9 operating systems where prepared. The hashset should
ensure that no binaries were replaced by malicious replicates that trick the examiner into
obtaining maliciously forged results. Despite the fact that a hashset is a good starting

17https://ericzimmerman.github.io/!index.md
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point for verifying binary integrity, it should be kept in mind that changing one bit in
a tool also changes the hash sum. Therefore, it is necessary to ensure that the same
version of tools is used. If this cannot be complied with, the examiner needs to verify
the output of different tools (e.g. ps vs. pstree vs. ls /proc/pid) to exclude the
possibility of trojanized binaries. Additionally, the PATH environment variable should be
observed if unexpected locations of binaries are present [19]. In the event that no hashsets
are available, the incident handler may also consider setting up a new system (such as
a virtual machine) with the same operating system version and updates. Afterwards,
a custom hashset of binaries can be created with the sha1sum tool (or other hashing
algorithms). To check the system, the command ’sha1sum -c <hashset_file>’ can
be executed. The hashsets created for this research uses the MD5 as well as the SHA1
algorithm. Included were all binaries under /sbin and /bin as well as respective binaries
under /usr and /usr/local. Additionally, a recursive search of all files with execution
permission was conducted. Despite the fact that this may result in overlapping results, it
will also reveal additional files that have not been included in the hashset. The procedure
for creating a hashset can be found in Listing 13. To ensure integrity of the hashset,
the respective hash for all hash files was calculated. The output is archived in a tar.gz
archive. Additionally, it was digitally signed with the author’s digital signature.

3.5 Live Incident Script

The script is a merged collection of already existing solutions [22]–[25] as well as sug-
gestions from literature [12], [15] translated into a Bash script. Kent et al.’s [15] order
of volatility was considered and implemented accordingly. However, network connections
and configurations were merged into one category. Additionally, a persistence, system,
logs, and files category was introduced, whereas the operating system time is collected
during general system information gathering. Optionally, a memory image with AVML
can be created. Moreover, the user has the choice to scan the system with the lite version
of the compromise assessment tool Thor 18. This tool rates elements based on numerous
characteristics of malware described in YARA rules (see Appendix E for more informa-
tion). It can also be used to scan mounted disk images in the lab mode. In addition, the
user can also choose to collect HPC system specific information in the form of executed
SLURM jobs on the node. Information about JobID, Job State, the Nodelist and addi-
tional details are gathered to support the analysis. In this manner, the investigator has
the opportunity to identify further potentially compromised systems, since a user is able
to connect to the worker node to which the SLURM job was issued, which otherwise would
not be possible. Using this information, a follow-up investigation can be carried out to
collect job scripts for a particular suspicious JobID to identify whether malicious intent is
contained within them or if attackers executed any malicious files on the compute nodes.

To avoid changing timestamps, the file system that is mounted on the root file system
needs to be remounted with the noatime option19. The command for this operations is:
’mount -o remount,noatime /dev/sdX’ where X is the used file system. It prevents
the update of access timestamps while reading files during the collection. After the script
finishes, the file system can be remounted with original options. Johansen [12] came up
with a clever idea of how to execute a script in a safe environment. In his recommendation,
a network share on a dedicated server should be set up with one directory for the script

18https://www.nextron-systems.com/thor-lite/
19Note however, that the noatime option has no effect on NFS mounts.
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and one for storing the output. In order to access the share, new throwaway credentials
should be created which have never been used for anything else within the organization
before. The folder for the script was made read-only, the second folder for the output
was made writable. Beside this suggestion, tools to collect volatile data should always
be placed on a portable device along with all needed tools as to not pollute the target
machine by copying files to the system. As well, all external tools should be statically
linked binary files. Thus, no dependencies on other library functions are required [15].

The script starts with collecting network information. During an attack, attackers
may open listeners on previously unutilized ports in an attempt to gain or reclaim access
to a system. Additionally, attackers may try to redirect network traffic by forging wrong
MAC-adresses and therefore creating a man-in-the-middle-attack. Besides this attempt,
attackers can install rootkits in the attempt to try hide ports from queries on a running
system. Hence, the script collects, among others, information such as network devices,
lists of network connections, and ARP table caches. To detect hidden ports, the external
tool unhide-tcp is employed. This tool identifies TCP/UDP ports that are listening but
are not listed in /bin/netstat by brute-forcing all available TCP/UDP ports. Listing 3
shows a result of a ss output that displays a netcat connection listening on port 4444
for commands issued by a potential attackers. Having the knowledge that port 4444 is
abnormal, this entry can indicate a compromise.

Next, log-in sessions are included in the collection. It collects various information
of SSH logins to the system. The information includes login timestamps, a list of login
attempts, and the origin of the login. Especially the origin of a login can be interesting
as it can depict additionally compromised systems when the attacker tries to exploit the
network with lateral movement. Listing 4 depicts login attempts taken from the secure
log that registered numerous login attempts to the user bad. Since the login attempts are
occurring rapidly, one may assume that this is a brute force attack. The attack has been
successful in the end, as a login was registered in this scenario. Additionally, SSH and
SSHD configurations are collected that may contain malicious entries to ensure reentry for
an attacker.

Moreover, the script collects information about the memory. It queries the currently
used memory and collects used swap space as well as information of the CPU. It mainly
should be used for detecting abnormal behaviour of the system. As an example, an idle
system that utilizes a large amount of memory may be an indication that hidden software,
such as cryptocurrency mining, is executed.

Collecting information about processes is another important category. Many modern
tools use ’memory only’ injection methods, where malicious code is added to processes
but is never written to disk. Given this fact, evidence of running malicious content can
only be obtained in this state. Due to the fact that the system typically runs a variety
of processes, it is recommended that a baseline or historical record of those processes is
maintained. A more detailed examination should be conducted on processes that cannot
be verified [19]. When examining a process, it is important to consider details such as the
location of the executable, the type of child processes spawned by the process, as well as if
the execution start time aligns with the expected time. Additionally, the script checks for
process that were executed by deleted binaries (Listing 10) or if the processes runs from
untypical places like /tmp or /dev. Moreover, unhide is utilized, just as in the case of
network connection gatherings. In this setting, it tries to detect hidden and fake processes
by comparing results from /proc vs. /bin/ps, as well as comparing information gather
from /bin/ps with the information gathered by walking through the procfs. As a last
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verification step, unhide compares output from /bin/ps to information gathered from
the syscalls. Listing 5 shows how unhide can detect a process hidden by the rootkit
Diamorphine.

As an additional step, open files executed on the system are collected. It shows the
user and process that opened a file. When having additional IOCs, one can filter the lsof
output with the -p parameter for a process ID or with the -u parameter for filtering for
a specific user. By using this information, one may be able to identify more malicious
activities by an attacker or uncover hidden malicious executables.

As a last collection block, non-volatile data is collected that are further divided into
subcategories. The first block collects general host information such as hostname, kernel
version, last boot time, the PATH environment, date and time configurations, and so on.
Quite interesting information is gathered regarding to all mounted devices, confirming that
no forged options have been used. Additionally, Loadable Kernel Modules (LKMs) are
collected. Listing 8 and Listing 9 show exemplary output for this kind of information. In
this scenario, a malicious LKM could be detected that belongs to the rootkit Diamorphine.
This rootkit has the ability to hide processes, files or directories and can give the user root
access to the system. Additional indicators can be taken into account by investigating
the Linux Kernel Modules under /usr/lib/modules/$(uname -r)/kernel/ that are also
gathered. Unknown .ko files indicate signs of a rootkit. Having this information, an
analyst can access the persistence collection and check if a the unknown kernel module
is loaded at boot time to create backdoors for attackers. To load the malicious LKM,
a configuration needs to be created under /etc/module-load.d or /etc/modprobe.d.
The configurations in these two directories will be collected and are available for analysis.
Additionally the crontab and cron entries are collected as well as outputs of system
commands that list startup items. Furthermore, processes instructed to start at boot
time in location like /etc/init.d, /etc/rc.d, etc. are also collected.

To gain additional information in determining if the system should be further analyzed,
the collection of logs under /var/logs and a collection of modified files (in the last 90 days)
as well as key files (anacron, systemd, ssh, yum, etc.) is conducted. Additional to just
simply collecting all log files, a search of binary code in log files is done. Moreover, files that
try to evade detection by adding white space or names like "..." are extracted. A special
attention is put on directories like /tmp and /dev where hidden files are uncommon [19].
Furthermore, setuid and setgid files are searched recursively as they allow to execute
files with administrative rights without having root access. The collection of system and
file information serves the purpose of having additional indicators when analyzing and
finding relevant evidence in volatile data. The analyzer can quickly fetch the files that
are interesting or substantiate findings without the need to create a whole disk image.

The last step is to gather information about the users and groups within the sys-
tem. Attackers try to ensure regaining access to a system by elevating user rights or
creating user accounts. Therefore, files like passwd or a list of users in the sudo group
are gathered to give the analyzer the ability to verify the presence of unknown or reac-
tivated user accounts or elevated privileges of legitimate accounts. Furthermore, Anson
[19] notes that accounts that run daemon processes should be inspected, as they should
not have the ability to log into the system interactively. Discovering such activity should
be investigated.

Although the volume of data collected by this script is quite large, Kent et al. [15]
assert that when in doubt it is always advisable to collect as much volatile data as pos-
sible because as soon as the computer is turned off, all opportunities to collect volatile
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information will be lost. To distribute the script, clush can transfer and execute the
script on different nodes in parallel. The resulting outputs can than be transferred back
onto the management node.

Concluding, an interesting tool should be mentioned. The Unix-like Artifacts Collec-
tor 20 (UAC) is a IR collection script that automates the collection of system information.
The tool uses so called artifact files to make the collection highly customizable and ex-
tendable. An artifact files contains a set of rules (artifacts) that will be used by the
collector. In turn, each artifact specifies the tool and parameters to be used. The tool
additionally distinguishes between hash collectors that hash the searched asset and the
command collector that collects output. Additionally, UAC can collect and store infor-
mation into the bodyfile format that can directly be put into timeline analysis. Therefore,
UAC provides the user with the ability to adapt to changing circumstances and extend
the analysis when more information is collected.

4 Scaling live forensics
Traditionally, an analyst in digital forensics would create a full image of an infected device,
as well as capturing the memory contents and other artifacts. The data is transferred to
an analysis workstation, where it can be analyzed over the course of several days or
hours [12]. In a HPC system environment, this type of analysis does not scale well when
looking at possibly hundreds or thousands of infected systems. An alternative solution
was presented in the form of a script that collects volatile data, however, execution of
the script and a manual analysis must be conducted for each system separately. There
must be assurance that the results from each system are received and can be assigned
accordingly. To overcome this problem, the software Velociraptor 21 will be introduced.
As a digital forensics and incident response tool, Velociraptor is used to collect disk-based
artifacts, monitor a system, hunt for a specific threat and respond to an incident within
the organization. Velociraptor tries to solve the problem of investigating numerous system
simultaneously by executing commands on the live system and gathering the results in a
central endpoint. It uses a modified form of the SQL, the Velociraptor Query Language
(VQL) to analyze the data directly. This section shall explain the deployment and details
of Velociraptor and how it can help speeding up incident responses in a HPC system
environment.

4.1 Velociraptor Deployment

Meyer et al. [26] show that Velociraptor outperforms related software in incident response
and forensics (Google Rapid Response, Cynet) in almost all categories in form of imple-
mented features. It can be considered as a state-of-the-art live incident response tool that
basically only needs one server in default configuration. The server acts as a front end
that communicates with the clients and hosts the web-based admin GUI.

Each deployment relies on the static Velociraptor binary and on a unique configuration
file which includes connection information and cryptographic keys for message passing.
Since key material is unique to each deployment, one Velociraptor deployment cannot
connect with another deployment ensuring security and integrity [27]. The configuration

20https://github.com/tclahr/uac
21https://docs.velociraptor.app/
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creation process is guided and an exemplary installation can found in Listing 15. Veloci-
raptor encrypts messages using certificates from a self-signed Certificate Authority (CA)
that is generated during the initial configuration step. A signed CA is included in the
client configuration and is used to verify all certificates that are required during communi-
cation. A second mode for certificate deployment is to issue certificates minted by Let’s
encrypt. The key idea behind Velociraptor is that a client maintains a persistent connec-
tion to the Velociraptor server and as soon as a task is scheduled by a user, the execution
of this task is done on the client itself and the result will be send back to the server. This
ensures the possibility to scale such infrastructure to thousands of clients without the
need of a high performance server. Additionally, Velociraptor maintains server stability
by employing three limits [27]:

• Concurrency: Controls how many clients are served simultaneously.

• Load shedding: The server accepts only connections up to a certain rate (’queries
per second’ (QPS) limit) and refuses any additional connections above the limit,
causing clients to retry the connection at a later point

• Task recruitment limits: The server limits the rate at which endpoints are as-
signed to a task to spread responses coming back over time.

However, Velociraptor can nevertheless be deployed in a multi-server architecture when
the client number increases or a lot of data needs to transferred. An individual server
is designated as the master, while all other servers are designated as minions. While
the Master acts as a bridge for all messages between the minions, the minions receive
events from the Master and generate events from the clients output that they send to the
Master. To distribute load evenly, a load balancer can be installed in front of the servers.
Alternatively, multiple front end URLs can be provided in the client configuration that
will be picked at random. To store and distribute results coming from the clients, the
servers share files via a common NFS.

4.2 Incident Response with Velociraptor

Velociraptor utilizes VQL that uses the basic sentence structure of SQL to translate the
output of clients into rows to display to the user. Due to VQL’s flexibility, users are
able to adapt to new IOCs easily by designing new query rules (which can also be shared
with others) that can be issued to all endpoints. The strength of VQL, and where it
distinguishes Velociraptor from manual collection with scripts, is that it can further filter
results on the fly. For instance, a user may query every client to output the installed
software of a system. The user may than additionally group and stack the outputs and
give back the counts of the rows to quickly get an overview of the system installments
and their respective system. This can be used for discovering suspicious software across
the whole network without manually touching every system [27].

These VQL queries can be packed in so called artifacts that can be compared to the
artifact files used by UAC mentioned in subsection 3.5. UAC artifact files can also serve
as a template for writing VQL queries to extend existing artifacts and knowledge base.
These artifacts are structured YAML files that contain the query with the definition of
parameters and a name attached to it. The parameters allow the user to customize a
query in the GUI without the need edit the underlying VQL query. A hunt is created
when an artifact is executed to collect information from the endpoints. Hunting refers
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to the process by which an analyst actively searches for malware or suspicious activity,
usually in response to threat intelligence or vulnerabilities that have been disclosed [27].
These hunts will execute on every client connected to the server until the expiration date
is reached. Expiration dates are used to ensure that queries will be executed by clients
who connect to the system at a later time. In addition to hunts, the user has the ability
to execute arbitrary shell commands or custom VQL queries directly on the system using
the endpoint’s respective shell to allow for adhoc and individual investigation.

Listing 16 and Listing 17 display such artifacts that include VQL queries. Listing 16
collects file information about the name, size and its permissions. Suspicious files will
than be declared to lie in /home or /tmp (default settings) and either start with a dot,
are larger than a pre-specified size or have setuid permission. Parameters can also be
changed in the GUI while creating a hunt to adapt the investigation as needed. Figure 2
shows the truncated Velociraptor result that was collected in a network of two clients. It
can be noted that the Rocky9 machine contains a suspicious netcat binary that is hidden
in the /tmp directory and has setuid permission. This binary can be used by normal
users to establish connections (e.g. backdoors) to other machines without root access.
These artifact can also be used for verifying the clean state of systems, as it can has the
capability to detect particular malicious files on all systems. In addition to the predefined
artifacts listed above, Velociraptor also provides predefined artifacts in the form of "file
finders" which search files based on metadata based such as size, name, or timestamps.
When conducting more sophisticated searches, hashes of files can be provided that are
independent of changeable metadata and can be used to detect files that were for example
renamed.

Additionally, Figure 3 presents the power of simultaneous investigation of the network.
In this scenario, a malicious attacker connects from IP 10.0.3.7 to the Rocky9 machine
by using a compromised account (here user infected). The attacker than successfully
carved for credentials, enabling lateral movement in the network and connecting as root
to the Rocky8 machine through the Rocky9 machine (IP 10.0.3.5). This information can
help understanding the attack path the attacker took and reveals additional compromised
systems. Listing 17 shows that this information is generated by parsing the wtmp log and
extracting the information to display it as rows in the GUI.

To be concrete, Velociraptor acts like a live incident script presented in subsection 3.5,
however it utilizes the advantage that the commands are executed simultaneously on
all systems in a network and gathers the results in an organized and readable manner.
Moreover, by making use of artifacts, Velociraptor is extremely flexible and up-to-date by
sharing knowledge within the IR community.

5 Conclusion
We have shown the importance of a proper IR framework for organizations in the event of
a cyber attack. In order to guarantee the best possible defense mechanism, defenders first
have to understand the attack vector of malicious activities in order to harden the system
in every phase of an attack. As systems and software are exposed to various vulnerabili-
ties, the investigator needs to have a broad knowledge about a systems normal behavior
and current attack vectors. In addition, it is necessary to consider the pitfalls of forensic
analysis in regard to the distortion of evidence. We argue that traditional forensic analysis
may not be applicable due to the large number of systems that can potentially be com-
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promised. In order to differentiate between compromised and non-compromised systems
first, live incident response should be used, followed by traditional forensic analysis of the
compromised systems. To minimize the chance of altering evidence, the forensic script
that was developed for this project should be used. Nevertheless, the preferred method of
conducting live incident response on HPC systems is to use Velociraptor, due to the simul-
taneous investigation procedure and its flexibility. By exploiting Velociraptor’s flexibility,
the analyst can investigate the network in an innovative manner and produce engaging
results.
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A Image creation
1 $ sha256sum /dev/sdb > sdb_hash.sha256
2

3 $ sudo dd if=/dev/sdb of=image.dd bs =4096 conv=sync ,noerror
4

5 $ sudo dc3dd if=/dev/sdb of=image.dd bs=4k hash=sha256 hashlog=hash.log
log=image.log progress=on

6

7 $ sudo dcfldd if=/dev/sdb conv=sync ,noerror bs=4k hash=sha256 hashlog=
hash.log of=image.dd

Listing 2: Forensic Image Creation

B Evidence
These examples display a simple and easy recognizable attack scenario, however they show
the effectiveness of the script that collects these types of output. For illustration purpose,
the Diamorphine rootkit22 was utilized that was also used during real-life attacks against
HPC clusters [28]. Additionally, Listing 4 was created using the hydra tool to perform a
brute-force attack.
root@infected :~# ss -anepo | grep netcat
tcp LISTEN 0 1 0.0.0.0:4444 0.0.0.0:*

users :((" netcat",pid=8264 ,fd=3)) uid :1001 ino :93393 sk:35d <->

Listing 3: Output of ss -anepo here already filtered for truncation. It illustrates the
benefit of filtering for IOCs in speeding up system analysis as well as the importance of
understanding normal system behavior in such a large log.

Mar 21 15:57:42 infected sshd [5253]: Failed password for bad from
10.0.3.6 port 56720 ssh2

Mar 21 15:57:42 infected sshd [5254]: Failed password for bad from
10.0.3.6 port 56726 ssh2

Mar 21 15:57:43 infected sshd [5257]: Failed password for bad from
10.0.3.6 port 56736 ssh2

Mar 21 15:57:43 infected sshd [5258]: Failed password for bad from
10.0.3.6 port 56752 ssh2

Mar 21 15:57:43 infected sshd [5256]: Failed password for bad from
10.0.3.6 port 56734 ssh2

Mar 21 15:57:43 infected sshd [5255]: Accepted password for bad from
10.0.3.6 port 56732 ssh2

Mar 21 15:57:43 infected sshd [5255]: pam_unix(sshd:session): session
opened for user bad by (uid=0)

Listing 4: Output of /var/log/secure showing ssh login attempts.

root@infected :~# unhide -v quick checksysinfo
Unhide 20130526
Copyright 2013 Yago Jesus & Patrick Gouin
License GPLv3+: GNU GPL version 3 or later
http ://www.unhide -forensics.info

22https://github.com/m0nad/Diamorphine
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NOTE : This version of unhide is for systems using Linux >= 2.6

Used options: verbose
[*] Searching for Hidden processes through comparison of results of

system calls , proc , dir and ps

Found HIDDEN PID: 5629
Cmdline: "netcat"
Executable: "/usr/bin/nc.openbsd"
Command: "netcat"
$USER=bad
$PWD=/

[*] Searching for Hidden processes through sysinfo () scanning

Listing 5: Output of unhide -v quick checksysinfo showing a hidden process that
executes netcat indicating a possibility for attackers to issue commands through the
netcat connection.

root@infected :~# grep -Po ’^sudo .+:\K.*$’ /etc/group
user ,bad

Listing 6: Listing of all users in the superuser group.

root@infected :~# lsof -p 8264
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
netcat 8264 bad cwd DIR 8,5 4096 2 /
netcat 8264 bad rtd DIR 8,5 4096 2 /
netcat 8264 bad txt REG 8,5 43664 525115 /usr/bin/nc.openbsd
netcat 8264 bad mem REG 8,5 2029560 526489 /usr/lib/x86_64 -

linux -gnu/libc -2.31. so
netcat 8264 bad mem REG 8,5 101320 526503 /usr/lib/x86_64 -

linux -gnu/libresolv -2.31. so
netcat 8264 bad mem REG 8,5 96728 533717 /usr/lib/x86_64 -

linux -gnu/libbsd.so .0.10.0
netcat 8264 bad mem REG 8,5 191472 526482 /usr/lib/x86_64 -

linux -gnu/ld -2.31. so
netcat 8264 bad 0u CHR 136,1 0t0 4 /dev/pts/1
netcat 8264 bad 1u CHR 136,1 0t0 4 /dev/pts/1
netcat 8264 bad 2u CHR 136,1 0t0 4 /dev/pts/1
netcat 8264 bad 3u IPv4 93393 0t0 TCP *:4444 (LISTEN)

Listing 7: Output of lsof here again filtered filtered for an IOC (can also be a malicious
user with parameter -u). It shows the open files created by the netcat command. It
additionally shows the location of the binary.

root@infected :~# lsmod
Module Size Used by
diamorphine 16384 0
isofs 49152 0
vboxsf 81920 1
vboxvideo 36864 0
ttm 106496 1 vboxvideo
drm_kms_helper 184320 1 vboxvideo

Listing 8: Output of lsmod showing the malicious rootkit Diamorphine (Output
truncated).
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root@infected :~# modinfo diamorphine
filename: /lib/modules /5.4.0 -28 - generic/kernel/diamorphine.ko
description: LKM rootkit
author: m0nad
license: Dual BSD/GPL
srcversion: D2376C77D0B08B5067F9CFB
depends:
retpoline: Y
name: diamorphine
vermagic: 5.4.0-28- generic SMP mod_unload

Listing 9: Output of modinfo diamorphine showing metadata and location of the rootkit.

root@infected :~# lsof -p 8264 | grep deleted
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
netcat 8264 bad txt REG 8,5 43664 525115 /usr/bin/nc.openbsd

(deleted)

Listing 10: Output of lsof | grep deleted that shows that this process uses a deleted
binary of netcat and is still running.

ls was modified (truncated).
root@infected :/usr/bin# find /usr/bin/ -mtime -90
/usr/bin/
/usr/bin/VBoxClient
/usr/bin/logresolve
/usr/bin/mail
/usr/bin/rotatelogs
/usr/bin/etags
/usr/bin/emacsclient
/usr/bin/ls

Listing 11: Output of find /usr/bin/ -mtime -90 that shows all modified files in the
last 90 days in directory /usr/bin. Among other things

C Timestomping
Attackers may want to conceal their tracks by modifying timestamps of malicious files to
blend into the system. This technique is knows as timestomping. A common method for
timestomping is making use of the touch and debugfs command. In the following, the
timestomping methods should be illustrated:
$ touch malicious_file -r legit_file # this will inherit the file ’s

timestamps

$ touch -a -d ’22 Jan 2024 11:09:23.194826432 ’ malicious_file # changing
the file ’s access time

$ touch -m -d ’1 Feb 2023 10:23:23.199494912 ’ malicious_file # changing
the file ’s modification time

# changing the change time , assuming the files is located in /dev/sda1
$ debugfs -w -R ’set_inode_field /path/to/malicious_file ctime

201001010101 ’ /dev/sda1
$ echo 2 > /proc/sys/vm/drop_caches
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# changing the creation time , assuming the files is located in /dev/sda1
$ debugfs -w -R ’set_inode_field /path/to/malicious_file crtime

201001010101 ’ /dev/sda1
$ echo 2 > /proc/sys/vm/drop_caches

$ stat malicious_file
File: malicious_file
Size: 0 Blocks: 0 IO Block: 4096 regular
empty file

Device: 801h/2049d Inode: 688100 Links: 1
Access: (0644/ -rw -r--r--) Uid: ( 0/ root) Gid: ( 0/ root)
Access: 2024 -01 -22 11:09:23.194826432 +0100
Modify: 2023 -02 -01 10:23:23.199494912 +0100
Change: 2010 -01 -01 02:01:00.037994959 +0100
Birth: 2010 -01 -01 02:01:00.212135631 +0100

Listing 12: Common timestomping methods to alter the timestamps of a file.

D Hashsets
1 md5sum /sbin/* | tee -a rocky8_hash.md5
2 md5sum /bin/* | tee -a rocky8_hash.md5
3 md5sum /usr/bin/* | tee -a rocky8_hash.md5
4 md5sum /usr/sbin/* | tee -a rocky8_hash.md5
5 md5sum /usr/local/sbin/* | tee -a rocky8_hash.md5
6 md5sum /usr/local/bin/* | tee -a rocky8_hash.md5
7 find / -xdev -type f -perm -o+rx -print0 | xargs -0 md5sum | tee -a

rocky8_hash.md5
8

9 sha1sum /sbin/* | tee -a rocky8_hash.sha1
10 sha1sum /bin/* | tee -a rocky8_hash.sha1
11 sha1sum /usr/bin/* | tee -a rocky8_hash.sha1
12 sha1sum /usr/sbin/* | tee -a rocky8_hash.sha1
13 sha1sum /usr/local/sbin/* | tee -a rocky8_hash.sha1
14 sha1sum /usr/local/bin/* | tee -a rocky8_hash.sha1
15 find / -xdev -type f -perm -o+rx -print0 | xargs -0 sha1sum | tee -a

rocky8_hash.sha1

Listing 13: Commands to create a hashset of binaries. These commands can be repeated
for the Rocky 9 operating system.

E YARA Rules
Malware researchers can use YARA to identify and classify malware samples. It is possible
to create detailed descriptions of malware families (or any other type of malware) using
YARA based on textual or binary patterns of the malware. The patterns can be made
of a series of strings but also more complex rules like wild-cards, case-insensitive strings,
regular expressions, special operators, etc. A rule consists of three sections [29]:

• Meta: Description of the malware that is depicted.

• Strings: Patterns of Malware
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• Conditions: Specifies the number of signatures/strings required matching with the
target to declare the sample as malware.

An exemplary rule could be illustrated like the following:
rule silent_banker : banker
{

meta:
description = "This is just an example"
threat_level = 3
in_the_wild = true

strings:
$a = {6A 40 68 00 30 00 00 6A 14 8D 91}
$b = {8D 4D B0 2B C1 83 C0 27 99 6A 4E 59 F7 F9}
$c = "UVODFRYSIHLNWPEJXQZAKCBGMT"

condition:
$a or $b or $c

}

Listing 14: Exemplary YARA rule [30].

Whenever one of the strings specified in the rule matches within a file, the rule declares
that file as belonging to the banker malware.

F Velociraptor
F.1 Installation

1 # Download binary + signature file (X defines the release version)
2 $ wget https :// github.com/Velocidex/velociraptor/releases/download/vX.X.

X-rc1/velociraptor -vX.X.X-rc1 -linux -amd64 -musl
3 $ wget https :// github.com/Velocidex/velociraptor/releases/download/vX.X.

X-rc1/velociraptor -vX.X.X-rc1 -linux -amd64 -musl.sig
4

5 # Verify binary
6 $ gpg --verify velociraptor -v*-rc1 -linux -amd64 -musl.sig
7 # Add key (take RSA key you obtained by --verify)
8 # gpg: key B22A7FB19CB6CFA1: public key "Velociraptor Team (Velociraptor

- Dig deeper! https :// docs.velociraptor.app/) <support@velocidex.
com >" imported

9 $ gpg --search -keys 0572 F28B4EF19A043F4CBBE0B22A7FB19CB6CFA1 # -> press
1

10 # OR
11 $ gpg --keyserver hkp:// keys.openpgp.org:80 --recv 0572

F28B4EF19A043F4CBBE0B22A7FB19CB6CFA1
12 # Optional: Verify key again
13 $ gpg --verify velociraptor -v*-rc1 -linux -amd64 -musl.sig
14

15 # Make velociraptor binary executable
16 $ sudo chmod +x velociraptor -v*-rc1 -linux -amd64 -musl
17

18 # Create config for server interactivly
19 $ ./ velociraptor -v*-rc1 -linux -amd64 -musl config generate -i
20 # Follow steps and fill in the appropriate entries
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21 # Server and Client yaml should be created
22 # Change the server IP in client config
23

24 # Create a .rpm package for server installation (CentOS)
25 $ ./ velociraptor -v*-rc1 -linux -amd64 -musl --config server.config.yaml rpm

server --binary velociraptor -v0.6.8-rc1 -linux -amd64 -musl
26

27 # OR to run without installing that creates test machine (machine acts
as server and client simultaneously)

28 $ ./ velociraptor -v*-rc1 -linux -amd64 -musl --config server.config.yaml gui
29

30 # rpm installation
31 $ sudo rpm -i velociraptor_*-rc1_server.rpm
32

33

34 # Check if installation successful
35 $ systemctl restart velociraptor_server.service
36 $ systemctl status velociraptor_server.service
37

38 # Create a GUI user
39 # Other user roles: reader , analyst , investigator , artifact_writer
40 $ ./ velociraptor -v*-rc1 -linux -amd64 -musl --config server.config.yaml

user add admin --role administrator
41

42 # To start a velociraptor client , copy the binary and the client config
to the client system

43 # Can also create a rmp package for client and install it like above
44 $ ./ velociraptor -v*-rc1 -linux -amd64 -musl --config client.config.yaml

client -v

Listing 15: Exemplary Velociraptor installation.

F.2 Artifacts

1 name: Linux.Detection.AnomalousFiles
2

3 description: |
4 Detects anomalous files in a Linux filesystem.
5

6 An anomalous file is considered one that matches at least one criteria
:

7

8 - Hidden (prefixed with a dot);
9

10 - Large , with a size over a specified limit; or
11

12 - With SUID bit set.
13

14 type: CLIENT
15

16 parameters:
17 - name: MaxNormalSize
18 description: Size (in bytes) above which a file is considered large
19 type: int
20 default: 10485760
21 - name: PathsToSearch
22 description: Paths to search , separated by comma
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23 type: str
24 default: "/home/**,tmp /**"
25

26 sources:
27 - precondition: |
28 SELECT OS
29 FROM info()
30 WHERE OS = ’linux ’
31

32 query: |
33 SELECT Fqdn AS Host ,
34 FullPath ,
35 substr(str=Name , start=0, end=1) = "." AS IsHidden ,
36 Size ,
37 Size > MaxNormalSize AS IsLarge ,
38 Mode.String AS Mode ,
39 Mode =~ "^u" as HasSUID
40 FROM glob(globs=split(string=PathsToSearch , sep_string =","))
41 WHERE IsHidden OR IsLarge OR HasSUID

Listing 16: Exemplary Velociraptor artifact to detect suspisious files [31].

Figure 2: Suspicious files found with Velociraptor’s Artifact
Linux.Detection.AnomalousFiles (truncated).

1 name: Linux.Sys.LastUserLogin
2 description: Find and parse system wtmp files. This indicate when the
3 user last logged in.
4 parameters:
5 - name: wtmpGlobs
6 default: /var/log/wtmp*
7

8 - name: MaxCount
9 default: 10000

10 type: int64
11

12 export: |
13 LET wtmpProfile <= ’’’
14 [
15 [" Header", 0, [
16 [" records", 0, "Array", {
17 "type": "utmp",
18 "count": "x=>MaxCount",
19 "max_count ": "x=>MaxCount"
20 }]
21 ]],
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22

23 [" timeval", 8, [
24 [" tv_sec", 0, "int32"],
25 [" tv_usec", 4, "int32 "]
26 ]],
27

28 ["utmp", 384, [
29 [" ut_host", 76, "String", {
30 "length ": 256
31 }],
32

33 ["ut_tv", 340, "timeval"],
34

35 ["ut_id", 40, "String", {
36 "length ": 4
37 }],
38

39 [" ut_type", 0, "Enumeration", {
40 "type": "short int",
41 "choices ": {
42 "0": "EMPTY",
43 "1": "RUN_LVL",
44 "2": "BOOT_TIME",
45 "5": "INIT_PROCESS",
46 "6": "LOGIN_PROCESS",
47 "7": "USER_PROCESS",
48 "8": "DEAD_PROCESS"
49 }
50 }],
51

52 [" ut_user", 44, "String", {
53 "length ": 32
54 }]
55 ]]
56 ]
57 ’’’
58

59 sources:
60 - precondition: |
61 SELECT OS From info() where OS = ’linux ’
62 query: |
63 LET parsed = SELECT FullPath , parse_binary(
64 filename=FullPath ,
65 profile=wtmpProfile ,
66 struct =" Header"
67 ) AS Parsed
68 FROM glob(globs=split(string=wtmpGlobs , sep=","))
69

70 SELECT * FROM foreach(row=parsed ,
71 query={
72 SELECT * FROM foreach(row=Parsed.records ,
73 query={
74 SELECT FullPath , ut_type AS Type ,
75 ut_id AS ID,
76 ut_host as Host ,
77 ut_user as User ,
78 timestamp(epoch=ut_tv.tv_sec) as login_time
79 FROM scope()
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80 })
81 })

Listing 17: Exemplary Velociraptor artifact to detect last logins per SSH [32].

Figure 3: Last SSH logins found with Velociraptor’s Artifact Linux.Sys.LastUserLogin
(truncated).

1 $ USERNAME="<username >"
2

3 # Find malicious users login
4 $ cat /var/log/secure | grep $USERNAME
5

6 # Collect bash history
7 $ cat /home/$USERNAME /. bash_history
8

9 # Find processes started by user
10 $ ps -aux | grep $USERNAME
11 # or
12 $ ps -u $USERNAME
13

14 # Examine processes started by user
15 $ export PID =1234 % <- PID of malicious user
16

17 $ kill -STOP ${PID}
18

19 # List files opened by the process:
20 $ lsof -np ${PID}
21

22 # Find network activity of process
23 $ netstat -tup | grep $PID
24

25 # Does the output of lsof correspond to /proc/{PID}/fd?
26 # Does the output of the netstat correspond to /proc/{PID}/fd
27

28 # Find further potential targets
29 $ sacct -X --user=$USERNAME -S 2023 -01 -01 -E 2023 -03 -31 --format=jobid ,

jobname ,partition ,account ,alloccpus ,state ,exitcode ,start ,end ,nodelist

Listing 18: Exemplary live investigation after user account breach.
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