
SH

∞

Seminar Report

Set Up a Test Cluster with Slurm

David Nelles

MatrNr: 24609157

Supervisors:

Vanessa End & Timon Vogt

Georg-August-Universität Göttingen
Institute of Computer Science

March 31, 2023

Set Up a Test Cluster with Slurm

Abstract

When maintaining a cluster, already short stalling periods can cause huge costs. Nonetheless,
the cluster needs to be updated sometimes. To keep the stalling time short, it is important
to prevent failures during the update process. Therefore, it is sensible to simulate the update
process, before updating the cluster. In order to do that, a test cluster has to be designed. A test
cluster is also useful to simulate other operations like infrastructure changes and new features.
It can also be used to reproduce and debug errors that occur on the original cluster. The test
cluster needs to fit special requirements. For example, it must be energy efficient and do not
need much compute power. When setting up the cluster, the hardware needs to be set up first.
In order to fulfill the requirements, the test cluster uses virtual machines, that emulates the
hardware. After setting up the hardware, software such as SLURM and Munge, which manage
the cluster, must be configured. To enable accounting, additional software like a SQL-Database
needs to be set up.

Acronyms

CPU Central Processing Unit
DBMS Database Management System
DNF Dandified YUM
GWDG Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen
NFS Network File System
SLURM Simple Linux Utility for Resource Management
SQL Structured Query Language

1. Introduction

To reduce the risk of failures while updating a cluster, the update process should be simulated.
Therefor, a test cluster on which the simulation is executed must be developed. A cluster is a
collection of multiple computers connected by a network that appear as a single system. Each
computer of the cluster is called a node. There are two different cluster types. High availability
clusters increase the reliability of certain applications, while high performance clusters increase
the computational power of the computing system. This report deals with the implementation
of Simple Linux Utility for Resource Management [20] (SLURM) on the test cluster. SLURM
is a workload management tool used on high performance cluster to split and distribute the
workload among different compute nodes. Therefor, SLURM performs the querying of multiple
tasks, as well as the distribution of subtasks between multiple nodes.

SLURM distinguishes between two different node types, which are connected to each other as
shown in Fig. 1. Control nodes (orange) are responsible for receiving the tasks and distributing
them to the compute nodes (green). Those are responsible for the execution of the subtasks that
are assigned to them. SLURM provides different services for control and compute nodes. A
service called slurmctld is executed on the control nodes, while each compute node executes the
slurmd service. Clusters managed with SLURM must have at least one and at most two control
nodes. Additionally, there must be at least one compute node, leading to a minimal setup as

Section 1 David Nelles 2

Set Up a Test Cluster with Slurm

C1

S

N1

(a) Minimal setup

C1

S

N1

N2N3

(b) Single control node

C1

S

N1

N2C2

(c) Double control node

Figure 1: SLURM topologies

shown in Fig. 1a. However, since this setup does not provide any benefits toward operating
the compute node without a control node, it is more reasonable to connect multiple compute
nodes with a single control node as shown in Fig. 1b. This setup is fully functional and enables
reasonable workload distributions. A setup with two control nodes as depicted in Fig. 1c does
not provide any performance benefits, but reliability. In those setups, the second control node
acts as backup, in case the first control node crashes.

Since operating a cluster is very expensive, most clusters are used by different institutions or
at least for different projects. For accounting purposes, it is important to record who used
the cluster when, for how long, and for what. The accounting data is gathered by the control
node and stored into a database, which is connected to SLURM through a third service named
slrumdbd. Since accounting is crucial to the operation of the cluster and can be easily affected
by changes to the cluster, the test cluster needs to model the accounting mechanism as well as
the workload management system.

2. Prerequisites

The original cluster uses multiple nodes on which Rocky Linux [9] is installed. On the original
cluster, SLURM is used as workload manager. The authentication is controlled by the authen-
tication service munge [3]. Since SLURM is used as workload manager, the slurmdbd service is
used to populate the accounting data, to an Structured Query Language (SQL) database, where
it is stored persistently.

The more similarities there are between the original cluster and the test cluster, the more
accurate the simulation. Because of that, the test cluster should have the same specifications.
On the other hand, maintaining the test cluster must be much less expensive than maintaining
the original cluster. To achieve this, the test cluster cannot be identical to the original cluster.
For this use case, the test cluster does not need to consist of as many nodes as the original
cluster. Instead, the test cluster uses one control node and two compute nodes. Since the test
cluster is not used to process high performance applications, the compute power of the test
cluster is not important. Additionally, the test cluster can be turned off most of the time. It
only needs to run in case somebody wants to test something.

Because of these requirements, multiple virtual machines were used as nodes. This not only
has the advantage that they can be easily switched on and off, it is also easy to back up and
restore virtual machines. This allows us to easily restore the test cluster if it is completely
destroyed during the update process. In order to host the virtual machines, the OpenStack [12]
service provided by the Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen
(GWDG) [6] is used.

Section 3 David Nelles 3

Set Up a Test Cluster with Slurm

3. System setup

In order to set up the test cluster, the virtual machines had to be set up first. After that, the
dependencies of SLURM could be installed. In the end, SLURM and the accounting database
were set up.

3.1. Virtual machines

First, three different virtual machines had been generated. For this purpose, three new instances
have been created after logging into the OpenStack web interface. As already mentioned in
Section 2, the compute power of the nodes is not important. Therefore, the least powerful
configuration was chosen for each instance. All instances were configured as shown in Table 1.

RAM 2GB

VCPUs 2

Disk space 20GB

OS Rocky Linux 8.7

Table 1: Virtual machine specifications

Since the nodes need to communicate with each other, it is important to set up a network
between the instances. As shown in Fig. 2a, normally only the control nodes are connected to
the internet (red), while the compute nodes are on a separate network (blue) to which only the
control node has access. This topology is used for security reasons and guarantees that no one
logs on to the compute nodes. Since the test cluster is only used by people who know what
they are doing and attacks on the test cluster are not critical, the test cluster does not need to
protect the compute nodes. The cluster setup is much easier if all nodes are connected to the
internet. Because of that, the network topology depicted in Fig. 2b was configured for the test
cluster.

C1

N1 N2

(a) Regular network topology of clusters

C1N1 N2

(b) Network topology of the test cluster

Figure 2: Network topologies regular clusters and the test cluster

Section 3 David Nelles 4

Set Up a Test Cluster with Slurm

3.2. Munge

The first software that needs to be set up is munge. Munge is an authentication service that is
used to securely forward authentication data to remote systems. Users should be able to run
processes on the compute nodes by logging in to the control node. Nevertheless, the user ID
and the group ID of the processes running on the compute nodes should correspond to the user
who started the execution on the control node. Munge is used to securely forward the login
information to the compute nodes. Because of this, the users do not have to manually log in to
each compute node. [3]

Munge needs to be installed on each node. The installation can be easily performed with a
package manager. To communicate between the nodes, all nodes need the same mungekey. This
key can be generated via the create-munge-key shell script, which is part of the package. The
shell script generates a key file at /etc/munge/. After copying the key file to each node, the
munge service is enabled as described in the documentation [8].

3.3. Network file system

In order to run SLURM , it is important that the configuration of all nodes fit to each other.
To guarantee that the configuration is the same for each node, the configuration is stored on a
Network File System (NFS). By mounting the NFS on all nodes, the identical configuration file
can be used for all nodes. Additionally, the SLURM binary files can be stored on the NFS. This
simplifies updating SLURM and guarantees that the same version is used for every node.

The NFS of the test cluster should be hosted on the control node. Thus, the next step was to
set up NFS. Therefor, nfs-utils [1] was installed on each node. First, the NFS server was set up.
For this purpose, the directories where the files will be stored have been created. The directory
tree depicted in Fig. 3 consists of at least three directories and one soft link. The etc directory
contains the configuration files which are used to configure SLURM . In order to debug and
protocol failures, SLURM creates some log files. Those files are created inside the log directory.
Additionally, the NFS contains one directory for each SLURM version that has been installed
on the cluster. This allows reverting the SLURM version in case something goes wrong. A soft
link named current points to the version directory, that contains the currently used SLURM
version. Each version directory contains a source directory and an install directory. The
source directory contains the source files of the specific version. While the install directory
contains the binary files that are used to execute SLURM .

slurm

etc log current version

source install

Figure 3: NFS directory structure

NFS is configured via a file located at /etc/exports. To share a directory, a new line, starting
with the directory path, must be inserted into the configuration file. After the directory path,
the IP address of the client to be granted access must be specified. Additionally, the permissions

Section 3 David Nelles 5

Set Up a Test Cluster with Slurm

of the clients are written behind each client IP. The configuration used for the test cluster is
shown in Listing 1.

d i r e c o t r y c l i e n t −ip c on f i g c l i e n t −ip c on f i g
/media/ n f s 1 0 . 2 5 4 . 1 . 5 (rw , sync) 1 0 . 2 5 4 . 1 . 1 1 (rw , sync)

Listing 1: Example configuration of NFS

Since the clients of the test cluster shall write the log files to the NFS, each client had to be
granted read and write access. The NFS server was activated by starting the corresponding
nfs-server service via systemd. Since the NFS server shall start automatically when rebooting
the control node, the service was also enabled.

The clients just have to mount the NFS. In order to mount the shared directories on each
startup automatically, the line presented in Listing 2 was added to the fstab file of the compute
nodes. For that, it is important that nfs-utils is installed on each client.

1 0 . 2 5 4 . 1 . 6 : / media/ n f s /mnt/ n f s n f s4 de f au l t s , user , exec ←↩
0 0

Listing 2: Content of the fstab file that enables mounting the NFS

3.4. SLURM

After setting up all dependencies, SLURM can be set up. To guarantee the best performance,
SLURM is compiled on the system where it is executed later on.

3.4.1. Compiling

To compile SLURM an C-compiler, python3 and perl need to be installed first. After that,
the source code [16] is downloaded and unpacked. The SLURM compilation is done using
the build management tool GNU Make [5]. In order to use GNU Make, a Makefile is needed.
Unlike other applications, the SLURM source code does not contain a Makefile. The Makefile
need to be generated individually on each system. That is because some settings influencing
the compilation need to be specified beforehand. A configuration script helps to configure the
build environment and generates the Makefile. This script is part of the source code and needs
to be executed as superuser. To generate a functional SLURM application, the prefix and
the sysconfdir settings must be specified. When compiling SLURM on the test cluster, the
following settings were used:

prefix The path where the SLURM installation should be placed.
/mnt/nfs/slurm/22.05/install

sysconfdir The path where the SLURM configuration files should be placed afterward.
/mnt/nfs/slurm/etc

After generating the make file, SLURM can be compiled by executing make. Subsequently,
SLURM is installed into the sysconfdir by running make install.

Section 3 David Nelles 6

Set Up a Test Cluster with Slurm

3.4.2. Configuration

Before executing SLURM , the installation needs to be configured. As suggested in the installa-
tion guide [17] the online configuration tool [13] was used to configure the SLURM on the test
cluster. For many of the settings, the presets could be used. Table 2 shows the settings which
had to be changed in order to run SLURM .

Setting Description Value

SlurmctldHost Host name of the system, used as control node n1

BackupController Host name of the system, used as backup control node <empty>

NodeName Host names of the systems, used as compute nodes n2-[1-2]

CPUs Number of hardware threads of each system 2

Table 2: SLURM settings

For debugging purposes, it is useful to additionally configure the location of the log files. Oth-
erwise, no log will be created. Therefor, the SlurmdLogFile and SlurmctldLogFile settings
must be specified. The test cluster, was configured in a way that all log files are created inside
the nfs/slurm/log directory. While the control node writes the log to the slurmctld.log file,
the compute nodes write teir logs to the slurmd.log file. The log level can be set separately
for the compute nodes (SlurmdDebug) and the control nodes (SlurmctldDebug). It turned out
that log level info is sufficient for most debugging. Because of that, the info level was used for
both, compute and control nodes.

The online configuration tool generates a configuration file. This file needs to be copied into the
sysconfdir specified while configuring the build environment (/mnt/nfs/slurm/etc). After
successfully configuring SLURM , the basic setup is finished.

In order to execute SLURM , a service must be executed on each node. The control node, must
execute the slurmctld service while the compute nodes have to run the slurmd service. As
already briefly mentioned in Section 3.3, the test cluster uses systemd [19] to control services.
Systemd uses service files which define how to execute a service. It expects those service files to
be located in /usr/lib/systemd/system. The SLURM source code contains the service files
for each of the SLURM services. But when installing SLURM , those service files are not moved.
There are multiple ways to place the SLURM service files in the correct directory. On the test
cluster soft links referencing to the service files located in the source code directory were created.
A positive side effect of this solution is that the service files are also updated when SLURM is
updated. To achieve this effect, it is important to refer to the service files, using the soft link
referring to the latest SLURM installation (/mnt/nfs/slurm/current).

3.5. Accounting

To enable accounting, some additional tools and configurations are needed. In order to store
the accounting data, an SQL database must be set up. Since SLURM uses the InnoDB storage
engine to enable rollbacks, it is important that the Database Management System (DBMS)
supports InnoDB [14]. The DBMS can be installed via the default package manager. On the
test cluster, MariaDB [4] was installed.

Section 3 David Nelles 7

Set Up a Test Cluster with Slurm

The connection between SLURM and the DBMS is handled by a service called slrumdbd. Slur-
mdbd is automatically generated while compiling SLURM . However, it is important that the
development libraries of the DBMS are installed before the build environment is configured.

After successfully compiling slurmdbd, the accounting must be configured. This is done via a
separate configuration file. As with the SLURM configuration file, the accounting configuration
file must be located in the sysconfdir (/mnt/nfs/slurm/etc) specified while configuring the
build environment. Table 3 shows the settings, their meanings and the values used by the test
cluster [18]. Additionally, some accounting settings have to be specified inside the SLURM
configuration file. Those settings and their purpose are shown in Table 4. The last column
again shows the values used by the test cluster. The accounting mechanism is activated by
selecting any other option than “none” for the JobAcctGatherType.

Setting Description Value

DdbHost Host name of the database host n1

StorageType Defines the accounting storage mechanism type accounting storagemysql

StorageLoc Database name where to store the accounting data slurm acct db

StorageUser User to log in to the database password

StoragePass Password fitting to the StorageUser slurm

StoragePort
Port which is used to communicate

3306
between slrumdbd and the database

LogFile File in which the slrumdbd log should be written <log dir>/slurmdbd.log

Table 3: Accounting settings

Setting Description Value

JobAcctGatherType Defines what information should be gathered linux

AccountingStorageType The software that is used to store the information SlurmDBD

AccountingStorageHost Host name of the database host n1

AccountingStoragePort Port used to communicate with the database 3306

Table 4: Accounting settings inside the SLURM configuration

4. Validation

For the test cluster, it is important that the SLURM setup works as expected and the database
connection is valid. The performance of the test cluster, on the other hand, is irrelevant. For this
reason, I investigated whether all nodes are interconnected and parallel execution of programs
on multiple nodes is successful. But computationally intensive programs were not executed.

First, I checked whether the controller detects all compute nodes and if they were running. A
small SLURM tool called sinfo displays this information. The output presented in Listing 3
shows that both compute nodes n2-1 and n2-2 were idling. This means, that they did not
execute something but were available.

Section 4 David Nelles 8

Set Up a Test Cluster with Slurm

$ s i n f o

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug∗ up 2 : 0 0 : 0 0 2 i d l e n2−[1−2]

Listing 3: Result of the sinfo execution

To verify that sinfo would indicate that a node is unavailable, I disabled a node and rechecked
the output. The output presented in Listing 4 shows that sinfo indeed indicates if the compute
nodes are available or not. If a node is not available, the STATE column indicates that by
displaying the value down.

$ s i n f o

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug∗ up 2 : 0 0 : 0 0 1 down∗ n2−2
debug∗ up 2 : 0 0 : 0 0 1 i d l e n2−1

Listing 4: Result of the sinfo execution with a deactivated compute node

To check if the control node distributes the workload between all compute nodes, I wrote a shell
script executing hostname a few times. The advantage of executing hostname is that it returns
the name of the host where it is executed. Because of that, it is possible to see what nodes
executed the bash script by analyzing the generated output. When writing the shell script, it
is important to indicate that two nodes can be used to execute the different tasks. This is done
by adding the line #SBATCH -N 2 to the start of the script. Each task, that should be executed
in parallel, must be executed via srun. Additionally, it is important to mark that each task is
only executed on a single node. The shell script can be found in Appendix A.1. To execute
it via SLURM , the sbash command is used. The output of the execution that is presented
in Appendix A.2 shows that the first two executions were transmitted to both compute nodes
first. The four remaining tasks could not be transmitted to any compute node since both nodes
were busy. After completing the first two tasks, the next two tasks were transmitted and so
on. However, since the output of the executions contains both host names (n2-1.novalocal
and n2-2.novalocal) it is certain that SLURM distributed the workload between all compute
nodes.

After executing the shell script (Appendix A.1), the database should have recorded the execution.
To check if the accounting mechanism works, I started an SQL client and connected to the
database which was created in Section 3.5 (slurm acct db). I then reviewed the entries stored
in the table named cluster job table. As expected, the job events were stored in this table.
Appendix B shows a section of the table. Further analysis, showed that the account column
of the table contained NULL for each job-event. This would be an issue in case the computing
time is charged. That was because, the jobs were submitted via the default account. However,
adding further certain account to the cluster, would solve this issue, but was not part of this
project.

One goal of using virtual machines is the possibility to turn the test cluster off if it is not used and
to turn it on when it is needed. Turning the test cluster off is no problem. Much more important
is to find out if the cluster can be booted with small effort. To check this, I shut down all nodes
of the test cluster and rebooted them after a few minutes. After that, the cluster did not work

Section 4 David Nelles 9

Set Up a Test Cluster with Slurm

as expected. The compute nodes did not start the slurmd service. It turned out that the reason
for that was, that the slurmd.service file was missing while the systemd -daemon was started.
Probably the reason for that was, that the systemd daemon was started before the NFS was
mounted. To start the slurmd service afterward, the systemd daemon needs to be reloaded
(sudo systemctl daemon-reload). After that, the slurmd service can be started manually.
Due to the delayed start of the compute nodes, the controller did not detect that the compute
nodes were running and marked them as down. In order to reset their state, the SLURM user
needs to override the states manually by executing scontrol update nodename=<note-name>

state=idle.

5. Challenges

While setting up the test cluster, some issues came up. The first issue was that SLURM could
not access the /var/spool/slurmd directory. Because of that, the SLURM services did not
even start. The reason was that the user slurm was not allowed to access this directory. I was
able to solve this issue by making the slurm-user owner of this directory.

Another issue preventing the SLURM controller service (slurmctld) from starting was a missing
MailProg. This is because there is no standard mail program on Rocky Linux, which is supported
by SLURM . I could solve this issue by installing the mail program mailx [7].

The last issue preventing the start of the controller service was, that SLURM was not able to find
a plugin called cred/munge. It turned out that this plugin is normally compiled together with
SLURM . But that was not the case when I compiled SLURM first. The reason was that some
munge libraries did not exist on the system, while compiling SLURM . These missing libraries
are part of the munge-libs and munge-devel packages. Installing the munge-libs package was
easily done via the package manager Dandified YUM (DNF). But installing munge-devel was a
bit more complicated. By analyzing the “Automatic SLURM Build Script” published by the NI
SP GmbH [11], I found that munge-devel is part of the PowerTools repository. This repository
is not used by default and needs to be enabled separately. The installation is done with the
command dnf --enablerepo=powertools install munge-devel.

Although the control service started after solving the previous issues SLURM did not work.
The compute services (slurmd) did not start. One reason was that the prefix that was stated
while configuring the build environment was incorrect. Since I built SLURM on the system
where the NFS was hosted, I specified the directory where the NFS directories were located
(/media/nfs/slurm/install). But this directory did not exist on the other nodes. The other
nodes mount the NFS at /mtn/nfs. To fix this, I used /mnt/nfs/slurm/install as prefix

and created a soft link (/mnt/nfs) referring to /media/nfs.

After correcting the location, where to search for slurmd, the service still did not start success-
fully. Additionally, no log file was created. This was because the compute nodes did not have
permissions to write to the NFS. This was a problem since the log files should be written to the
nfs/log directory. The reason for that was not an issue of the SLURM configuration, but of
how the NFS is mounted. When mounting the NFS via the fstab file, the mounting process is
executed by the user root. But the NFS host prevents root from writing to the NFS directo-
ries [10]. I was able to solve this issue by adding no root squash to the NFS configuration.

Section 5 David Nelles 10

Set Up a Test Cluster with Slurm

Now that the log files were written, the reason why the slurmd service did not start could be
analyzed. The log showed that the configuration of the compute nodes was wrong. In the
configuration file, I stated that the compute nodes have one Central Processing Unit (CPU). I
chose this value, since all the virtual machines the test cluster consists of only contain a single
virtual CPU. But, the VCPUs setting does not care about the number of processors, but about
the number of hardware threads. The issue was solved after stating the number of hardware
thread (2).

Additionally, the start of slurmd failed because a certain cgroups namespace was not mounted.
The reason for that was, that cgroup v2 was not installed but cgroup v1. In order to automatically
mount the namespace with cgroup v1, some further settings need to be specified. Cgroup related
settings are configured in a separate file named cgroup.conf. This file must be located next
to the slurm.conf configuration file (nfs/slurm/etc). The automatic mount is activated by
setting CgroupAutomount=yes. [15]

While configuring the accounting database, some further issues came up. One of those issues
was that SLURM could not find a certain plugin called accounting storage/mysql. From the
previous issue, where SLURM did not find the cred/munge plugin, I knew that those issues
occur in case some development libraries were missing during the build process. I installed the
MariaDB-devel package and recompiled SLURM , which actually solved the problem.

During execution, the slurmdbd service generated some errors regarding not recommended values
of innodb buffer pool size and innodb lock wait timeout. Without knowing the reason for
these errors, I was able to fix them by choosing identical values for the AccountingStoragePort
setting inside the SLURM configuration file and the DbdPort setting inside the slurmdbd con-
figuration file. In addition, I defined the DbdHost and StorageHost settings inside the slurmdbd
configuration.

6. Conclusion and Outlook

During the setup, several issues like wrong configurations, missing dependencies and incorrect
file locations came up. But after all, the log files provided enough information to solve all
the issues, and the test cluster was successfully set up. After the setup, the test cluster it is
able to execute small programs on multiple nodes, and the accounting mechanism captures all
interactions. All steps needed to set up the test cluster were documented in a markdown file
stored at the HedgeDoc [2] service hosted by the GWDG . In case the setup must be done again,
the documentation may help to reproduce the setup. However, it will not cover the entire setup,
as most of the applications used in the setup are still being developed and will change over
time.

During the validation, I could show that the test cluster can be switched on and off. However, in
order to make the cluster working, the boot process requires more manual actions than expected.
I therefore suggest writing some bash scripts that care about executing the slurmd service after
booting the nodes and reset the node’s states automatically. Additionally, the backup and
restore process was not implemented. Before using the test cluster for simulations, this process
should be implemented. Additionally, the test cluster only uses one control node. Since the
original cluster uses two control nodes, I recommend extending the test cluster by one further
control node in the future. After simulating an update process with the test cluster, it needs to
be tested whether the cluster still works as expected. Therefor, some validation steps described
in Section 4 need to be done over and over again. It might be useful to automate this validation
step in the future.

Section 6 David Nelles 11

Set Up a Test Cluster with Slurm

References

[1] Center for Information Technology Integration. url: http://www.citi.umich.edu/
projects/nfsv4/linux/ (visited on 01/18/2023).

[2] The HedgeDoc developers. HedgeDoc - The best platform to write and share markdown.
en-us. url: https://hedgedoc.org/ (visited on 03/31/2023).

[3] dun. MUNGE. url: https://dun.github.io/munge/ (visited on 01/18/2023).

[4] MariaDB Foundation. MariaDB Server: The open source relational database. en-US. url:
https://mariadb.org/ (visited on 01/18/2023).

[5] Free Software Foundation, Inc. Make - GNU Project - Free Software Foundation. url:
https://www.gnu.org/software/make/ (visited on 03/29/2023).

[6] GWDG Cloud Server - GWDG - IT in der Wissenschaft. url: https://www.gwdg.de/
server-services/gwdg-cloud-server (visited on 01/18/2023).

[7] Heirloom mailx. url: https://heirloom.sourceforge.net/mailx.html (visited on
03/28/2023).

[8] Installation Guide · dun/munge Wiki. en. url: https://github.com/dun/munge (visited
on 01/19/2023).

[9] It all started with a blog comment. — Rocky Linux. en. url: https://rockylinux.org/
about (visited on 01/18/2023).

[10] Shrikant Lavhate. Access denied error in NFS for root account. en-US. Nov. 2017. url:
https://35.173.37.49/troubleshooting/access-denied-error-in-nfs-for-root-

account/ (visited on 03/28/2023).

[11] NI SP GmbH. Automatic SLURM Build and Installation Script. en-US. url: https:
//www.ni- sp.com/slurm- build- script- and- container- commercial- support/

(visited on 03/28/2023).

[12] OpenStack Open Source Cloud Computing Infrastructure. url: https://www.openstack.
org/ (visited on 03/29/2023).

[13] Slurm System Configuration Tool. url: https://slurm.schedmd.com/configurator.
html (visited on 01/20/2023).

[14] Slurm Workload Manager - Accounting and Resource Limits. url: https : / / slurm .

schedmd.com/accounting.html (visited on 03/16/2023).

[15] Slurm Workload Manager - cgroup.conf. url: https://slurm.schedmd.com/cgroup.
conf.html (visited on 03/29/2023).

[16] Slurm Workload Manager - Download Slurm. url: https : / / slurm . schedmd . com /

download.html (visited on 01/19/2023).

[17] Slurm Workload Manager - Quick Start Administrator Guide. url: https://slurm.
schedmd.com/quickstart_admin.html (visited on 01/20/2023).

[18] Slurm Workload Manager - slurmdbd.conf. url: https://slurm.schedmd.com/slurmdbd.
conf.html (visited on 03/16/2023).

[19] System and Service Manager. url: https://systemd.io/ (visited on 03/18/2023).

[20] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple Linux Utility for
Resource Management”. en. In: Job Scheduling Strategies for Parallel Processing. Ed. by
Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2003, pp. 44–60. isbn: 978-3-540-39727-4. doi: 10.
1007/10968987_3.

Section 6 David Nelles 12

http://www.citi.umich.edu/projects/nfsv4/linux/
http://www.citi.umich.edu/projects/nfsv4/linux/
https://hedgedoc.org/
https://dun.github.io/munge/
https://mariadb.org/
https://www.gnu.org/software/make/
https://www.gwdg.de/server-services/gwdg-cloud-server
https://www.gwdg.de/server-services/gwdg-cloud-server
https://heirloom.sourceforge.net/mailx.html
https://github.com/dun/munge
https://rockylinux.org/about
https://rockylinux.org/about
https://35.173.37.49/troubleshooting/access-denied-error-in-nfs-for-root-account/
https://35.173.37.49/troubleshooting/access-denied-error-in-nfs-for-root-account/
https://www.ni-sp.com/slurm-build-script-and-container-commercial-support/
https://www.ni-sp.com/slurm-build-script-and-container-commercial-support/
https://www.openstack.org/
https://www.openstack.org/
https://slurm.schedmd.com/configurator.html
https://slurm.schedmd.com/configurator.html
https://slurm.schedmd.com/accounting.html
https://slurm.schedmd.com/accounting.html
https://slurm.schedmd.com/cgroup.conf.html
https://slurm.schedmd.com/cgroup.conf.html
https://slurm.schedmd.com/download.html
https://slurm.schedmd.com/download.html
https://slurm.schedmd.com/quickstart_admin.html
https://slurm.schedmd.com/quickstart_admin.html
https://slurm.schedmd.com/slurmdbd.conf.html
https://slurm.schedmd.com/slurmdbd.conf.html
https://systemd.io/
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

Set Up a Test Cluster with Slurm

A. The hostname shell script

A.1. Shell script

#!/bin /bash

#SBATCH −N 2

/mnt/ n f s / slurm/ cur rent / i n s t a l l / bin / srun −−ntasks=1 hostname &
/mnt/ n f s / slurm/ cur rent / i n s t a l l / bin / srun −−ntasks=1 hostname &
/mnt/ n f s / slurm/ cur rent / i n s t a l l / bin / srun −−ntasks=1 hostname &
/mnt/ n f s / slurm/ cur rent / i n s t a l l / bin / srun −−ntasks=1 hostname &
/mnt/ n f s / slurm/ cur rent / i n s t a l l / bin / srun −−ntasks=1 hostname &
/mnt/ n f s / slurm/ cur rent / i n s t a l l / bin / srun −−ntasks=1 hostname &

wait

A.2. Output

n2−1. nova loca l
n2−2. nova loca l
srun : Job 99 step c r e a t i on temporar i ly d i sab led , r e t r y i n g (←↩

Requested nodes are busy)
srun : Job 99 step c r e a t i on temporar i ly d i sab led , r e t r y i n g (←↩

Requested nodes are busy)
srun : Job 99 step c r e a t i on temporar i ly d i sab led , r e t r y i n g (←↩

Requested nodes are busy)
srun : Job 99 step c r e a t i on temporar i ly d i sab led , r e t r y i n g (←↩

Requested nodes are busy)
srun : Step crea ted f o r job 99
srun : Step crea ted f o r job 99
srun : Job 99 step c r e a t i on s t i l l d i sab led , r e t r y i n g (Requested ←↩

nodes are busy)
srun : Job 99 step c r e a t i on s t i l l d i sab led , r e t r y i n g (Requested ←↩

nodes are busy)
n2−1. nova loca l
srun : Step crea ted f o r job 99
n2−2. nova loca l
srun : Job 99 step c r e a t i on s t i l l d i sab led , r e t r y i n g (Requested ←↩

nodes are busy)
srun : Step crea ted f o r job 99
n2−1. nova loca l
n2−2. nova loca l

Appendix B David Nelles 13

Set Up a Test Cluster with Slurm

B. Database content

$ MariaDB [s lurm acct db]> s e l e c t job name , account , node l i s t , ←↩
time submit , t ime end from c l u s t e r j o b t a b l e ;

+−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−+
| job name | account | nod e l i s t | t ime submit | t ime end |
+−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−+
:	:	:	:	:
hostname	NULL	n2−1	1679332933	1679332933
hname . sh	NULL	None as s i gned	1679494555	1679494599
hname . sh	NULL	None as s i gned	1679494820	1679494860
hname . sh	NULL	n2−1	1679494887	1679494888
hname . sh	NULL	n2−[1−2]	1679495048	1679495050
hname . sh	NULL	n2−1	1679495192	1679495193
hname . sh	NULL	n2−[1−2]	1679495603	1679495604
hname . sh	NULL	n2−[1−2]	1679495681	1679495682
hname . sh	NULL	n2−[1−2]	1679495760	1679495761
hname . sh	NULL	n2−[1−2]	1679591894	1679592147
hname . sh	NULL	n2−[1−2]	1679593389	1679593390
+−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−+
92 rows in s e t (0 ,001 sec)

Appendix B David Nelles 14

	Introduction
	Prerequisites
	System setup
	Virtual machines
	Munge
	Network file system
	SLURM
	Compiling
	Configuration

	Accounting

	Validation
	Challenges
	Conclusion and Outlook
	The hostname shell script
	Shell script
	Output

	Database content

