
Compilation of applications via,
make, CMake, and Autotools

Trevor Khwam Tabougua

Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen
Burckhardtweg 4, 37077 Göttingen

November 02, 2022

Learning objectives

Get acquainted with software compilation

Write Makefiles

Build a simple library with make

Generate executables with CMake and Autotools

Why compiling?

Compiling means to create an executable – or a library – from
the source code

GWDG cannot install all software required by users
(see modules for what is available)

Scientific software is often only available as source code

Compiling on the target system often yields better
performance

Prepackaged software typically requires administrator (root)
privileges ...

Why compiling?

Example

Small programs → single file → manual compilation
gcc -o hello main.c

Problems:

Harder to manage

Every change requires long compilation

Solution: Makefile

Makefile

It contains a set of rules that check:

If certain preconditions are met
(files exist or have been updated).

Runs specific commands as needed if the dependencies
changed.

Format

1 <target>: {<sources>}
2 <commands>

!△Note that the white-space is a tabulator.

Example:

1 hello: main.c
2 gcc main.c -o hello

A clean rule can also be added

1 hello: main.c
2 gcc main.c -o hello
3 clean:
4 rm -f hello

Execution

In the terminal:

The command make will create the file hello

If there’s a cleaning rule, the command make clean will
remove all the output objects

Build more than one executable

An all rule that depends on all other objects is used.

1 all: <target1> <target2>
2 <target1>: {<sources1>}
3 <commands1>
4 <target2>: {<sources2>}
5 <commands2>

Exercise 1

Clone the git repository
https://github.com/KTTrev/Exercises.git

cd into Exercises/test make, and write a makefile to compile
the following scripts: main age.c, main hallo.c, main hello.c
Use target names of your choice

Execute the makefile, and check if the compilation worked
properly by running the obtained files

Include a clean rule, recompile the files again, and clean them
afterwards

Time: 10min

https://github.com/KTTrev/Exercises.git

Challenges

Most libraries have complex programs, and dependencies, and
managing makefiles can be challenging

Solution: Makefile Generators

CMake

CMake is a cross-platform free
and open-source software for
managing the build process of

software using a
compiler-independent method.

It uses a configuration file called
CMakeLists.txt

(placed in the project directory)
to generate Makefiles

Generate a Makefile

Assuming you are in the project folder, with the source files and
the CMakeFiles.txt

1. mkdir build

2. cd build

3. cmake ..

The makefile is now available, thus the command make can be
used to generate the executables, as it was previously done

Exercise 2

In the previous git repository, if you cd into Exercises/test cmake,
you will find the three C scripts that were used in the previous
exercise, with an additional file: CMakeFiles.txt

Load cmake/3.21.4 with the following command:
module load cmake/3.21.4

Use the steps provided in the previous slide to generate the
executables

Time: 5 min

Autotools

Just as CMake, Autotools is a
quick and easy way to manage

and package source code so users
can compile and install software

Its primary input files are:

configure.ac

Makefile.am

Using Autotools

The basic steps to build Autotools-based software are:

1. Configuration
./configure --prefix=DIR

Will look at the available build environment, verify required
dependencies, generate Makefile(s) and a config.h

2. Compilation
make

Actually builds the software component, using the generated
Makefiles

3. Installation
make install

Installs what has been built (move binaries into PATH etc.)

About "--prefix"

"--prefix" is used to specify the base directory for your
software

use ./configure --prefix=DIR to install directly in DIR.
e.g.

▶ ./configure --prefix=$HOME/software/<name-version>

Example with nano

Get the source code with the command wget :

wget https://mirrors.tripadvisor.com/gnu/nano/nano-6.4.tar.xz

Unpack the nano source with tar -xvf :
tar -xvf nano-6.4.tar.xz

Then:
▶ cd nano-6.4/

▶ mkdir build

▶ ./configure --prefix=/usr/users/YOUR USERNAME/bin/

▶ make

▶ make install

Exercise 3

From https://ftp.gnu.org/gnu/ncurses/ , download the source
code of ncurses-6.3, and install it as in the previous example.
Time: 10 min

Further Reading

make
▶ Official manual
▶ Make tutorial

CMake
▶ Official manual

Autotools
▶ Official manual

https://www.gnu.org/software/make/manual/html_node/
https://opensource.com/article/18/8/what-how-makefile
https://cmake.org/cmake/help/latest/
https://www.gnu.org/software/automake/manual/automake.html

	Learning objectives
	Why compiling?
	Makefile
	CMake
	Autotools
	Further Reading

