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Why do we care about Time Series Metrics Data?

■ Usage Overview

■ Find Bottlenecks

■ Help with Workload Balancing

■ Demand Analysis and Forecasting

■ Optimize Energy Efficiency

But why do we care about performance?
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Monitoring System Architecture

Figure: Monitoring System Architecture
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But actually...

Figure: Emmy’s 1422 nodes located in Göttingen
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The Need for Speed: From Lucene to Grafana

■ We Evaluate Two Time-Series Databases:

▶ Elasticsearch, a distributed search engine.
▶ InfluxDB, a time-series database.

■ In order to understand why, one has to look at their shared history.
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Lucene

■ Java-based Search Engine Library

■ Developed in 1999 for Apache
Nutch

■ Fuzzy Full-Text Search

Elasticsearch

■ Distributed Search Engine

■ Based on Lucene

■ Developed in 2010

■ Used at Wikipedia, Netflix,
Stackoverflow, LinkedIn

Figure: Lucene Logo

Figure: Elasticsearch Logo
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Money, Money, Money

■ Elasticsearch rose to popularity amongst the DevOps community.

■ Thus, it grew beyond the scope of a hobby project and needed funding.

■ And a database alone is not enough for business applications.

■ Thus, the ELK stack was born.
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ELK(B) stack

Figure: ELK Stack
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Grafana

■ System Monitoring Solution

■ Forked from Kibana

■ Specialized for time-series data

■ Supports multiple data sources

▶ No Elasticsearch vendor lock-in
▶ Allows for more specialized

database technologies
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InfluxDB

■ Time-Series Database

■ Built for technology applications

■ Highly specialized for time-series
data

■ Also used at the GWDG as a data
source for Grafana

Figure: InfluxDB Logo
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Looking in the Rear-View-Mirror: Related Work

■ Only a single exhaustive
performance comparison of
Elasticsearch and InfluxDB.

■ Conducted by InfluxData, the
company behind InfluxDB.

■ Publically available on GitHub.

■ In this section, we will deep dive
into their methodology and
findings.
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Overview

■ Measured across 3 vectors

1 Data ingest performance
2 On-disk storage requirements
3 Mean query response time

■ Split into 5 disconnected steps

1 Data Generation
2 Data Loading
3 Query Generation
4 Query Execution
5 Query Validation
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Influx Comparisons

1. Data Generation

■ Random and Deterministic (pinned PRNG seed)

■ Shared generation logic

■ Generated beforehand

■ Modelled realistically
▶ DevOps related metrics, same structure as telegraf

• cpu, diskio, kernel, mem, redis...

▶ clamped random walk

• important for optimizations such as delta compression
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Influx Comparisons

2. Data Loading

■ KISS

■ Batched into bulk queries (default 5000 documents)

■ parallelized (default 5 workers)

■ sent as fast as possible

3. Query Generation

■ Random and Deterministic (pinned PRNG seed)

■ Shared generation logic

■ Generated beforehand
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Influx Comparisons

4. Query Execution

■ KISS

■ Sends parallelized range queries

5. Query Validation

■ Done via manual verification

■ Ensuring that both aggregation results are approximately the same
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Influx Comparisons

According to the White paper

■ InfluxDB outperformed Elasticsearch by 3.8x when it came to data ingestion

■ InfluxDB outperformed Elasticsearch by up to 7.7x when measuring query
performance

■ InfluxDB outperformed Elasticsearch by delivering 9x better compression

Problems

■ Bad incentive structure

■ Done with Influx version 1

■ Not oriented for HPC workloads and topologies

■ Data was ingested in bulk
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Under the Hood: Our Methodology

■ Extending InfluxData paper’s methodology

■ Everything not mentioned is the same.

■ Adapted to our use case

▶ This is a huge feat; Emmy is big
▶ We run the recommended production configuration
▶ We mainly focus on write, not query read

• Since this is the bulk of the work

■ Split into distinct phases as well.

▶ KISS! KISS! KISS!
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1. Data Generation

■ Also random and deterministic, pinned PRNG seeds

■ Only generating hardware / kernel measurements, no application metrics

■ We use clamped 1D perlin noise

■ One file per ingest worker!

▶ Less error prone!
▶ KISS!
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2. Data Ingestion

■ We don’t use bulk ingestion

▶ instead, data of one node per request

■ Sending as fast as possible

■ Flushing at the end

■ Faster is better
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3. Check Index Compression

■ We do not trust their analytics

■ Multi-Step process

1 Get size of data directory
2 Fill the data
3 Flush and Compress

• InfluxDB: Tree Compaction
• Elasticsearch: Force Merge API

4 After that, we measure again

■ Smaller ∆ is better
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4. Design Queries

Methodology

1 Get a real world Grafana dashboard

2 Extract the queries through the
networking tab

3 Port them to the Query Languages

4 Make them parameterized

Figure: Extracting through Networking Tab
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5. Benchmark Queries

■ We test querying while ingesting data

■ Linear step increment of index size

▶ correllate the response time

■ Faster is better
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The Podium: Results and Conclusion

Stay tuned ;-)
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