Application and system benchmarks

High-Performance Computing System Administration

Johannes Richter 24.02.2023

Overview

- 1. Introduction
- 2. Unified European Applications Benchmark Suite
- 3. Exemplar Benchmark
 - a. Description
 - b. Datasets
 - c. Dependencies and Installation
 - d. Example output
- 4. References

Introduction

What are Benchmarks(Computing)?

- applications designed to characterize the performance of a system
- results can be used to compare and rank different systems
- to identify problems and monitor the progress of fixing them
 - check if the performance requested by the customer is actually achieved
- usually cannot fully characterize all performance aspects of a system
 - measure one specific metric (floating point operations, execution time, I/O operations...)
- to cover multiple metrics we have benchmark-suites
- many types of benchmarks (Algorithmic benchmarks, Parallel benchmarks,...)

Introduction

Benchmark Key Properties

- 1. Relevance: should measure important features.
- 2. Representativeness: should be broadly accepted by industry and academia.
- 3. Equity: all systems should be fairly compared.
- 4. Repeatability: results should be verifiable.
- 5. Cost-effectiveness: tests should be economical.
- 6. Scalability: tests should measure from single server to multiple servers
- 7. **Transparency:** Benchmark metrics should be readily understandable.

UEABS-Unified European Applications Benchmark Suite

- a set of currently 13 application codes taken from the pre-existing
 - PRACE and DEISA application benchmark suites
 - extended with the PRACE Accelerator Benchmark Suite
- providing a single benchmark suite of
 - currently relevant and publicly available application codes and datasets
 - a size which can realistically be run on large systems
- each application code has either one, or two input datasets
 - Test Case A is designed to run on Tier-1 sized systems
 - Test Case B is designed to run on Tier-0 sized systems
- current release is Version 2.2 (December 20, 2022)
- <u>https://repository.prace-ri.eu/git/UEABS/ueabs</u>

GPAW Description

A Projected Augmented Wave code

- electronic structure calculations based on
 - the density functional theory (DFT)
 - the time-dependent density functional theory (TD-DFT)
- DTF allows studies of ground state properties such as energetics and equilibrium geometries
- TD-DFT can be used for calculating excited state properties such as optical spectra
- written in Python and C and parallelized with MPI
- There is also a CUDA-based implementation for GPU systems

GPAW Dependencies and Installation

- C compiler with MPI support
- BLAS, LAPACK, BLACS and ScaLAPACK
- for GPAW 20.10.0 Python 3.6-3.9
- NumPy >=1.9
- SciPy >=0.14
- FFTW (Fastest Fourier Transform in the West), Libxc
- ASE (Atomic Simulation Environment)
- Installation choices
 - spack (py-gpaw)
 - manual with autoconf, Libtool and make

GPAW Datasets

- 1. Case A (small): Carbon nanotube
 - a. ground state calculation for a carbon nanotube in vacuum
 - b. scale up to 10 nodes and/or 100 MPI tasks
- 2. Case B (medium): Copper filament
 - a. ground state calculation for a copper filament in vacuum
 - b. scale up to 100 nodes and/or 1000 MPI tasks
- 3. Case C (large): Silicon cluster
 - a. ground state calculation for a silicon cluster in vacuum
 - b. scale up to 1000 nodes and/or 10000 MPI tasks
- result verification via 4 parameters including
 - expected number of Number of iterations
 - extrapolated energy

<pre>User: hpctraining13@amp050 Date: Thu Feb 16 16:27:23 2023 Arch: x86_64 Pid: 402865 Python: 3.9.0 gpaw: /usr/users/hpctraining13/.spack/0.17.1/install/haswell/gcc-9.3.0/py-gpaw-21.1.0-div4ac/lib/python3.9/site-packages/gpaw _gpaw: /usr/users/hpctraining13/.spack/0.17.1/install/haswell/gcc-9.3.0/py-gpaw-21.1.0-div4ac/lib/python3.9/site-packages/ _gpaw.cpython-39-x86_64-linux-gnu.s0 asc: /usr/users/hpctraining13/.spack/0.17.1/install/haswell/gcc-9.3.0/py-ase-3.21.1-mqgcim/lib/python3.9/site-packages/use/(version 3.21.1) numpy: /usr/users/hpctraining13/.spack/0.17.1/install/haswell/gcc-9.3.0/py-ase-3.21.1-mqgcim/lib/python3.9/site-packages/use/(version 3.21.1) numpy: /usr/users/hpctraining13/.spack/0.17.1/install/haswell/gcc-9.3.0/py-ase-3.21.1-mqgcim/lib/python3.9/site-packages/use/(version 1.21.scipy:/usr/users/hpctraining13/.spack/0.17.1/install/haswell/gcc-9.3.0/py-ase-3.21.1-mqgcim/lib/python3.9/site-packages/use/(version 1.21.scipy:/usr/users/hpctraining13/.spack/0.17.1/install/haswell/gcc-9.3.0/py-ase-3.21.1-mqgcim/lib/python3.9/site-packages/use/(version 1.21.scipy:/usr/users/hpctraining13/.spack/0.17.1/install/haswell/gcc-9.3.0/py-ase-3.21.1-mqgcim/lib/python3.9/site-packages/use/(version 1.21.scipy:/usr/users/hpctraining13/.spack/0.17.1/install/haswell/gcc-9.3.0/py-scipy-1.7.1-vbxsrk/lib/python3.9/site-packages/cipy (version 1.7.1) libxc: 4.3.4 unitsi_Angstrom and eV</pre>
CMCGA: 100 DppMP: False DMP_NUM_THREADS: 1
<pre>Input parameters: convergence: {density: 0.01, eigenstates: 0.0001, eigensolver: rmm-diis h: 0.2 maxiter: 16</pre>
mixer: {backend: pulay, beta: 0.1, method: separate,
nmaxold: 5, weight: 50} mbands: -60 occupations: {fixmagmom: False, name: fermi-dirac, width: 0.1} poissonsolver: {eps: 1e-12, for the formi-dirac, poissonsolver: {eps: 1e-12, for the formi-dirac, for the formi
nume: rust, nn: 3} Svetem channes: positions numbers cell nbc initial charnes initial mannoms
Initialize
C-setup: name: Carbon id: d605/Fadf549371a163e72552ca58787 Z: 6.0 valence: 4
core: 2 charge: 0.0 file: /home/uni08/hpctraining13/benchmark_project/ueabs/gpaw/gpaw_data/gpaw-setups-0.9.20000/C.LDA.gz compensation charges: gauss, rc=0.20, lmax=2 cutoffs: 1.14(filt), 1.14(core), valence states:
$\begin{array}{c} \text{energy} \text{radius} \\ 2s(2,00) & -13, 633 \\ 2p(2,00) & -5, 414 \\ 0, 635 \\ ^*s & 13, 573 \\ p & 21, 797 \\ 0, 633 \\ ^*d & 0, 000 \\ 0, 633 \end{array}$
Using partial waves for C as LCAO basis
Reference energy: -244512.609073
Spin-paired calculation
Convergence criteria: Maximum total energy change: 0.001 eV / electron Maximum integral of absolute density change: 0.01 electrons Maximum integral of absolute eigenstate change: 0.000L eV/2 Maximum number of iterations: 16
Symmetries present (total): 4
$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$

21.3)

1101 Tailan galaras

```
Using the LDA Exchange-Correlation functional
Interpolation: tri-quintic (5. degree polynomial)
Poisson solver: FastPoissonSolver using
    rorsson solver: FastPoissonSolver using
6°3+1=19 point O(h^6) finite-difference Laplacian stencil;
FFT axes: [2];
FST axes: [0, 1].
 Memory estimate:
 Process memory now: 94.34 MiB
Calculator: 63.81 MiB
Density: 3.43 MiB
        Arrays: 1.49 MiB
Localized functions: 1.39 MiB
        Mixer: 0.54 MiB
      Hamiltonian: 1.09 MiB
        Arrays: 0.98 MiB
XC: 0.00 MiB
         Poisson: 0.00 MiB
        vbar: 0.11 MiB
      Wavefunctions: 59.30 MiB
Arrays psit_nG: 29.35 MiB
Eigensolver: 29.63 MiB
Projections: 0.13 MiB
         Projectors: 0.18 MiB
Total number of cores used: 100
Domain decomposition: 5 x 4 x 5
Number of atoms: 240
Number of atomic orbitals: 960
Number of bands in calculation: 540
Number of valence electrons: 960
Bands to converge: occupied
 ... initialized
Initializing position-dependent things.
Density initialized from atomic densities
Creating initial wave functions:
   540 bands from LCAO basis set
                                           c c
                       ccc
```

GPAW Example Output on dataset A_carbon-nanotube

#!/bin/bash #SBATCH -p medium #SBATCH -N 4 #SBATCH -n 100 #SBATCH -o job-%J.out

module purge module load spack-user source \$SPACK_USER_ROOT/share/spack/setup-env.sh spack load py-gpaw

srun gpaw python input.py

Rocult information.	
Result Information.	
* Time:	45.509 s
* Number of iterations:	12
* Dipole (3rd component):	-115.165109
* Fermi level:	-4.61200
* Extrapolated energy:	-2397.625099

GPAW Example Output on dataset A_carbon-nanotube

A_carbon-nanotube

Slurm Parameters with -p medium

References

- <u>https://repository.prace-ri.eu/git/UEABS/ueabs</u>
- https://hpc-wiki.info/hpc/Benchmarks
- <u>https://en.wikipedia.org/wiki/Benchmark_(computing)#cite_note-5</u>
- <u>https://dberleant.github.io/papers/BenchmarkingContemporaryDeepLearning</u>
 <u>HardwareAndFrameworks.pdf</u>