Application and System Benchmarks

Practical: High-Performance Computing System Administration

Silin Zhao

Supervisor: Marcus Merz

February 24, 2023

Outline

- Benchmark of HPC
- Examples of UoB-HPC
- 3 Hand-on testing
- Benchmark exploring

Background

- Indecator of Performance
- Measurement
- Scientific community and Industry

Measurement

- measurement
 - computation power -> TOP500
 - IO performance -> IO500
 - Energy consumption -> Green500
 - network connection
 - memory bandwidth
 - ...

Playground

- Well scalable?
- Regression?
- GPU support?
- Synthetic?
- Open source?
- .

Abstact¹

Architecture

- clxq
- a64fx
- romeq
- sk56
- arm

Compiler

- arm-21.3 (arm)
- arm-21.0 (arm)
- cce-10.0 (x86)
- cce-sve-10.0 (x86)
- fcc-4.3(*)
- gcc-8.1(*)
- gcc-11.0(*)
- Ilvm-11.0(*)

Benchmarks

- bude
- cloverleaf
- CP2k
- minifmm
- NAME
- Neutral
- OpenFOAM
- OenSBLI
- SNAP system
- ...

¹University of Bristol High Performance Computing Group, GEORG-AUGUST-UNIVERSITAT GÖTTINGEN GÖTTINGEN GÖTTINGEN GÖTTINGEN GEORG-AUGUST-UNIVERSITAT GEORG-AUGUST-UNIVERSIT

Implementation

- IO500, HPL, HPCG, Stream are already implemented in GWDG
- Self implementation in SCC
- https://pad.gwdg.de/s/w5_TJ9Yrp

10500^{2}

geting code and installing

```
git clone https://github.com/I0500/io500
cd io500
./prepare.sh
./io500 --list > config-all.ini
sbatch myjob.sh
```

runing

```
#!/bin/bash
#SBATCH --job-name test_benchmark
#SBATCH -N 1
#SBATCH -p fat
#SBATCH -n 1
#SBATCH --time=1:00:00

module purge
module load openmpi
```

mpiexec -np 1 ./io500 config-all.ini

turning

scc, datadir(BeeGFS cluster), transferSize, blockSize...

IO500

Result example

```
IohTD = 14138671
User = hpctraining19, Account = all
Partition = fat. Nodelist = dsu002
IO500 version io500-isc22 v1 (standard)
[RESULT]
                                    0.109581 GiB/s : time 336.524 seconds
              ior-easy-write
ERROR INVALID (src/main.c:403) Runtime of phase (226.066966) is below stonewall tim
ERROR INVALID (src/main.c:409) Runtime is smaller than expected minimum runtime
[RESULT]
           mdtest-easy-write
                                    4.443261 kIOPS : time 226.067 seconds [INVALID
                   timestamp
                                    0.000000 kIOPS : time 0.000 seconds
[RESULT]
              ior-hard-write
                                    0.109578 GiB/s : time 336.483 seconds
[RESULT]
           mdtest-hard-write
                                   0.917004 kIOPS : time 301.056 seconds
[RESULT]
                        find
                                   74.936304 kIOPS : time 17.018 seconds
               ior-easy-read 0.095179 GiB/s : time 387.433 seconds
[RESULT]
[RESULT]
            mdtest-easy-stat
                                   7.555278 kIOPS : time 133.385 seconds
[RESULT]
               ior-hard-read
                                    0.096507 GiB/s : time 382.050 seconds
[RESULT]
            mdtest-hard-stat
                                    7.567918 kIOPS : time 37.371 seconds
[RESULT]
          mdtest-easy-delete
                                    3.694371 kIOPS : time 272.073 seconds
[RESULT]
            mdt.est-hard-read
                                    0.407664 kIOPS : time 675.925 seconds
[RESULT]
          mdtest-hard-delete
                                    3.808506 kIOPS : time 73.334 seconds
```

HPL (High-Performance Linpack)

- solves dense linear system (LU factorization)³
- double precision (64 bits)
- on distributed-memory system

HPL

configuation

make arch=Make.MyHPL OpenBLAS -> MPdir OpenMPI -> LAdir

/lib/bin/HPL.dat

```
device out (6=stdout,7=stderr,file)
             # of problems sizes (N)
29 30 34 35
             Ns
             # of NBs
1 2 3 4
             NBs
             PMAP process mapping (0=Row-,1=Column-major)
             # of process grids (P x Q)
2 1 4
             Ps
2 4 1
             0s
16.0
             threshold
3
             # of panel fact
 1 2
             PFACTs (0=left, 1=Crout, 2=Right)
2
             # of recursive stopping criterium
2 4
             NBMINs (>= 1)
             # of panels in recursion
             NDIVs
             # of recursive panel fact.
```

HPL

T/V

NB

Time

Results example

```
The following parameter values will be used:
N
             29
                      30
                               34
                                        35
NB
       : Row-major process mapping
PMAP
PFACT
       : Left
                   Crout
                            Right
NBMTN
NDIV
RFACT
           Left
                   Crout
                            Right
BCAST
          1ring
DEPTH
```

: Wall time / encoded variant.

: The order of the coefficient matrix A.

: Time in seconds to solve the linear system.

Gflops: Rate of execution for solving the linear system.

The partitioning blocking factor.The number of process rows.The number of process columns.

HPCG(High Performance Conjugate Gradients) ⁴

- complement to HPL
- target to a widely used patterns between computational and data access
- get the code, configure, and make, executable with slurm
- generate two files
 - hpcg-timestamp.txt
 - HPCG-Benchmark-timestamp.txt

Stream⁵

Implement

- self descripted, but free to use and modification
- memory transfer rates for computational kernels
- get the code, configure, and make, executable with slurm

Results segmentation

```
Function Best Rate MB/s Avg time
                                Min time
                                          Max time
Copy:
            19109.5 0.011772
                                0.008373
                                          0.014118
Scale:
            12326.4 0.013455
                                0.012980
                                          0.014593
Add:
            16486.8 0.015539
                                0.014557
                                          0.016992
Triad:
            16389.1 0.015810 0.014644 0.019724
```

Solution Validates: avg error less than 1.000000e-13 on all three arrays

⁵https://github.com/jeffhammond/STREAM

Purpose

- Implementing to SCC cluster
- Playing around and turning
- Documenting for integration in GWDG

bude⁶

- Apache-2.0
- Biophycics, folding NDM-1 (New Delhi metallo-beta-lactamase 1) protein for energy evaluation
- C, C++...
- small, middle, large model
- dependence
 - OpenMP for CPUs
 - OpenMP target for GPUs
 - CUDA for GPUs
 - OpenCL for GPUs
 - OpenACC for GPUs
 - SYCL for CPUs and GPUs
 - Kokkos for CPUs and GPUs

Candidates

cloverleaf

- High energy physics, Fortan, GPL-3.0
- solves the compressible Euler equations on a Cartesian grid, using an explicit, second-order accurate method

CP2K

- GPL-2.0 licence, Fortan
- quantum chemistry and solid state physics software package that can perform atomistic simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems.

Candidates

OpenSBLI

- License: GPL-3.0, python
- Given Equation, generating code for finite difference methods as numerical modelling, auch as Computational Fluid Dynamics.

SNAP system

- License: BSD license, C++
- Network performance test with data on nodes and/or edges in a graph network, can be easy scaled.

Question and some comments?

