
University Göttingen Exercise 1 / February 23, 2023
GWDG HPC System Administration / WiSe 2022/23
Martin Paleico 55 Minutes Total

Exercise Introduction

In this exercise, we will install Gitlab CE (Community Edition) on the course VMs. We will then configure
the service, add users for the course participants, start a new repository, and use it to test Git and issue/task
tracking.

The idea of this session is to test service setup in general, and in particular show a very good service that can
be used for collaborative work and project management for small projects.

Contents

Task 1: Installing Gitlab in your VM (5 min) 1

Task 2: Configuring (5 min) 2

Task 3: Admin and New Users (10 min) 2

Task 4: Start a Repository (5 min) 3

Task 5: Optional: Basics of Git (10 min) 3

Task 6: Issue Tracking (15 min) 4

Task 7: Optional: Cleaning Up (5 min) 6

Task 1: Installing Gitlab in your VM (5 min)

Install Gitlab CE in your frontend VM cluster-manager (or a VM with at least 4 GB of RAM). The steps are
rather straightforward: installing some extra libraries from the CentOS’ repository, and then Gitlab CE from
Gitlab’s repository.

1. $ sudo yum -y update

2. $ sudo yum -y install curl vim policycoreutils python3-policycoreutils

3. Optional: For email services: $ sudo yum -y install postfix

4. Optional: For email services: $ sudo systemctl enable postfix && sudo systemctl start postfix

5. $ curl -s https://packages.gitlab.com/install/repositories/gitlab/gitlab-ce/script.rpm.sh

| sudo bash

6. $ sudo yum install gitlab-ce



Task 2: Configuring (5 min)

The last step before being able to access the service is telling Gitlab where to serve its homepage from. In this
case we can do this without a reverse proxy service such as Apache or nginx.

1. Open the configuration file $ sudo vi /etc/gitlab/gitlab.rb (instead of vi you may also use nano)

2. Look for the external url option near the top of the file, and change it to your machine’s external/floating
IP (the one you set up on OpenStack, that you use to ssh into the machine) while keeping the http header
(e.g.: external url ’http://14X.XXX.XXX.XXX’ ).

3. By default Gitlab will run on port 80, the one reserved for http. If you need to change this to a different
port, chose one from those available in the VM, and set external url to e.g. ’http://14X.XXX.XXX.XXX:8010’

4. Run the following command to let Gitlab acknowledge your change (this will take a while the first time):
$ sudo gitlab-ctl reconfigure

5. In your browser on your computer, go to IP:Port and the Gitlab page should appear (if you leave Port
undefined, your browser will try Port 80 by default, and 443 if you specify https)

6. If you get a 502 error on your browser, the port you selected was probably being used for another service,
change it. Also try restarting the service with $ sudo gitlab-ctl restart

Hints

• Whatever port you use (the default 80 http port or a different one), make sure it has been made available
for your VM. Go to the OpenStack interface and check Network - Security Groups - default - Manage
Rules. Your port should be activated for TCP Ingress (Egress is available in our default Security Group
configuration already for all ports and protocols).

Task 3: Admin and New Users (10 min)

For this section, pick one of the members in the study group to be the admin. You will work together in their
Gitlab CE instance (except for the Basics of git task, which should be done in your own computer).

Retrieve the default root admin password from $ sudo vi /etc/gitlab/initial root password. This file
gets deleted after 24 hrs, so copy the password as soon as you can, or copy the file to somewhere safe like your
home folder. Admin password can be also reset in other ways if need be.

Use this to sign in to the Gitlab instance as an admin. It is also recommended changing the default admin
password to something more manageable (for setting the new password, do be aware Gitlab is a bit picky on
what passwords it will allow). You can do this from the browser interface by clicking on your user icon on the
top right, then on preferences.

Register new users: By default new user registration is open, requires no email confirmation but does require
admin approval. To change any of these, from the admin account, open the menu on the top left next to Gitlab’s
icon, then click on the ”Admin” button. In the new page, go to Settings, General, Sign-up Restrictions.

Have all the VM users create a normal user account (you can enter a fake email, but make sure the password
you enter is easy to type since we will need it for another task; also, in testing, there were some problems when
resetting an account’s password so better not to do that). Then, to approve the newly created users, go to the
Admin panel as before, Overview, Users, Pending Approval.

HPCSA – Exercise 1 2/6



Hints

• If you are doing this alone, you can use different computers, different browsers in the same computer, or
a browser plus incognito windows to simulate multiple users without having to log in and out constantly.

Task 4: Start a Repository (5 min)

Have one of the users create a blank repository/project, and other users join it. Initialize the repository with
a README.md. To join the repository, either create a public repository and share the link with the other
users, or a private one and invite other members by going to the repository, Project Information, Members,
and searching for their usernames. Then the repository will appear on their Projects page.

Task 5: Optional: Basics of Git (10 min)

This task is optional, in case you have not used Git before. You can manipulate the repository directly from
Gitlab itself too. Otherwise, everything in this task is performed on your own command line and not the
browser.

On your own computer or the VM, install git from your usual package repository (e.g.: yum install gitlab). Go
to a new folder, and clone the repository started in Gitlab. For this, go to the project’s page, click on the blue
clone button, and copy the contents of the ”Clone with HTTP” header. In the new folder, use the command
$ git clone copied-text, and enter your username and password on the Gitlab instance when prompted.

Now we can test the following Git features:

• Create an empty file, add some text to it, then add it to your local Git’s ”staging” with $ git add

myfile.txt. The file has not been committed to the repository yet, it is just pre-staged.

• Commit the file (and any other staged changes) to the local repository with $ git commit -m "Created

myfile.txt". The text after -m is a comment that will appear together with the file’s commit entry.

• Make a change to the file, save it, and check its status with $ git diff myfile.txt. Stage and commit
your changes once again.

• Push your changes to the remote repository (the Gitlab instance) with $ git push. Check on Gitlab
that the changes have actually taken place.

• If the other users have already created files, you might not be able to push your changes until your local
repository has been updated. For this, use $ git pull.

• If the other users created files with the same name as yours, you might run into a merge conflict. These
are common when working collaboratively, but are beyond our scope for today.

• Use $ git log to look at a history of the changes in your repository.

Hints

• Note that with Git you can also start a local repository without a remote copy (which can also be added
after the fact). For this, look at the command $ git init.

• You can also clone the repository by setting up SSH keys on the Gitlab instance and using the ”Clone with
SSH” option, but this takes a bit more work (and is untested on this Gitlab CE setup). The advantage
is there is no need to enter your user and password when cloning or pushing/pulling.

HPCSA – Exercise 1 3/6



• Other basic git features to explore: creating, deleting and merging branches; .gitignore files, git rm, how
to revert to an old commit or version of a file (git checkout), how to resolve merge conflicts.

Task 6: Issue Tracking (15 min)

We will look at some of Gitlab’s issue and task tracking functionality:

Labels: Can be found under Project Information - Labels. Can be assigned a name, description, color. Also,
a default set of labels is available. Create the default set of labels or test your own. Labels can be used
to group issues by service, criticality, urgency, category, etc. These can then be issued to filter issues or collect
them in a board, or subscribe to a particular label to get notifications whenever a new labelled issue is opened.

Figure 1: Labels view in Gitlab

Milestones: Milestones are a way of collecting a number of issues together to keep track of them, or to list
issues to achieve an ultimate goal. As a test, start a new milestone simulating the setup of a new service
(for example, ”Setup of the Zyzzyx service”).

Issues: Issues can be bugs that need to be fixed, or tasks that need to be completed to achieve a certain
milestone or implement a given feature. Issues are very versatile, and can even be used to start merge requests.
Create a new issue by going to Issues - List. You can assign only one ”assignee”, but you can mention
multiple people in the description by typing the at symbol (@) and their username. The mentioned users will
receive notifications when they are mentioned, when the issue is updated, when the issue’s deadline approaches,
etc. (and they will also receive emails if the Gitlab instance is set up as such).

A number of special commands are available to be used in an issue’s description. You can get an autocomplete
list by typing / . Of note, you can mention other users (as explained above), reference other issues in the
repository with #, reference files in the repository with [README](README.md), reference specific commits
or merge requests, assign expected efforts and actual work hours, etc.

HPCSA – Exercise 1 4/6



Figure 2: Milestones GUI in Gitlab

Figure 3: Example of an Issue in Gitlab

Generate at least one issue per user in the repository and assign it to them, you can also make
use of the special commands to for example reference the files that have been created before. Example issues:
”Document the Zyzzyx Service”, ”Add Database to the Zyzzyx service”, etc. Remember to add the issues to
the created Milestone, and to add relevant tags. Once the issue is created, look around in the issue’s page at
all the available features and test some of them (for example, add a comment, link another issue, add subtasks,
etc.). Once you have a couple of issues open, check back on the Milestone’s page to see how they have been
collected.

HPCSA – Exercise 1 5/6



Boards: Boards are a way of seeing all your issues at a glance. Check out the board for your project and
see if the issues you have created have appeared there. Test creating a new board and new lists. Also test
quickly creating a new issue from the boards interface.

Figure 4: Basic view of Boards in Gitlab

Hints

• Your project also has an associated wiki that can be used for documentation.

• As an advanced feature, look up information on Gitlab’s Service Desk option, which allows external users
without an account in your repository to open issues (a sort of mini ticket system)

• Other similar tools to check out: OpenProjects for task tracking, Trello (and many other similar services)
for issue boards, Confluence for wiki plus some task tracking, GitHub for an alternative to Gitlab (but
no self-hosted instance as far as I can tell.

• There are many, many other features in Gitlab, it can become an all-in-one solution (for better and for
worse).

• If you are interested in further techniques for collaborative development and organization, look into topics
such as agile development and kanban (boards can be used for this last one).

Task 7: Optional: Cleaning Up (5 min)

Gitlab CE requires quite a bit of disk and memory resources, For that reason, it is recommended to uninstall
it when you are done with the exercises. This is also important if you used the default port for Gitlab, and
want to install other services that need it afterward (in that case you can also just change the config file to use
a different port and rerun the configuration).

To uninstall:

1. Stop the Gitlab process: $ sudo gitlab-ctl stop

2. Uninstall from yum: $ sudo yum uninstall gitlab-ce, and the same for the other packages installed
if you want to

3. You can also use $ yum history and $ yum history undo ID to revert changes

4. Optionally, to save on RAM you can just stop the Gitlab CE process from automatically running with
$ sudo systemctl disable gitlab-runsvdir.service, and still use it by starting and stopping it
manually with $ sudo gitlab-ctl start/stop

HPCSA – Exercise 1 6/6


	Task 1: Installing Gitlab in your VM (5 min)
	Task 2: Configuring (5 min)
	Task 3: Admin and New Users (10 min)
	Task 4: Start a Repository (5 min)
	Task 5: Optional: Basics of Git (10 min)
	Task 6: Issue Tracking (15 min)
	Task 7: Optional: Cleaning Up (5 min)

