

Dominik Mann

Forensic Tools and Incident Response

Velociraptor

- 1 Introduction to theoretical Incident Response
- 2 Practical Incident Response
- 3 Velociraptor
- 4 References

Outline

- 1 Introduction to theoretical Incident Response
- 2 Practical Incident Response
- 3 Velociraptor
- 4 References

SANS Incident Response Process

SANS Incident Response Plan

Image source: https://wirexsystems.com/wp-content/
 uploads/2023/01/unnamed-20.png

Theoretical Incident Response

Preparation Identification Containment

Recovery

- Preparation: Ensure timely response to incident
- Identification: Monitor IT-Systems and detect deviations
- Containment: Limit damage from current security incident
- Eradication: Remove malware or other artifacts and fully restore system

Practical Incident Response

- Recovery: Bring system back to full operation
- Lessons Learned: Extract lessons from gathered information

Velociraptor

Outline

- 1 Introduction to theoretical Incident Response
- 2 Practical Incident Response
- 3 Velociraptor
- 4 References

Practical Incident Response

- Get forensically sound image of compromised system
 - Raw format
 - · Bit by bit copy of raw data on
 - sudo dd if=<input volume> of=<output file> bs=block size conv=noerror,sync
 - ► E01 or EWF format
 - · Physical bitstream with hash values of files
 - Uses compression not as large as raw image
- Mount the image in read-only mode
 - sudo mount -o ro,noload <output file> <mount point>
- Where to go from here?

Practical Incident Response

- Check SSH-Log for Logins
- Check running processes
- Check bash history
- Check timestamps of suspicious files or common used binaries
- Check crontab for automatic executions
- ...
 - ▶ Use scripts for automatically collecting evidence

Practical Incident Response

Real life example

- Notice of partner HPC cluster of compromise and likely indicator of compromise
- Two executables found on few clusters that did not belong there
- Used kernel exploit to gain root access
- Forensic workflow: Iterativley appending timeline and performing extensive search with script
- Ultimately gained access to head node

Chain of infection

0000

Image source: https://www.educv.de/blog/ post-2021-02-17-analyzing-a-compromised-hpc-cluster/

Velociraptor

- 1 Introduction to theoretical Incident Response
- 2 Practical Incident Response
- 3 Velociraptor
- 4 References

Shift from traditional Incident Response Velociraptor

- Traditional evidence acquisition consists of bit by bit copy of disk and memory
 - ▶ In HPC context not always feasible

- Velociraptor connects clients to central Velociraptor server
- Load for searching and evidence acquisition placed on clients
 - Allows concurrent searches and execution of code on multiple remote clients in real time
- Uses "Artifacts" to "hunt"
- Can use any forensic tool as long as there is interactivity

Summary

Introduction to theoretical Incident Response

- Incident response is not a strict consecutive chain of actions
- Getting forensically sound images of compromised systems is crucial
- Automation is important for Incident Response, however manual acquisition is always needed
 - Need to know normal behavior of system
- Modern Incident Response begins to shift towards live response

References

- Johansen, Gerard. Digital forensics and incident response: Incident response techniques and procedures to respond to modern cyber threats. Packt Publishing Ltd, 2020.
- Kral, Patrick. "The incident handlers handbook." SANS Institute, 2011.
- Brücker, Pascal. "Analyzing a compromised HPC cluster." Technische Universität Dresden, 2021.