
DataStorage

Julian Kunkel

Department of Computer Science

2022-01-24

)

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Learning Objectives

� Sketch a typical I/O stack

� Develop a NetCDF data model for a given use case

� Compare the performance of different storage media

� Sketch application types and access patterns

� Justify the use for I/O benchmarks

� Describe an I/O performance optimization technique

� Describe a strategy for trustworthy benchmark result

Julian M. Kunkel HPDA21 2 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Outline

1 Introduction

2 NetCDF

3 Monitoring I/O

4 Benchmarking

5 Optimizations

6 Other

7 Outlook

8 Summary
Julian M. Kunkel HPDA21 3 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Reminder: High-Performance Computing (HPC)

Definitions

� HPC: Field providing massive compute resources for a computational task

I Task needs too much memory or time on a normal computer
⇒ Enabler of complex scientific simulations, e.g., weather, astronomy

� Supercomputer: aggregates power of 10,000 compute devices

� Storage system: provides some kind of storage with some API

� File system: provides a hierarchical namespace and “file” interface

� Parallel I/O: multiple processes can access distributed data concurrently

Julian M. Kunkel HPDA21 4 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Supercomputers Host Costly Storage

� Compute performance growth by 20x each generation (∼5 years).

� Storage throughput/capacity improves by just 6x.

Real Values – 2018

Julian M. Kunkel HPDA21 5 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Application Data vs. File

Applications work with (semi)structured data

� Vectors, matrices, n-Dimensional data

A file is just a sequence of bytes!

...File

offset

Applications/Programmers must serialize data into a flat namespace

� Uneasy handling of complex data types

� Mapping is performance-critical

� Vertical data access unpractical (e.g., to to pick a slice of multiple files)

Julian M. Kunkel HPDA21 6 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

The I/O Stack

� Parallel application

I Is distributed across many nodes
I Has a specific access pattern for I/O
I May use several interfaces

File (POSIX, ADIOS, HDF5), SQL, NoSQL

� Middleware provides high-level access

� POSIX: ultimately file system access

� Parallel file system: Lustre, GPFS, PVFS2

� File system: EXT4, XFS, NTFS

� Block device: utilizes storage media to export a block API

� Operating system: (orthogonal aspect) Figure: Example I/O stack

Julian M. Kunkel HPDA21 7 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Storage Media

� Many technologies are available with different characteristics
� Block-accessible or byte-adressable (NVRAM)

Figure: Source: ZDNet [100]

Julian M. Kunkel HPDA21 8 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Zoo of Interfaces

Multitude of data models
� POSIX File: Array of bytes
� HDF5: Container like a file system

I Dataset: N-D array of a (derived) datatype
I Rich metadata, different APIs (tables)

� Database: structured (+arrays)
� NoSQL: document, key-value, graph, tuple

Choosing the right interface is difficult – a workflow may involve several

Properties / qualities
� Namespace: Hierarchical, flat, relational
� Access: Imperative, declarative, implicit (mmap())
� Concurrency: Blocking vs. non-blocking
� Consistency semantics: Visibility and durability of modifications

Julian M. Kunkel HPDA21 9 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Application I/O Types
Serial, multi-file parallel and shared file
parallel I/O

Serial I/O

0 1 2 3 4

File

5

0 1 2 3 4

File File File File File

5

File

0 1 2 3 4

File

5

Parallel Multi-file I/O

Parallel Shared-file I/O

Figure: Source: Lonnie Crosby [101]

Julian M. Kunkel HPDA21 10 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Application I/O Access Patterns
Access Patterns

Memory

File

Contiguous

Memory

File

Contiguous in

memory, not in file

Memory

File

Contiguous in file,

not in memory

Memory

File

Dis-contiguous

Mem

File

Bursty

T
im

e

Memory

File

Out-of-Core

Figure: Source: Lonnie Crosby [101]

Julian M. Kunkel HPDA21 11 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

File Striping: Distributing Data Across Devices

File Striping: Physical and Logical Views

16 ©2009 Cray Inc.

Figure: Source: Lonnie Crosby [101]Julian M. Kunkel HPDA21 12 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Parallel I/O Efficiency

� I/O intense science requires good I/O performance

� DKRZ file systems offer about 700 GiB/s throughput

I However, I/O operations are typically inefficient: Achieving 10% of peak is good
I Unfortunately, prediction of performance is barely possible

� Influences on I/O performance

I Application’s access pattern and usage of storage interfaces
I Communication and slow storage media
I Concurrent activity – shared nature of I/O
I Tunable optimizations deal with characteristics of storage media
I Complex interactions of these factors

� The I/O hardware/software stack is very complex – even for experts

� Requires tools and methods for

I diagnosing causes
I predicting performance, identification of slow performance
I prescribing tunables/settings

Julian M. Kunkel HPDA21 13 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Illustration of Performance Variability

� Measured at DKRZ (max. 700 GiB/s)

� Optimal performance:

I Small configuration: 6 GiB/s per node
I Large configurations: 1.25 GiB/s per node

� Best-case benchmark: optimal application I/O

I Independent I/O with 10 MiB chunks of data
I Real-world I/O is sparse and worse

� Configurations on user-side vary:

I Number of nodes the benchmark is run
I Processes per node
I Read/Write accesses
I Tunable: stripe size, stripe count

� Best setting depends on configuration!

of nodes

Pe
rfo

rm
an

ce
 in

 M
iB

/s

1 2 10 25 50 100 200 400

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

Figure: A point represents one configuration

Julian M. Kunkel HPDA21 14 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Outline

1 Introduction

2 NetCDF

3 Monitoring I/O

4 Benchmarking

5 Optimizations

6 Other

7 Outlook

8 Summary
Julian M. Kunkel HPDA21 15 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

NetCDF

� NetCDF is an example for a "high-level" I/O-API and ecosystem

� In a simple view, NetCDF is:

I A data model
I A file format
I A set of APIs and libraries for various programming languages

� Together, the data model, file format, and APIs support

I creation, access, and sharing of scientific data

� Allows to describe multidimensional data and include metadata which further
characterises the data

� APIs are available for most programming languages used in geosciences

Julian M. Kunkel HPDA21 16 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

The Classic NetCDF Model

� NetCDF files are containers for Dimensions, Variables, and Global Attributes.

� A NetCDF file (dataset) has a path name and possibly some dimensions, variables, global
(file-level) attributes, and data values associated with the variables.

Julian M. Kunkel HPDA21 17 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

The Classic NetCDF Model – Dimensions

� Dimensions are used to specify variable shapes, grids, and coordinate systems.

� A dimension has a name and a length.

� A dimension can be used to represent a real physical dimension

I Example: time, latitude, longitude, or height

� A dimension can also be used to index other quantities

I Example: station or model run number

� The same dimension can be used in multiple variables.

Julian M. Kunkel HPDA21 18 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

The Classic NetCDF Model – Variables

� A variable holds a multidimensional array of values of the same type

� A variable has a name, type, shape (according to dimensions), attributes, and values

� In the classic data model, the type of a variable is the external type of its data as
represented on disk, one of: char (text character), byte (8 bits), short (16 bits), int (32
bits), float (32 bits), double (64 bits)

Julian M. Kunkel HPDA21 19 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

The Classic NetCDF Model – Data

� The data in a NetCDF file is stored in the form of arrays. For example:

I Temperature varying over time at a location is stored as a one-dimensional array

I Temperature over an area for a given time is stored as a two-dimensional array

I Three-dimensional (3D) data, like temperature over an area varying with time, or
four-dimensional (4D) data, like temperature over an area varying with time and altitude, is
stored as a series of two-dimensional arrays

Reference: https://pro.arcgis.com/en/pro-app/help/data/multidimensional/fundamentals-of-netcdf-data-storage.htm

Julian M. Kunkel HPDA21 20 / 73

https://pro.arcgis.com/en/pro-app/help/data/multidimensional/fundamentals-of-netcdf-data-storage.htm

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

The Classic NetCDF Model – Coordinate Variables

� A 1D variable with the same name as a dimension is a coordinate variable

� The coordinate variable is associated with a dimension of one or more data variables and
typically defines a physical coordinate corresponding to that dimension

� Many programs that read NetCDF files recognise coordinate values they find

Julian M. Kunkel HPDA21 21 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

The Classic NetCDF Model – Attributes

� Attributes hold metadata (data about data)

� An attribute contains information about properties of a variable or the whole dataset

� Attributes are scalars or 1-D arrays

� An attribute has a name, type, and values. Attributes are used to specify such properties
as units, standard names (that identify types of quantity), special values, maximum and
minimum valid values, scaling factors, offsets, ...

Julian M. Kunkel HPDA21 22 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Common Data form Language (CDL)

� Notation used to describe NetCDF object is called

CDL (network Common Data form Language)

I Provides a convenient way of describing
NetCDF datasets

� Utilities allow producing CDL text files from binary
NetCDF datasets and vice-versa

� File contains dimensions, variables, and attributes

� Components are used together to capture the
meaning of data and relations among data fields

Julian M. Kunkel HPDA21 23 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

The Classic NetCDF Model – UML Diagram

� The classic NetCDF can be represented in an UML diagram

Figure: Source [102]: NetCDF UML Diagram

Julian M. Kunkel HPDA21 24 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

NetCDF Data Models

� Classic: Simplest model – Dimensions, variables, attributes

� Enhanced: More powerful model – Adds groups, types, nesting

Julian M. Kunkel HPDA21 25 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Parallel I/O in NetCDF-4

� NetCDF-4 provides parallel file access to both classic and NetCDF-4/HDF5 files

� The parallel I/O to classic files is achieved through PNetCDF while parallel I/O to NetCDF-4
files is through HDF5 or ESDM, ZARR format support is coming

� NetCDF-4 exposes the parallel I/O features of HDF5

I HDF5 provides easy-to-use parallel I/O feature

Julian M. Kunkel HPDA21 26 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Outline

1 Introduction

2 NetCDF

3 Monitoring I/O

4 Benchmarking

5 Optimizations

6 Other

7 Outlook

8 Summary
Julian M. Kunkel HPDA21 27 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Understanding of I/O Behavior and Systems

How can we understand system behavior?

� Observation

I Measurement of runs on the system
I Can be many cases to run
I Slight bias since measurement perturbs behavior
I Benchmarking: applications geared to exhibit certain system behavior

� Monitoring: system/tool-provided observation creation

� Theory: Performance models

I Used to determine performance for a system/workload
I Behavioral models

Build models based on ensemble of observations

� System/application simulation

I Based on system and workload models

Julian M. Kunkel HPDA21 28 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Monitoring I/O

� To understand variability better, must analyze and understand behavior

� We need to capture I/O behavior, options

I System-level, i.e., analyze OS-observable statistics such as bytes read
I Application-level, record individual operations performance

� There are many interesting metrics that can be recorded

� Many tools exists that aid this analysis

Julian M. Kunkel HPDA21 29 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Performance Variability for Single Operations

� Rerunning the same operation (access size, ...) leads to performance variation
� Individual measurements – 256 KiB sequential write (outliers purged)

Julian M. Kunkel HPDA21 30 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Understanding Performance Variability

Issue

� Measuring operation repeatedly results in different runtime

� Reasons:

I Sometimes a certain optimization is triggered, shortening the I/O path
I Example strategies: read-ahead, write-behind

� Consequence: Non-linear access performance, time also depends on access size

� It is difficult to assess performance of even repeated measurements!

Goal

� Predict likely reason/cause-of-effect by just analyzing runtime

� Estimate best-case time, if optimizations would work as intended

Julian M. Kunkel HPDA21 31 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Comparing Density Plot with the Individual Data Points

Figure: Duration for sequential reads with 256 KiB accesses (off0 mem layout)

Algorithm for determining classes (color schemes)
� Create density plot with Gaussian kernel density estimator

� Find minima and maxima in the plot

� Assign one class for all points between minima and maxima

� Rightmost hill is followed by cutoff (blue) close to zero ⇒ outliers (unexpected slow)

Julian M. Kunkel HPDA21 32 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Write Operations

Figure: Results for one write run with sequential 256 KiB accesses (off0 mem layout).

Known optimizations for write

� Write-behind: cache data first in memory, then write back

� Write back is expected to be much slower

This behavior can be seen in the figure !
Julian M. Kunkel HPDA21 33 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

System-Wide Monitoring

� Grafana visualization

� Read/write shown

� Metrics supported

I md_file_create
I md_file_delete
I md_read (only)
I md_mod(ify)
I md_other
I read_bytes
I read_calls
I write_bytes
I write_calls

Julian M. Kunkel HPDA21 34 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

DKRZ Monitoring System

Details

� Periodicity: 10s

� Record metrics

I From /proc
I 9 aggregated

� Jobs are linked to the data

Mistral Supercomputer

� 3,340 Nodes

� 2 Lustre file systems

� 52 PByte capacity

� 100+ OSTs per fs

Julian M. Kunkel HPDA21 35 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Visualizing Job Behavior and Comparing different jobs

0

10

fil
e_

cr
ea

te

0

10

fil
e_

de
le

te

0

10

m
d_

m
od

0

10

m
d_

ot
he

r

0

10

m
d_

re
ad

0

10

re
ad

_b
yt

es

0

10

re
ad

_c
al

ls

0

10

wr
ite

_b
yt

es

0 5 10 15 20
Segment number

0

10

wr
ite

_c
al

ls

0 10 20 30 40
Segment number

0

2

4

6

8

Va
lu

e

md_read
write_bytes
write_calls

Figure: For this job, other metrics == 0

� Different jobs differ significantly

� We can compare jobs

� Metrics categorized based on categories

I 0 = non-IO
I 1 = intense
I 4 = extreme

� Segments represent 10 min

Julian M. Kunkel HPDA21 36 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Outline

1 Introduction

2 NetCDF

3 Monitoring I/O

4 Benchmarking

5 Optimizations

6 Other

7 Outlook

8 Summary
Julian M. Kunkel HPDA21 37 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

How Can Benchmarks Help to Analyze I/O?

� Benefits of benchmarks
I Can use simple/understandable sequence of operations

• Ease comparison with theoretic values (that requires understandable metrics)

I May use a pattern like a realistic workloads

• Provides performance estimates or bounds for workloads!

I Sometimes only possibility to understand hardware capabilities

• Because the theoretic analysis may be infeasible

� Benefits of benchmarks vs. applications

I Are easier to code/understand/setup/run than applications
I Come with less restrictive "license" limitations

� Flexible testing (strategies)

I Single-shot: e.g., acceptance test
I Periodically: regression tests

Julian M. Kunkel HPDA21 38 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Benchmarks

� Benchmarks measure system behavior and implement (simple) well-known behavior

� Many I/O benchmarks exist covering various aspects

I APIs used
I Data access pattern
I Memory access pattern
I Parallelism and concurrency

� Let’s talk about the IO-500 benchmark suite; it is

I Representative: for optimized and naive workloads
I Inclusive: cover various storage technology and non-POSIX APIs
I Trustworthy: representative results and prevent cheating
I Cheap: easy to run and short benchmarking time (in the order of minutes)
I Favors a single metric to simplify the comparison across dimensions

Julian M. Kunkel HPDA21 39 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Goals of the IO-500 Benchmarking Effort

� Bound performance expectations for realistic workloads

� Track storage system characteristics behavior over the years

I Foster understanding of storage performance development
I Support to identify potent architectures for certain workloads

� Document and share best practices

I Tuning of the system is encouraged
I Submitters must submit detailed run parameters

� Support procurements, administrators and users

https://io500.org

500IOIO

Julian M. Kunkel HPDA21 40 / 73

https://io500.org

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Covered Access Patterns

Data pattern complexity

IOR Easy

IOR Hard

MD Hard
MD Easy

N
am

es
p

ac
e

co
m

p
le

xi
ty

Find � IOR-easy: large seq on file(s)

� IOR-hard: small random shared file

� MD-easy: mdtest, per rank dir, empty files

� MD-hard: mdtest, shared dir, 3900 byte

� find: query and filter files based on
name and creation time

� Executing concurrent patterns not covered
(another dimension)

Julian M. Kunkel HPDA21 41 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Predictability and Latency Matters

Performance Predictability

� How long does an I/O / metadata operation take?

� Important to predict runtime

� Important for bulk-synchronous parallel applications

I The slowest straggler defines the performance

Measurement

� In the following, we plot the timelines of metadata create operations

I Sparse plot with randomly selected measurements
I Every point above 0.1s is added

� All results obtained on 10 Nodes using MD-Workbench
https://github.com/JulianKunkel/md-workbench

I Options: 10 PPN, D=1, I=2000, P=10k, precreation phase

Julian M. Kunkel HPDA21 42 / 73

https://github.com/JulianKunkel/md-workbench

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Latencies: Lustre / Mistral at DKRZ

Julian M. Kunkel HPDA21 43 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Latencies: GPFS / Cooley at ALCF

Julian M. Kunkel HPDA21 44 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Performance of the NetCDF-Bench 100 Nodes@Mistral

Write

●

●

0

20

40

60

1 2 4 6 8 12
PPN

P
er

fo
rm

an
ce

 in
 G

iB
/s

config esdm−lustre−both esdm−lustre01 nc nc−fpp

Read

●

●

●

●

●

0

100

200

300

400

1 2 4 6 8 12
PPN

P
er

fo
rm

an
ce

 in
 G

iB
/s

config esdm−lustre−both esdm−lustre01 nc nc−fpp

� Better performance than FPP but looks for users like a single file

Julian M. Kunkel HPDA21 45 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Importance of Choosing the Right Mean Value

� We must repeat a benchmark run to obtain trustworthy data
I Reduce impact of random errors due to background activity

� How do we weight input when repeating a benchmark run?

Tuning for improving the Geom-Mean value

Description Input (11 values) Geom Arithmetic Harmonic
Balanced system 10 . . . 10 10 10 10 10 10
One slow bench 10 . . . 10 10 1 8.1 9.2 5.5
Tuning worst 2x 10 . . . 10 10 2 8.6 9.3 7.3
Tuning good 2x 10 . . . 10 20 1 8.6 10.1 5.6
Tuning good 100x 10 . . . 10 100 1 10 17.4 5.8

� Avoid arithmetic mean

� May use box-plots to visualize variability

� Geom mean honors tuning equally, insensitive to “outliers”

� Harmonic mean favors balanced systems (complex to scale results)

Julian M. Kunkel HPDA21 46 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Probing Approach

� Many sites run periodic regression tests, e.g., nightly

I Helps to identify performance regressions with updates

� Instead, we run a non-invasive benchmark (a probe) with a high frequency

I Mimic the user-visible client behavior
I Measuring latency for metadata and data operations

� Generate and analyze generated statistics

� Derive a slowdown factor (file system load)

Julian M. Kunkel HPDA21 47 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Probing: Performance Measurement

Preparation

� Data: Generate a large file (e.g., > 4x main memory of the client)

� Metadata: Pre-create a large pool of small files (e.g., 100k+ files)

Benchmarks

� Repeat the execution of the two patterns every second

� DD: Read/Write a random 1 MB block

� MD-Workbench: stat, read, delete, write a single file per iteration

I Allows regression testing, i.e., retain the number of files
I J. Kunkel, G. Markomanolis. Understanding Metadata Latency with MDWorkbench.

Executed as Bash script or an integrated tool: https://github.com/joobog/io-probing

Julian M. Kunkel HPDA21 48 / 73

https://github.com/joobog/io-probing

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Test Systems

� JASMIN, the data analysis facility of the UK

I Precreation: 200k files, 200 GB data file
I 60 days of data
I Script runs exclusively on a node

� Archer, the UK national supercomputer service

I Precreation: 200k files, 200 GB data file
I 30 days of data
I Script runs on a shared interactive node

� Mistral, the HPC system at the German Climate Computing Centre

I Precreation: 100k files, 1.3 TB data file
I 18 days of data
I Tool runs on a shared interactive node

Julian M. Kunkel HPDA21 49 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Understanding the Timeseries

Figure: Jasmin every data point for 10 minutes of one node

� Every probe (1s) for 10 min

� For two file systems

� Home is stable

� Work shows irregularities

Julian M. Kunkel HPDA21 50 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

IO-500 Response Time on Archer

Figure: Response time (all measurements)

� Run on 100 nodes
score 8.45

� The IO-500 various phases
Data and metadata heavy

� First, all measurements

Julian M. Kunkel HPDA21 51 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Validating Slowdown on All Measurements

Figure: Slowdown (all measurements)

� Computed median slowdown
Expected: median of 30 days

� Influence of phases is visible

� MDHard 1000x slowdown
Influences data latency!
10s of seconds latency

� IOREasy 100x slowdown

� IORHard not too much

� Data read is stable

Julian M. Kunkel HPDA21 52 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Validating Slowdown: Reduced Data

Figure: Slowdown (60s mean statistics)

� Data reduction: 60s mean

� More robust, clearer to see

Julian M. Kunkel HPDA21 53 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Timelines of 4h Statistics

Figure: Mistral metadata timeline

� Use Q95, 5% ops are slower

� Change in behavior at day 12
Reason: unknown

Julian M. Kunkel HPDA21 54 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Slowdown for 4h Statistics

Figure: JASMIN, computed on 4 hour intervals

� Slowdown: Using the median

� Typically value is 1

� Sometimes a system is 10x slower

I Due to user interactions
I Concurrent application execution

� Values below 1, unusual (caching)

� Good to see long-term issues

Julian M. Kunkel HPDA21 55 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Outline

1 Introduction

2 NetCDF

3 Monitoring I/O

4 Benchmarking

5 Optimizations

6 Other

7 Outlook

8 Summary
Julian M. Kunkel HPDA21 56 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Optimizations

� There are too many tunables and optimizations for I/O

I Read-ahead, write-behind, async I/O
I Distribution of data across servers (e.g., Lustre stripe size)
I We will investigate the complexity of one example...

� Performance benefit of I/O optimizations is non-trival to predict

� Non-contiguous I/O supports data-sieving optimization

I Transforms non-sequential I/O to large contiguous I/O
I Tunable with MPI hints: enabled/disabled, buffer size
I Benefit depends on system AND application

Requested data

Accessed data

Data
sieving

File offset

� Data sieving is difficult to parameterize

I What should be recommended from a data center’s perspective?

Julian M. Kunkel HPDA21 57 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Experiments

� Simple single threaded benchmark, vary access granularity and hole size

� Captured on DKRZ porting system for Mistral

� Vary Lustre stripe settings

I 128 KiB or 2 MiB
I 1 stripe or 2 stripes

� Vary data sieving

I Off or On (4 MiB)

� Vary block and hole size (similar to before)

� 408 different configurations (up to 10 repeats each)

I Mean arithmetic performance is 245 MiB/s
I Mean can serve as baseline “model”

Julian M. Kunkel HPDA21 58 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

System-Wide Defaults

� Comparing a default choice with the best choice

� All default choices achieve 50-70% arithmethic mean performance

� Picking the best default default for stripe count/size: 2 servers, 128 KiB

I 70% arithmetic mean performance
I 16% harmonic mean performance ⇒ some bad choices result in very slow performance

Default Choice Best Worst Arithmethic Mean Harmonic Mean
Servers Stripe Sieving Freq. Freq. Rel. Abs. Loss Rel. Abs.

1 128 K Off 20 35 58.4% 200.1 102.1 9.0% 0.09
1 2 MiB Off 45 39 60.7% 261.5 103.7 9.0% 0.09
2 128K Off 87 76 69.8% 209.5 92.7 8.8% 0.09
2 2 MiB Off 81 14 72.1% 284.2 81.1 8.9% 0.09
1 128 K On 79 37 64.1% 245.6 56.7 15.2% 0.16
1 2 MiB On 11 75 59.4% 259.2 106.1 14.4% 0.15
2 128K On 80 58 68.7% 239.6 62.6 16.2% 0.17
2 2 MiB On 5 74 62.9% 258.0 107.3 14.9% 0.16

Table: Performance achieved with any default choice

Julian M. Kunkel HPDA21 59 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Applying Machine Learning

� Building a classification tree with different depths
� Even small trees are much better than any default
� A tree of depth 4 is nearly optimal; avoids slow cases

Figure: Perf. difference between learned and best choices, by maximum tree depth, for DKRZ’s porting system
Julian M. Kunkel HPDA21 60 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Decision Tree & Rules
Extraction of knowledge from a tree

� For writes: Always use two servers; For holes below 128 KiB⇒ turn DS on, else off

� For reads: Holes below 200 KiB⇒ turn DS on

� Typically only one parameter changes between most frequent best choices

Figure: Decision tree with height 4. In the leaf nodes, the settings (Data sieving, server number, stripe size) and number of instances
for the two most frequent best choices

Julian M. Kunkel HPDA21 61 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Outline

1 Introduction

2 NetCDF

3 Monitoring I/O

4 Benchmarking

5 Optimizations

6 Other

7 Outlook

8 Summary
Julian M. Kunkel HPDA21 62 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Workflows

� Insight: What users are interested in

� Consider workflow from 0 to insight

I Needs input
I Produces output data
I Uses tasks

• Parallel applications
• Big data tools
• Manual analysis / quality control

I May need month to complete
I Manual tasks are unpredictable

Task 1

Data 1 Data 2

Task 2

Product 2

Manual
QC check

Product 1

Task 3

[OK]

Product 3

Manual
usage

Julian M. Kunkel HPDA21 63 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

A (Science) Workflow Description

Task 1

Task 2

Task 3

Cycle 1
Task 1

Task 2

Task 3

Cycle 2
Task 1

Task 2

Task 3

Cycle N

. . .

� Current practice (in climate/weather)

� Dependencies between tasks are described

� Assume a calculation that repeats for multiple cycles/iterations

Julian M. Kunkel HPDA21 64 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Complexity of Data Placement Scheduling

Scenario

� Consider three file systems: local, scratch, and work

I Local is a compute-node local storage system

� Data can be stored on any of these storage systems

� Users need to manually optimize data placement to hardware throughout life cycle

� Could the system do more knowing details about the workflow?

Alternative life cycles for mapping a dataset (Selection)

Scratch

Work

Local
t

A

M R R R

D

D

Local and work file systems
t

R R DRAScratch

Work

Local

Scratch file system only
t

D

M R R D

A

Scratch

Work

Local R

Local and work file systems

Allocation, Migration, Reading, and Deleting

Julian M. Kunkel HPDA21 65 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Possible Extended (Science) Workflow Description

Task 1

Dataset 1 Dataset 2

Task 2

Product 2

Manual
QC check

Product 1

Task 3

[OK]

Product 3

Cycle 1

Manual
usage

Task 1

Dataset 1

Task 2

Product 2

Manual
QC check

Task 3

[OK]

Product 3

Cycle 2

Manual
usage

Task 1

Dataset 1

Task 2

Product 2

Manual
QC check

Task 3

[OK]

Product 3

Cycle N

Manual
usage

Checkpoint
Product 1
Checkpoint

Product 1
Checkpoint

. . .

� Workflow description with IO characteristics
I Input required
I Needed input
I Generated output and its characteristics
I Information Lifecycle (data life)
⇒ Explicit input/output definition (dependencies) instead of implicit

Julian M. Kunkel HPDA21 66 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Data-Reduction

� Issues

I Storing data for a long time is expensive
I Performance is an issue

� Data can be stored in various formats on storage media

� Data-Reduction techniques aim to reduce storage requirements

� Strategies

I Avoiding output - challenge: need data for analysis!
I Re-computation - recreate data upon need using the same computing
I Lossless compression - compress data such that bit-identical data can be recreated

• Examples: bzip, zip, WAV (audio)

I Lossy compression - (some, configurable) data loss upon recreation

• Example: MP3, video files

� Typically measured as compression ratio, e.g., 10:1 (means 10% capacity remains)

Julian M. Kunkel HPDA21 67 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Example Data

Visualization of Simplex noise (2D: 100x100 points)

Right picture compressed storing just 3 most significant bits (ratio 11.3:1)

Julian M. Kunkel HPDA21 68 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Example Study Using Compression on two Systems

� Running 162 algos

� Best algos shown left

� Developed tool: SFS

� DKRZ: 3 TByte of 50 PB
data scanned

I 5 Weeks, one node
I LZ4Fast faster than

memcpy

� WR: 38.1 GByte of 1.1
TByte scanned

Julian M. Kunkel HPDA21 69 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Outline

1 Introduction

2 NetCDF

3 Monitoring I/O

4 Benchmarking

5 Optimizations

6 Other

7 Outlook

8 Summary
Julian M. Kunkel HPDA21 70 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Research Activities & Interest

High-performance storage for HPC

� Efficient I/O

I Performance analysis methods, tools and benchmarks
I Optimizing parallel file systems and middleware
I Modeling of performance and costs
I Tuning: Prescribing settings
I Management of (data-driven/big data) workflows

� Data reduction: compression library, algorithms, methods

� Interfaces: towards domain-specific solutions and novel interfaces

Other research interests

� Application of big data analytics (e.g., for humanities, medicine)

� Cost-efficiency for data centers in general

� Scientific Software Engineering

Julian M. Kunkel HPDA21 71 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Personal Vision: Towards Intelligent Storage Systems and Interfaces

Access paradigm
Database File system

Local storage

ILM/HSM Self-awareness
System characteristics

NoSQL HDF5

Topology aware
Hierarchical storage

Performance model

Data replication

Semi-structured data

Content aware

Semantical access

Data transformation

Dynamic “on-disk” format

Intelligence Smart

Natural storage access
Data exploration

Semantical name space Guided interface

Programmability

Data mining

Application focus U
ser

S
torage system

Arbitrary views

� Abstract data interfaces

� Enhanced data management

� Integrated compute/storage

� Flexible views on data

� Smart hardware/storage

I Self-aware systems
I AI optimized placement
I Bring-your-own-behavior model

� Across sites and cloud

Julian M. Kunkel HPDA21 72 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Summary

� Achieving efficient I/O is challenging due to

I complex systems
I deep software stack
I performance variability
I optimizations

� Monitoring, performance analysis and benchmarking is needed

� There are many optimization strategies

� The NetCDF data model manages n-Dimensional data

Julian M. Kunkel HPDA21 73 / 73

Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Bibliography I

100 http://www.zdnet.com/article/getting-flashy-apac-storage-market-shifts-as-cloud-demand-grows/

101 https://www.nics.utk.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf

102 https://www.unidata.ucar.edu/software/netcdf/workshops/most-recent/nc3model/NcClassicModel.html

Julian M. Kunkel HPDA21 74 / 73

http://www.zdnet.com/article/getting-flashy-apac-storage-market-shifts-as-cloud-demand-grows/
https://www.nics.utk.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf
https://www.unidata.ucar.edu/software/netcdf/workshops/most-recent/nc3model/NcClassicModel.html

	Introduction
	Definitions
	Parallel I/O Efficiency

	NetCDF
	NetCDF Data Models

	Monitoring I/O
	Benchmarking
	Introduction
	The IO-500
	Latency
	Probing
	Test Systems
	Understanding the Timeseries
	Validating Slowdown using the IO-500
	Slowdown for Long Periods

	Optimizations
	Applying Machine Learning

	Other
	Workflows
	Data-reduction

	Outlook
	Research Activities

	Summary
	Summary

