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Learning Objectives

� Sketch a typical I/O stack

� Develop a NetCDF data model for a given use case

� Compare the performance of different storage media

� Sketch application types and access patterns

� Justify the use for I/O benchmarks

� Describe an I/O performance optimization technique

� Describe a strategy for trustworthy benchmark result
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Reminder: High-Performance Computing (HPC)

Definitions

� HPC: Field providing massive compute resources for a computational task

I Task needs too much memory or time on a normal computer
⇒ Enabler of complex scientific simulations, e.g., weather, astronomy

� Supercomputer: aggregates power of 10,000 compute devices

� Storage system: provides some kind of storage with some API

� File system: provides a hierarchical namespace and “file” interface

� Parallel I/O: multiple processes can access distributed data concurrently
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Supercomputers Host Costly Storage

� Compute performance growth by 20x each generation (∼5 years).

� Storage throughput/capacity improves by just 6x.

Real Values – 2018
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Application Data vs. File

Applications work with (semi)structured data

� Vectors, matrices, n-Dimensional data

A file is just a sequence of bytes!

...File

offset

Applications/Programmers must serialize data into a flat namespace

� Uneasy handling of complex data types

� Mapping is performance-critical

� Vertical data access unpractical (e.g., to to pick a slice of multiple files)
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The I/O Stack

� Parallel application

I Is distributed across many nodes
I Has a specific access pattern for I/O
I May use several interfaces

File (POSIX, ADIOS, HDF5), SQL, NoSQL

� Middleware provides high-level access

� POSIX: ultimately file system access

� Parallel file system: Lustre, GPFS, PVFS2

� File system: EXT4, XFS, NTFS

� Block device: utilizes storage media to export a block API

� Operating system: (orthogonal aspect) Figure: Example I/O stack
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Storage Media

� Many technologies are available with different characteristics
� Block-accessible or byte-adressable (NVRAM)

Figure: Source: ZDNet [100]
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Zoo of Interfaces

Multitude of data models
� POSIX File: Array of bytes
� HDF5: Container like a file system

I Dataset: N-D array of a (derived) datatype
I Rich metadata, different APIs (tables)

� Database: structured (+arrays)
� NoSQL: document, key-value, graph, tuple

Choosing the right interface is difficult – a workflow may involve several

Properties / qualities
� Namespace: Hierarchical, flat, relational
� Access: Imperative, declarative, implicit (mmap())
� Concurrency: Blocking vs. non-blocking
� Consistency semantics: Visibility and durability of modifications
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Application I/O Types
Serial, multi-file parallel and shared file 
parallel I/O 
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Figure: Source: Lonnie Crosby [101]
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Application I/O Access Patterns
Access Patterns 
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Figure: Source: Lonnie Crosby [101]
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File Striping: Distributing Data Across Devices

File Striping:  Physical and Logical Views

16 ©2009 Cray Inc.
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Parallel I/O Efficiency

� I/O intense science requires good I/O performance

� DKRZ file systems offer about 700 GiB/s throughput

I However, I/O operations are typically inefficient: Achieving 10% of peak is good
I Unfortunately, prediction of performance is barely possible

� Influences on I/O performance

I Application’s access pattern and usage of storage interfaces
I Communication and slow storage media
I Concurrent activity – shared nature of I/O
I Tunable optimizations deal with characteristics of storage media
I Complex interactions of these factors

� The I/O hardware/software stack is very complex – even for experts

� Requires tools and methods for

I diagnosing causes
I predicting performance, identification of slow performance
I prescribing tunables/settings
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Illustration of Performance Variability

� Measured at DKRZ (max. 700 GiB/s)

� Optimal performance:

I Small configuration: 6 GiB/s per node
I Large configurations: 1.25 GiB/s per node

� Best-case benchmark: optimal application I/O

I Independent I/O with 10 MiB chunks of data
I Real-world I/O is sparse and worse

� Configurations on user-side vary:

I Number of nodes the benchmark is run
I Processes per node
I Read/Write accesses
I Tunable: stripe size, stripe count

� Best setting depends on configuration!
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Figure: A point represents one configuration
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NetCDF

� NetCDF is an example for a "high-level" I/O-API and ecosystem

� In a simple view, NetCDF is:

I A data model
I A file format
I A set of APIs and libraries for various programming languages

� Together, the data model, file format, and APIs support

I creation, access, and sharing of scientific data

� Allows to describe multidimensional data and include metadata which further
characterises the data

� APIs are available for most programming languages used in geosciences
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The Classic NetCDF Model

� NetCDF files are containers for Dimensions, Variables, and Global Attributes.

� A NetCDF file (dataset) has a path name and possibly some dimensions, variables, global
(file-level) attributes, and data values associated with the variables.
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The Classic NetCDF Model – Dimensions

� Dimensions are used to specify variable shapes, grids, and coordinate systems.

� A dimension has a name and a length.

� A dimension can be used to represent a real physical dimension

I Example: time, latitude, longitude, or height

� A dimension can also be used to index other quantities

I Example: station or model run number

� The same dimension can be used in multiple variables.
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The Classic NetCDF Model – Variables

� A variable holds a multidimensional array of values of the same type

� A variable has a name, type, shape (according to dimensions), attributes, and values

� In the classic data model, the type of a variable is the external type of its data as
represented on disk, one of: char (text character), byte (8 bits), short (16 bits), int (32
bits), float (32 bits), double (64 bits)
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The Classic NetCDF Model – Data

� The data in a NetCDF file is stored in the form of arrays. For example:

I Temperature varying over time at a location is stored as a one-dimensional array

I Temperature over an area for a given time is stored as a two-dimensional array

I Three-dimensional (3D) data, like temperature over an area varying with time, or
four-dimensional (4D) data, like temperature over an area varying with time and altitude, is
stored as a series of two-dimensional arrays

Reference: https://pro.arcgis.com/en/pro-app/help/data/multidimensional/fundamentals-of-netcdf-data-storage.htm
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The Classic NetCDF Model – Coordinate Variables

� A 1D variable with the same name as a dimension is a coordinate variable

� The coordinate variable is associated with a dimension of one or more data variables and
typically defines a physical coordinate corresponding to that dimension

� Many programs that read NetCDF files recognise coordinate values they find
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The Classic NetCDF Model – Attributes

� Attributes hold metadata (data about data)

� An attribute contains information about properties of a variable or the whole dataset

� Attributes are scalars or 1-D arrays

� An attribute has a name, type, and values. Attributes are used to specify such properties
as units, standard names (that identify types of quantity), special values, maximum and
minimum valid values, scaling factors, offsets, ...
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Common Data form Language (CDL)

� Notation used to describe NetCDF object is called

CDL (network Common Data form Language)

I Provides a convenient way of describing
NetCDF datasets

� Utilities allow producing CDL text files from binary
NetCDF datasets and vice-versa

� File contains dimensions, variables, and attributes

� Components are used together to capture the
meaning of data and relations among data fields
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The Classic NetCDF Model – UML Diagram

� The classic NetCDF can be represented in an UML diagram

Figure: Source [102]: NetCDF UML Diagram

Julian M. Kunkel HPDA21 24 / 73



Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

NetCDF Data Models

� Classic: Simplest model – Dimensions, variables, attributes

� Enhanced: More powerful model – Adds groups, types, nesting
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Parallel I/O in NetCDF-4

� NetCDF-4 provides parallel file access to both classic and NetCDF-4/HDF5 files

� The parallel I/O to classic files is achieved through PNetCDF while parallel I/O to NetCDF-4
files is through HDF5 or ESDM, ZARR format support is coming

� NetCDF-4 exposes the parallel I/O features of HDF5

I HDF5 provides easy-to-use parallel I/O feature
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Understanding of I/O Behavior and Systems

How can we understand system behavior?

� Observation

I Measurement of runs on the system
I Can be many cases to run
I Slight bias since measurement perturbs behavior
I Benchmarking: applications geared to exhibit certain system behavior

� Monitoring: system/tool-provided observation creation

� Theory: Performance models

I Used to determine performance for a system/workload
I Behavioral models

Build models based on ensemble of observations

� System/application simulation

I Based on system and workload models
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Monitoring I/O

� To understand variability better, must analyze and understand behavior

� We need to capture I/O behavior, options

I System-level, i.e., analyze OS-observable statistics such as bytes read
I Application-level, record individual operations performance

� There are many interesting metrics that can be recorded

� Many tools exists that aid this analysis
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Performance Variability for Single Operations

� Rerunning the same operation (access size, ...) leads to performance variation
� Individual measurements – 256 KiB sequential write (outliers purged)
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Understanding Performance Variability

Issue

� Measuring operation repeatedly results in different runtime

� Reasons:

I Sometimes a certain optimization is triggered, shortening the I/O path
I Example strategies: read-ahead, write-behind

� Consequence: Non-linear access performance, time also depends on access size

� It is difficult to assess performance of even repeated measurements!

Goal

� Predict likely reason/cause-of-effect by just analyzing runtime

� Estimate best-case time, if optimizations would work as intended
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Comparing Density Plot with the Individual Data Points

Figure: Duration for sequential reads with 256 KiB accesses (off0 mem layout)

Algorithm for determining classes (color schemes)
� Create density plot with Gaussian kernel density estimator

� Find minima and maxima in the plot

� Assign one class for all points between minima and maxima

� Rightmost hill is followed by cutoff (blue) close to zero ⇒ outliers (unexpected slow)
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Write Operations

Figure: Results for one write run with sequential 256 KiB accesses (off0 mem layout).

Known optimizations for write

� Write-behind: cache data first in memory, then write back

� Write back is expected to be much slower

This behavior can be seen in the figure !
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System-Wide Monitoring

� Grafana visualization

� Read/write shown

� Metrics supported

I md_file_create
I md_file_delete
I md_read (only)
I md_mod(ify)
I md_other
I read_bytes
I read_calls
I write_bytes
I write_calls
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DKRZ Monitoring System

Details

� Periodicity: 10s

� Record metrics

I From /proc
I 9 aggregated

� Jobs are linked to the data

Mistral Supercomputer

� 3,340 Nodes

� 2 Lustre file systems

� 52 PByte capacity

� 100+ OSTs per fs
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Visualizing Job Behavior and Comparing different jobs
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Figure: For this job, other metrics == 0

� Different jobs differ significantly

� We can compare jobs

� Metrics categorized based on categories

I 0 = non-IO
I 1 = intense
I 4 = extreme

� Segments represent 10 min
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How Can Benchmarks Help to Analyze I/O?

� Benefits of benchmarks
I Can use simple/understandable sequence of operations

• Ease comparison with theoretic values (that requires understandable metrics)

I May use a pattern like a realistic workloads

• Provides performance estimates or bounds for workloads!

I Sometimes only possibility to understand hardware capabilities

• Because the theoretic analysis may be infeasible

� Benefits of benchmarks vs. applications

I Are easier to code/understand/setup/run than applications
I Come with less restrictive "license" limitations

� Flexible testing (strategies)

I Single-shot: e.g., acceptance test
I Periodically: regression tests
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Benchmarks

� Benchmarks measure system behavior and implement (simple) well-known behavior

� Many I/O benchmarks exist covering various aspects

I APIs used
I Data access pattern
I Memory access pattern
I Parallelism and concurrency

� Let’s talk about the IO-500 benchmark suite; it is

I Representative: for optimized and naive workloads
I Inclusive: cover various storage technology and non-POSIX APIs
I Trustworthy: representative results and prevent cheating
I Cheap: easy to run and short benchmarking time (in the order of minutes)
I Favors a single metric to simplify the comparison across dimensions
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Goals of the IO-500 Benchmarking Effort

� Bound performance expectations for realistic workloads

� Track storage system characteristics behavior over the years

I Foster understanding of storage performance development
I Support to identify potent architectures for certain workloads

� Document and share best practices

I Tuning of the system is encouraged
I Submitters must submit detailed run parameters

� Support procurements, administrators and users

https://io500.org

500IOIO
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Covered Access Patterns

Data pattern complexity

IOR Easy

IOR Hard

MD Hard
MD Easy
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Find � IOR-easy: large seq on file(s)

� IOR-hard: small random shared file

� MD-easy: mdtest, per rank dir, empty files

� MD-hard: mdtest, shared dir, 3900 byte

� find: query and filter files based on
name and creation time

� Executing concurrent patterns not covered
(another dimension)
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Predictability and Latency Matters

Performance Predictability

� How long does an I/O / metadata operation take?

� Important to predict runtime

� Important for bulk-synchronous parallel applications

I The slowest straggler defines the performance

Measurement

� In the following, we plot the timelines of metadata create operations

I Sparse plot with randomly selected measurements
I Every point above 0.1s is added

� All results obtained on 10 Nodes using MD-Workbench
https://github.com/JulianKunkel/md-workbench

I Options: 10 PPN, D=1, I=2000, P=10k, precreation phase
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Latencies: Lustre / Mistral at DKRZ

Julian M. Kunkel HPDA21 43 / 73



Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Latencies: GPFS / Cooley at ALCF
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Performance of the NetCDF-Bench 100 Nodes@Mistral
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� Better performance than FPP but looks for users like a single file
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Importance of Choosing the Right Mean Value

� We must repeat a benchmark run to obtain trustworthy data
I Reduce impact of random errors due to background activity

� How do we weight input when repeating a benchmark run?

Tuning for improving the Geom-Mean value

Description Input (11 values) Geom Arithmetic Harmonic
Balanced system 10 . . . 10 10 10 10 10 10
One slow bench 10 . . . 10 10 1 8.1 9.2 5.5
Tuning worst 2x 10 . . . 10 10 2 8.6 9.3 7.3
Tuning good 2x 10 . . . 10 20 1 8.6 10.1 5.6
Tuning good 100x 10 . . . 10 100 1 10 17.4 5.8

� Avoid arithmetic mean

� May use box-plots to visualize variability

� Geom mean honors tuning equally, insensitive to “outliers”

� Harmonic mean favors balanced systems (complex to scale results)
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Probing Approach

� Many sites run periodic regression tests, e.g., nightly

I Helps to identify performance regressions with updates

� Instead, we run a non-invasive benchmark (a probe) with a high frequency

I Mimic the user-visible client behavior
I Measuring latency for metadata and data operations

� Generate and analyze generated statistics

� Derive a slowdown factor (file system load)
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Probing: Performance Measurement

Preparation

� Data: Generate a large file (e.g., > 4x main memory of the client)

� Metadata: Pre-create a large pool of small files (e.g., 100k+ files)

Benchmarks

� Repeat the execution of the two patterns every second

� DD: Read/Write a random 1 MB block

� MD-Workbench: stat, read, delete, write a single file per iteration

I Allows regression testing, i.e., retain the number of files
I J. Kunkel, G. Markomanolis. Understanding Metadata Latency with MDWorkbench.

Executed as Bash script or an integrated tool: https://github.com/joobog/io-probing
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Test Systems

� JASMIN, the data analysis facility of the UK

I Precreation: 200k files, 200 GB data file
I 60 days of data
I Script runs exclusively on a node

� Archer, the UK national supercomputer service

I Precreation: 200k files, 200 GB data file
I 30 days of data
I Script runs on a shared interactive node

� Mistral, the HPC system at the German Climate Computing Centre

I Precreation: 100k files, 1.3 TB data file
I 18 days of data
I Tool runs on a shared interactive node
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Understanding the Timeseries

Figure: Jasmin every data point for 10 minutes of one node

� Every probe (1s) for 10 min

� For two file systems

� Home is stable

� Work shows irregularities
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IO-500 Response Time on Archer

Figure: Response time (all measurements)

� Run on 100 nodes
score 8.45

� The IO-500 various phases
Data and metadata heavy

� First, all measurements
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Validating Slowdown on All Measurements

Figure: Slowdown (all measurements)

� Computed median slowdown
Expected: median of 30 days

� Influence of phases is visible

� MDHard 1000x slowdown
Influences data latency!
10s of seconds latency

� IOREasy 100x slowdown

� IORHard not too much

� Data read is stable
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Validating Slowdown: Reduced Data

Figure: Slowdown (60s mean statistics)

� Data reduction: 60s mean

� More robust, clearer to see

Julian M. Kunkel HPDA21 53 / 73



Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

Timelines of 4h Statistics

Figure: Mistral metadata timeline

� Use Q95, 5% ops are slower

� Change in behavior at day 12
Reason: unknown
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Slowdown for 4h Statistics

Figure: JASMIN, computed on 4 hour intervals

� Slowdown: Using the median

� Typically value is 1

� Sometimes a system is 10x slower

I Due to user interactions
I Concurrent application execution

� Values below 1, unusual (caching)

� Good to see long-term issues
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Optimizations

� There are too many tunables and optimizations for I/O

I Read-ahead, write-behind, async I/O
I Distribution of data across servers (e.g., Lustre stripe size)
I We will investigate the complexity of one example...

� Performance benefit of I/O optimizations is non-trival to predict

� Non-contiguous I/O supports data-sieving optimization

I Transforms non-sequential I/O to large contiguous I/O
I Tunable with MPI hints: enabled/disabled, buffer size
I Benefit depends on system AND application

Requested data

Accessed data

Data 
sieving

File offset

� Data sieving is difficult to parameterize

I What should be recommended from a data center’s perspective?
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Experiments

� Simple single threaded benchmark, vary access granularity and hole size

� Captured on DKRZ porting system for Mistral

� Vary Lustre stripe settings

I 128 KiB or 2 MiB
I 1 stripe or 2 stripes

� Vary data sieving

I Off or On (4 MiB)

� Vary block and hole size (similar to before)

� 408 different configurations (up to 10 repeats each)

I Mean arithmetic performance is 245 MiB/s
I Mean can serve as baseline “model”
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System-Wide Defaults

� Comparing a default choice with the best choice

� All default choices achieve 50-70% arithmethic mean performance

� Picking the best default default for stripe count/size: 2 servers, 128 KiB

I 70% arithmetic mean performance
I 16% harmonic mean performance ⇒ some bad choices result in very slow performance

Default Choice Best Worst Arithmethic Mean Harmonic Mean
Servers Stripe Sieving Freq. Freq. Rel. Abs. Loss Rel. Abs.

1 128 K Off 20 35 58.4% 200.1 102.1 9.0% 0.09
1 2 MiB Off 45 39 60.7% 261.5 103.7 9.0% 0.09
2 128K Off 87 76 69.8% 209.5 92.7 8.8% 0.09
2 2 MiB Off 81 14 72.1% 284.2 81.1 8.9% 0.09
1 128 K On 79 37 64.1% 245.6 56.7 15.2% 0.16
1 2 MiB On 11 75 59.4% 259.2 106.1 14.4% 0.15
2 128K On 80 58 68.7% 239.6 62.6 16.2% 0.17
2 2 MiB On 5 74 62.9% 258.0 107.3 14.9% 0.16

Table: Performance achieved with any default choice
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Applying Machine Learning

� Building a classification tree with different depths
� Even small trees are much better than any default
� A tree of depth 4 is nearly optimal; avoids slow cases

Figure: Perf. difference between learned and best choices, by maximum tree depth, for DKRZ’s porting system
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Decision Tree & Rules
Extraction of knowledge from a tree

� For writes: Always use two servers; For holes below 128 KiB⇒ turn DS on, else off

� For reads: Holes below 200 KiB⇒ turn DS on

� Typically only one parameter changes between most frequent best choices

Figure: Decision tree with height 4. In the leaf nodes, the settings (Data sieving, server number, stripe size) and number of instances
for the two most frequent best choices
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Workflows

� Insight: What users are interested in

� Consider workflow from 0 to insight

I Needs input
I Produces output data
I Uses tasks

• Parallel applications
• Big data tools
• Manual analysis / quality control

I May need month to complete
I Manual tasks are unpredictable

Task 1

Data 1 Data 2

Task 2

Product 2

Manual 
QC check

Product 1

Task 3

[OK]

Product 3

Manual 
usage

Julian M. Kunkel HPDA21 63 / 73



Introduction NetCDF Monitoring I/O Benchmarking Optimizations Other Outlook Summary

A (Science) Workflow Description

Task 1

Task 2

Task 3

Cycle 1
Task 1

Task 2

Task 3

Cycle 2
Task 1

Task 2

Task 3

Cycle N

. . .

� Current practice (in climate/weather)

� Dependencies between tasks are described

� Assume a calculation that repeats for multiple cycles/iterations
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Complexity of Data Placement Scheduling

Scenario

� Consider three file systems: local, scratch, and work

I Local is a compute-node local storage system

� Data can be stored on any of these storage systems

� Users need to manually optimize data placement to hardware throughout life cycle

� Could the system do more knowing details about the workflow?

Alternative life cycles for mapping a dataset (Selection)

Scratch

Work

Local
t

A

M R R R

D

D

Local and work file systems
t

R R DRAScratch

Work

Local

Scratch file system only
t

D

M R R D

A

Scratch

Work

Local R

Local and work file systems

Allocation, Migration, Reading, and Deleting
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Possible Extended (Science) Workflow Description

Task 1

Dataset 1 Dataset 2

Task 2

Product 2

Manual 
QC check

Product 1

Task 3

[OK]

Product 3

Cycle 1

Manual 
usage

Task 1

Dataset 1

Task 2

Product 2

Manual 
QC check

Task 3

[OK]

Product 3

Cycle 2

Manual 
usage

Task 1

Dataset 1

Task 2

Product 2

Manual 
QC check

Task 3

[OK]

Product 3

Cycle N

Manual 
usage

Checkpoint
Product 1
Checkpoint

Product 1
Checkpoint

. . .

� Workflow description with IO characteristics
I Input required
I Needed input
I Generated output and its characteristics
I Information Lifecycle (data life)
⇒ Explicit input/output definition (dependencies) instead of implicit
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Data-Reduction

� Issues

I Storing data for a long time is expensive
I Performance is an issue

� Data can be stored in various formats on storage media

� Data-Reduction techniques aim to reduce storage requirements

� Strategies

I Avoiding output - challenge: need data for analysis!
I Re-computation - recreate data upon need using the same computing
I Lossless compression - compress data such that bit-identical data can be recreated

• Examples: bzip, zip, WAV (audio)

I Lossy compression - (some, configurable) data loss upon recreation

• Example: MP3, video files

� Typically measured as compression ratio, e.g., 10:1 (means 10% capacity remains)
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Example Data

Visualization of Simplex noise (2D: 100x100 points)

Right picture compressed storing just 3 most significant bits (ratio 11.3:1)
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Example Study Using Compression on two Systems

� Running 162 algos

� Best algos shown left

� Developed tool: SFS

� DKRZ: 3 TByte of 50 PB
data scanned

I 5 Weeks, one node
I LZ4Fast faster than

memcpy

� WR: 38.1 GByte of 1.1
TByte scanned
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Research Activities & Interest

High-performance storage for HPC

� Efficient I/O

I Performance analysis methods, tools and benchmarks
I Optimizing parallel file systems and middleware
I Modeling of performance and costs
I Tuning: Prescribing settings
I Management of (data-driven/big data) workflows

� Data reduction: compression library, algorithms, methods

� Interfaces: towards domain-specific solutions and novel interfaces

Other research interests

� Application of big data analytics (e.g., for humanities, medicine)

� Cost-efficiency for data centers in general

� Scientific Software Engineering
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Personal Vision: Towards Intelligent Storage Systems and Interfaces

Access paradigm
Database File system

Local storage

ILM/HSM Self-awareness
System characteristics

NoSQL    HDF5

Topology aware
Hierarchical storage

Performance model

Data replication

Semi-structured data

Content aware

Semantical access

Data transformation

Dynamic “on-disk” format

Intelligence Smart

Natural storage access
Data exploration

Semantical name space       Guided interface

Programmability

Data mining

Application focus U
ser

S
torage  system

Arbitrary views

� Abstract data interfaces

� Enhanced data management

� Integrated compute/storage

� Flexible views on data

� Smart hardware/storage

I Self-aware systems
I AI optimized placement
I Bring-your-own-behavior model

� Across sites and cloud
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Summary

� Achieving efficient I/O is challenging due to

I complex systems
I deep software stack
I performance variability
I optimizations

� Monitoring, performance analysis and benchmarking is needed

� There are many optimization strategies

� The NetCDF data model manages n-Dimensional data
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