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Learning Objectives

� Create a pipe diagram for pseudocode

� Illustrate the dataflow programming paradigm using examples

� Describe the concept of lazy evaluation

� Sketch a Pig Latin example program
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General Data Model for Dataflow Languages

Data

� Tuple t = (x1, ..., xn) where xi may be of a given type

� Input/Output = list of tuples (like a table)

Typical Operators for Data-Flow Processing

� Operations process individual tuples
I Map/Foreach: process or transform data of individual tuples or group

• transform a tuple: student.Map((matrikel, name) ⇒ (matrikel + 4, name))
• count members for each group: groupedStudents.Map((year) ⇒ count())

I Filter tuples by comparing a key to a value

� Operations that require the complete input data

I Group tuples by a key
I Sort data according to a key
I Join multiple relations together
I Split tuples of a relation into multiple relations (based on a condition)
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Data Flow Programming Paradigm [68]

� Focus: data movement and transformation

I Compare to imperative programming: sequence of commands

� Models program as directed graph of data flowing between operations

I Input/output is illustrated as a node
I Node is an operation, edges are dependencies

� Operation is run once all inputs become valid

I An operation might work on a single data element or on the complete data
I Parallelism is inherently supported by data flow languages

� States (in the program)

I Dataflow works best with stateless programs
I Stateful dataflow graphs support mutable states
I Data related states, e.g., reductions, may be encoded as data

� Programming

I Example: read(“file.csv”).filter("word” == "big data").reduce(count)
I Functional declarative programming model is optimal
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Pipe Diagrams1

� Goal: Visualize the processing pipeline of data-flows with a schema
I Optional: Add examples to illustrate processing

Elements and diagram concepts

� Box: Operation

I e.g., functions, filter, grouping, aggregating, mapping
I Indicate also changes in schema

� Arrows show processing order (DAG), joins have two inputs

Input (Matrikel, Firstname, Lastname, Female, Birthday)

Group by Female

Map (Female, count=Count())

Output ⇒(Female, count)

1 We will use a variant from [11]
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Pipe Diagram with Examples

Matrikel Firstname Lastname Female Birthdate
22 "Fritz" "Musterman M." false 2000-01-01
23 "Nina" "Musterfrau F." true 2000-01-01
24 "Hans" "Im Glück" false 2001-01-01

Group by Female

Matrikel Firstname Lastname Female Birthdate

22 "Fritz" "Musterman M." false 2000-01-01
24 "Hans" "Im Glück" false 2001-01-01

23 "Nina" "Musterfrau F." true 2000-01-01

Map (Female, count=Count())

Female count
false 2
true 1
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Apache Pig [60, 61, 62]

� Pig: Infrastructure (language, compiler) for executing big data programs

I No server (services) required
I Data is stored on HDFS
I Uses MapReduce or TEZ execution engine

� High-level scripting language Pig Latin

I Describes processing as data flow
I Compiler parallelizes data flow (into MapReduce / TEZ job)

� Batch mode and interactive shell (pig)
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Data Model for Apache Pig [62]

� Tuple: An ordered set of named fields (our data)
I A field can be a simple type or complex (tuple, bag or map)
I Fields are referred by name or position ($0 to $n)

� Bag: Collection of tuples (evtl. with duplicates)
� Relation: Is a bag (like a table)

I Data types of fields can be assigned with a schema
I Not necessarily with a fixed schema

• Each tuple may have different fields
• Without defined type, data will be converted if necessary

I Relations are referred to by name or alias (variable)
Example: Loading data with a schema

1 # table with student basic information
2 S = LOAD ’stud.csv’ as (matrikel:int, semester:int, feminine:boolean, name:chararray,

↪→ birthday:datetime);

stud.csv

1 4711 5 false "Max Mustermann" 2000-01-01
2 4712 4 true "Nina Musterfrau F." 2000-01-01
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Scripting Language Pig Latin [62]

� Data-flow oriented imperative programming language

I Declare execution plan vs. SQL (declare results)

� Datatypes: basic types, tuples, bags and maps

� Statement: operator with a named relation as input and output

I LOAD and STORE operations are exceptions
I Relations are referred to by name or alias (variable)

� For computation, additional (arithmetic) operators are provided

I They are applied to each tuple

� Preprocessor with parameter substitution and macros (functions)

� Lazy evaluation for interactive shell

I Run commands only when output is requested by the user

� Note: Intermediate relations are stored on tmp files on HDFS
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Relational Operators [62]

Input/Output

� DUMP: Output results on stdout

� LOAD/STORE: Input/output relations to/from HDFS

Subsetting tuples from relations

� DISTINCT: Removes duplicated tuples

� FILTER: Select tuples by a a condition

� SAMPLE: Select random tuples from the relation

� LIMIT: Limit the number of tuples

� SPLIT: Partition the relation into relations based on conditions

� UNION: Merge multiple relations
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Relational Operators [62]

Rearrange tuples

� GROUP: Group the data based on the values

� COGROUP: Like group but involves multiple relations

� ORDER BY: Sort the relation based on fields

� RANK: To each tuple add the position in the relation (can also apply sort before
ranking)

Data manipulation

� FOREACH: Transform tuples of an relation

I Supports nesting for processing of collections

� JOIN: Join of multiple relations based on identical field keys

� CROSS: Cross product of two or more relations

� CUBE: Aggregates for all combinations of specified groups

I For n dimensions, this creates 2n aggregates
I ROLLUP creates n + 1 aggregates based on the hierarchical order

Execution of external functions

� MAPREDUCE: Run MapReduce jobs inside pig

� STREAM: Send data to an external script

� DEFINE: Create user defined functions

� REGISTER: Register UDFs of a JAR
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Non-relational Operators[62]

� Arithmetic: +,-,*,/,%, ?:, CASE

� Boolean: AND, OR, NOT, IN (for collections)

� Casting: Conversion between data types

� Comparison (includes regex support)

� Flatten: Convert tuple elements and bags into tuples

� Disambiguate: Specifies the relation field, e.g., RELATION::f

Functions

� Evaluation functions (reduction):

I AVG, MIN, MAX, SUM, COUNT, COUNT_STAR (also counts NULL)
I CONCAT: concatenation
I TOKENIZE: split string and returns bag

� String, datetime handling

� Conversion of strings to types

� Math functions
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Accessing and Manipulating Data with Pig

� The pig shell is convenient for interactive usage

I Checks schema and certain language/programming errors

� Invoke code in other languages via user-defined functions (UDF)

� Pig Latin can be embedded into, e.g., Python, JavaScript, Java
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Debugging [62]

� For testing, run in local mode (pig -x local)

� For performance analysis, some run statistics are provided

� Add file names to tuples (e.g., using PigStorage(’,’, ’-tagsource’))

� Some operators (with shortcuts) are provided to help debugging

Useful operators for debugging

� ASSERT: Ensure a condition on data (or abort)

� DUMP (\d): output results on stdout

� DESCRIBE (\de): show the schema of a relation

� EXPLAIN (\e): view the execution plans for computation

� ILLUSTRATE (\i): step-by-step execution of statements
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Pig Examples: Our Student/Lecture Example

stud.csv

1 22,"Fritz","Musterman M.",false,2000-01-01
2 23,"Nina","Musterfrau F.",true,2000-01-01

lecture.csv

1 1;"Big Data";{(22),(23)}
2 2;"Hochleistungsrechnen";{(22)}

Pig schema and data loading

1 s = LOAD ’stud.csv’ USING PigStorage(’,’) AS (matrikel:int, name:chararray, firstname:chararray,
↪→ feminine:boolean, birthday:datetime);

2 l = LOAD ’lecture.csv’ USING PigStorage(’;’) AS (id:int, name:chararray, students:bag{T:
↪→ (matrikel:int)});

3 ASSERT s BY matrikel > 0, ’matrikel must be bigger than 1’;
4 describe s;
5 -- s: {matrikel: int, name: chararray, firstname: chararray, feminine: boolean, birthday: datetime}
6 DUMP l; STORE l INTO ’result’ USING PigStorage (’;’);
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Pig Examples: Our Student/Lecture Example

Goal: Identify student names participating in the lecture

1 -- unroll the bag for a join
2 lflat = FOREACH l GENERATE id,name,FLATTEN(students) as matrikel;
3 spart = JOIN lflat by matrikel, s by matrikel;
4 describe spart;
5 -- spart: {lflat::id: int,lflat::name: chararray,lflat::matrikel: int,s::matrikel: int,s::name:

↪→ chararray,s::firstname: chararray,s::feminine: boolean,s::birthday: datetime}
6 dump spart;
7 --(2,"Hochleistungsrechnen",22,22,"Fritz","Musterman M.",false, 2000-01-01T00:00:00.000+01:00)
8 --(1,"Big Data",22,22,"Fritz","Musterman M.",false,2000-01-01T00:00:00.000+01:00)
9 --(1,"Big Data",23,23,"Nina","Musterfrau F.",true,2000-01-01T00:00:00.000+01:00)
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Pig Examples: Our Student/Lecture Example

Goal: Determine the number of students

1 t = GROUP s ALL; -- we generate only one group containing all tuples
2 c = FOREACH t GENERATE COUNT(s); -- we compute the count for each group
3 -- (2)

Goal: Determine the number of participants per lecture

1 c = FOREACH l GENERATE id,COUNT(students) AS participants;
2 -- (1,2)
3 -- (2,1)
4

5 -- alternatively on our flattened table:
6 z = GROUP spart BY id;
7 c = FOREACH z GENERATE group AS id, COUNT(p) AS participants;
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Pig Examples: Our Student/Lecture Example

Goal: Identify female participants in lectures starting with “Big”

1 sf = FILTER s BY (feminine == true);
2 -- Filter the lectures
3 lf = FILTER l BY (name == ’Big.*’);
4 -- Flatten the filtered lectures
5 lfflat = FOREACH lf GENERATE name,FLATTEN(students) as matrikel;
6

7 -- Now join them
8 fp = JOIN lfflat by matrikel, sf by matrikel;
9 -- ("Big Data",23,23,"Nina","Musterfrau F.",true, 2000-01-01T00:00:00.000+01:00)

10 -- only print the name
11 fpn = FOREACH fp GENERATE sf::name;
12 -- ("Nina")
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Pig Examples: Our Student/Lecture Example

Goal: determine the average student age per lecture

1 sf = FOREACH s GENERATE name, birthday, matrikel;
2 spart = JOIN lflat by matrikel, sf by matrikel;
3 -- filter name of the lecture and birthday, we can also embed multiple operations here
4 f = FOREACH spart GENERATE lflat::name AS lecture, birthday;
5 -- group for the lecture name
6

7 z = GROUP f BY lecture;
8 -- ("Big Data",{("Big Data",2000-01-01T00:00:00.000+01:00),("Big Data",

↪→ 2000-01-01T00:00:00.000+01:00)})
9 -- ("Hochleistungsrechnen",{("Hochleistungsrechnen", 2000-01-01T00:00:00.000+01:00)})

10

11 -- Now we iterate over the bag f that is the result of the grouping
12 alj = FOREACH z {
13 tmp = FOREACH f GENERATE WeeksBetween(CurrentTime(), birthday);
14 GENERATE group as lecture, AVG(tmp)/52 as avgAge, COUNT(tmp) as students;
15 }
16 -- ("Big Data",15.75,2)
17 -- ("Hochleistungsrechnen",15.75,1)
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Pig Examples: Our Student/Lecture Example

Goal: for each student, identify the lectures s/he participates

1 sf = FOREACH s GENERATE name, matrikel;
2 lflat = FOREACH l GENERATE id,name,FLATTEN(students) as matrikel;
3 spart = JOIN lflat by matrikel, sf by matrikel;
4 z = GROUP spart BY sf::matrikel;
5 -- (22,{(1,"Big Data",22,"Fritz",22), (2,"Hochleistungsrechnen",22, "Fritz",22)})
6 -- (23,{(1,"Big Data",23,"Nina",23)})
7 al = FOREACH z {
8 lectures = FOREACH spart GENERATE lflat::name;
9 tmp = LIMIT spart 1;

10 name = FOREACH tmp GENERATE sf::name;
11 -- Apply flatten to remove the unneeded grouping of name
12 GENERATE group as matrikel, FLATTEN(name), lectures;
13 }
14 -- (22,"Fritz",{("Big Data"),("Hochleistungsrechnen")})
15 -- (23,"Nina",{("Big Data")})
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Preprocessor [67]
Parameter substitution

� Substitute variables in a script with Pig command line arguments

� Example: Use the matrikel as argument

1 -- in the pig script
2 %default MATRIKEL 23
3 s = FILTER students by matrikel = ’$MATRIKEL’
4 -- on the command line:
5 pig -p MATRIKEL=4711 studentLecture.pig

Macros

� Modularize the Pig scripts

1 %declare searchMatrikel 23 -- define a constant
2
3 define studAttends (myMatrikel) returns attendedLectures {
4 s = LOAD ’stud.csv’ USING PigStorage(’,’) AS (matrikel:int, name:chararray, firstname:chararray);
5 l = LOAD ’lecture.csv’ USING PigStorage(’;’) AS (id:int, name:chararray, students:bag{T: (matrikel:int)});
6 i = FOREACH l {
7 S = FILTER students BY (matrikel == $myMatrikel);
8 GENERATE ( IsEmpty(S.$0) ? NULL: id ) AS lectureId;
9 }

10 $attendedLectures = FILTER i BY lectureId is not NULL;
11 }
12 dump studAttends($searchMatrikel);
13 -- Returns: (1)
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Embedding Pig into Python [62]
1 #!/usr/bin/python
2 # import the Pig class
3 from org.apache.pig.scripting import Pig
4

5 # Execution consists of three steps, compile, bind and run
6 # Compile returns a Pig object representing the data flow pipeline
7 # Variables can be used here and bind later
8 P = Pig.compile("""
9 a = load ’$in’;

10 store a into ’$out’;
11 """)
12

13 input = ’stud.csv’
14 output = ’out.csv’
15

16 # bind variables and run the script, output is stored on HDFS
17 result = P.bind({’in’:input, ’out’:output}).runSingle()
18

19 if result.isSuccessful() : # Check if the job runs successful
20 print ’Pig job succeeded’
21 else :
22 raise ’Pig job failed’

To run the python script type pig testpy.py
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Writing UDFs in Python [62]
Definition of the Python UDF
1 import md5
2

3 @outputSchema("as:int")
4 def square(num):
5 if num == None:
6 return None
7 return ((num) * (num))
8

9 @outputSchema("word:chararray")
10 def concat(word):
11 return word + word
12

13 @outputSchema("anonym:chararray")
14 def anonymize(word):
15 m = md5.new()
16 m.update(str(word))
17 return m.hexdigest()

Using the UDF in Pig
1 Register ’test.py’ using jython as my;
2 -- Alternatively: streaming_python is another method, but code is different
3 b = FOREACH s GENERATE my.anonymize(matrikel),my.concat(’test’),my.square(2);
4 -- (b6d767d2f8ed5d21a44b0e5886680cb9,testtest,4)
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File Formats

� Support for Avro, CSV, RCFile, SequenceFile, JSONStorage, Binary
� Support for Hive’s tables via HCatalog using the HCatLoader
� Internally BinStorage formats is used for intermediate files
� The schema can be part of the file to be loaded or explicitly given
� External schema can be written/read to/from .pig-schema file [65]

CSV (the default) via PigStorage class

� Supports compression bzip2, gzip, lzo

I Automatically de/compressed if directory ends with .bz2/.gz

Examples

1 A = LOAD ’stud.gz’ USING PigStorage(’\t’,’-schema’); -- load the external schema
2 A = LOAD ’stud.gz’ USING PigStorage(’\t’) AS (matrikel:int, ...);
3 A = LOAD ’stud.bin’ USING BinStorage();
4 A = LOAD ’stud.json’ USING JsonLoader();
5 A = LOAD ’data.txt’ USING TextLoader(); -- load unstructured text as it is
6 A = LOAD ’stud.avro’ USING AvroStorage (); -- contains elements, see [64]
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Execution of Pig Queries on MapReduce and TEZ

Figure: Source: H. Shah [20]
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Performance Advises and Parallelism [62]

� Lazy evaluation applies several optimizations automatically

I Rearrange work (run filters first) and merge operations if possible
I Filter early in the pipeline

� Flexible number of reducers for the parallelism

I By default a heuristics sets them based on the size of input data
I The default number of reducers can be set

1 SET default_parallel 10; -- 10 reducers

I PARALLEL clause can be used to set reducers for an operator

1 O = GROUP input BY key PARALLEL 10;

� Use TEZ instead of MapReduce (start shell via pig -x tez)

� Use schemas for numeric data (otherwise floating point (double) is used)
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Performance Advises and Parallelism [62]

� Choose the key for the Hadoop partitioner [66]

I Maps keys to reducers
I By default a HashPartitioner is used on the group

1 O = GROUP input BY key PARTITION BY org.apache.hadoop.mapred.lib.BinaryPartitioner;

� Intermediate relations can be compressed via properties:

1 SET pig.tmpfilecompression (true, false)
2 SET pig.tmpfilecompression.codec (gz, lzo)

� If you have many small input files: aggregate them before using Pig

� A cache is used (automatically) for storing JARs of user-defined functions
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Optimization of Joins [62]

� Drop NULL keys before join

I NULL keys are sent to a single reducer and may be overwhelming

� The last relation in a join operator is streamed by Pig

I The largest relation should be listed last

� There are join strategies for optimization that have to be chosen [69]

I replicated joins multiple small relations
I merge joins relations already sorted by key
I merge-sparse joins when the output is expected to be sparse
I skewed distributes popular items across several reducers

Example

Assume input is small and input2 is a large relation

1 f = FILTER input BY $0 is not null;
2 f2 = FILTER input2 BY $0 is not null;
3 O = JOIN f BY $0, f2 BY $0 USING ’merge-sparse’;
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Summary

� Data flow programming paradigm is easy parallelizable

� Pipe diagrams visualize data flow programs

� Pig provides a data flow oriented programming infrastructure

I Input/Output from/to HDFS
I Utilizes MapReduce and Tez
I No additional server(s) needed

� PigLatin is a domain-specific programming language

I Only a few basic operations are necessary
I FOREACH: Iteration over tuples and nested attributes
I Beware: PigLatin details are complex; may indroduce complex errors

� Pig can be called from Python to script complex workflows

� User-defined functions can be integrated into PigLatin
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