Universitat Gottingen Exercise Week 4

Department of Computer Science HPDA / 2021
240 Minutes Total
Julian Kunkel Discussion in Week 5: 2021-11-22

1. The tasks described in this worksheet are part of the formative assessment. They serve the purpose to
prepare you for the examination. We will discuss the solutions during the next interactive session after
they are handed out — while they fit to the lecture of the week they are handed out, they might be discussed
in two weeks time due to the bi-weekly exercise schedule.

2. Make sure to plan your time for the whole sheet carefully. The complete exercise should represent
approximately three hours of independent study. The time limit indicates how much time you should spend
on each task, and not how much time you may actually need; it is important that you engage with the material
and not that you complete all tasks perfectly. Feel free to collaborate and team up.

3. The exercises are designed to challenge you and train you further as guided self-study. The time limit
might be too ambitious for you; you may team up with colleagues. It is not an issue as long as you manage
to at least partially resolve each task within the time budget. If you (and team) are struggling, reach out for
help in Teams! You may also share your thoughts on the channel.

4. We recommend that you create a (private) GIT repository where you store your findings and outcomes
while processing the exercises. This portfolio of work could be useful in the future.

Contents
Task 1: MapReduce: Formulating of SQL-queries (60 min) 1
Task 2: MapReduce: Processing of Text Data (Python) (180 min) 2
2.1 Step 1: Python Surrogate L 2
2.2 Step 2: Emulation using a map and a reduce program 3
2.3 Step 3: Implementation using Hadoop streaming - this task is scheduled for next week 3
2.4 Step 4: Analysis L s 3
2.5 Hints e 3
2.5.1 Stemming and Lemmatisation Lo 3
2.5.2 Hadoop streamingo 4

Task 1: MapReduce: Formulating of SQL-queries (60 min)

MapReduce is a powerful programming modell that has been utilized for various applications including to
emulate the execution of SQL on data bases. For example, the data warehouse system Apache HIVE [1] is
built on top of Hadoop and allows to access data that is stored in files using schema on read.

As part of this task think about how you would implement the following SQL-alike commands into MapReduce
jobs. Sketch the map and reduce functions for each query.

1. A simple selection:

SELECT fieldA FROM "input.csv" WHERE fieldA == something

-

2. A summation:

SELECT groupfield, SUM(fieldA) AS mysum FROM "input.csv" GROUP BY groupfield

-

3. A join:

-

SELECT a.fl1, b.f2 FROM "tbll.csv" AS a JOIN "tbl2.csv" AS b ON a.id = b.id

Portfolio (directory: 4/sqlMapReduce)

4/sqlMapReduce/selection.txt For the simple selection
4/sqlMapReduce/summation.txt For the summation
4/sqlMapReduce/join.txt For the join

Hints

e Maybe thinking about some examples can help.
e The Map phase can read in multiple files.

e Some (more complex) SQL queries may use multiple map reduce jobs that are chained together.

Further Reading

1. https://en.wikipedia.org/wiki/Apache_Hive

Task 2: MapReduce: Processing of Text Data (Python) (180 min)

By using MapReduce, we will parallelize the word count problem and apply it to a set of textfiles. Feel free to
use/upload any number of textfiles you like to Hadoop. The output should be a list of Article id, list of tuples
(words, frequency).

We will build this task in different stages, please start with Step 1 and Step 2 this week, we will complete the
task next week if you didn’t manage Step 3.

Instead of just outputting the words, we will normalize the words by applying alternatively 1) stemming and
2) lemmatisation (see hints).

2.1 Step 1: Python Surrogate

First, build a Python' program that reads files listed on the command line and generate the following output:
The output should be formatted as follows?:

"<textfile>",<wordcount>," [<stemmed wordl>:<count>, ...]", "[lemma of wordl:3, lemma of word2: ...]"

-

The last pieces are lists of word and count tuples. Wordcount is the total number of words in the textfile.

Also, for each word, calculate the sum of all occurrences across all textfiles and save them as a CSV in such a
format:

S,StemmedWord, 4
L,LemmaWord, 3

[

HIf you have no experience with Python, spend some time to learn the basics of Python instead of performing all tasks on this
sheet!
%You may define the escaping or choose to format the word list as JSON instead.

HPDA — Exercise Week 4 2/5

https://en.wikipedia.org/wiki/Apache_Hive

For example for the sentence: “Translating the Force will be with you. Always.”, the result should be (order
of the tokens doesn’t quite matter):

S,translat,1
S,the,1
S,forc,1
S,will,1
S,be,1
S,with,1
S,you,1
S,alway,1
L,translate,1
L,the,1
L,force,1
L,will,1
L,be,1
L,with,1
L,you,1
L,always,1

© 0 N o ;s W N e

e i e e
o> oA W N B O

2.2 Step 2: Emulation using a map and a reduce program

Next, split your program into two programs, a map.py and a reduce.py that read data from stdin and output
results to stdout. It shall compute the sum of all occurrences only. You should be able to launch your program
from the shell emulating the behavior of MapReduce as follows:

1| cat Input.csv | ./map.py | sort | ./reduce.py

Note that the semantics of reduce.py isn’t quite the same as of an original map-reduce program as it is expected
to be called with multiple keys but that is quite easy to emulate.

2.3 Step 3: Implementation using Hadoop streaming - this task is scheduled for next week

In this setup, create an independent Python program for the map and the reduce phase by considering Hadoop
streaming (see below in Hints). Typically, such a program can be tested using the shell pipes. Try to produce
a comparable output, albeit the exact output could be difficult to obtain.

2.4 Step 4: Analysis

Measure the runtime of the three programs, your Python version, with the execution using a pipe and using
Hadoop. Why is the result as you measure it?

2.5 Hints
2.5.1 Stemming and Lemmatisation

Stemming is the process of reducing inflected (or sometimes derived) words to their word stem, base or root
form3. For example, the word students is based on student and the root of studying is study.

Stemming can be used to normalize words and aggregate all derived words instead of counting them separately.

We can use NTLK? in Python for word stemming. There are several implementations of stemmers provided,
we will use the SnowballStemmer.

*https://en.wikipedia.org/wiki/Stemming
“http://www.nltk.org/

HPDA — Exercise Week 4 3/5

https://en.wikipedia.org/wiki/Stemming
http://www.nltk.org/

-

sow N

from nltk.stem.snowball import SnowballStemmer
stemmer = SnowballStemmer("english")

print (stemmer.stem("studying"))

prints "studi"; well the world is not perfect

Lemmatisation is similar but reduces the word to the word’s lemma that is its dictionary form. Check the
NTLK documentation for further information how to apply Lemmatisation.

2.5.2 Hadoop streaming

Hadoop streaming is available via hadoop-streaming.jar, it allows for running arbitrary programs as map and
reduce functions. External programs are called with keys and values as input, the standard output of the

program is used as output of the reducer or mapper.

5

Running a program with streaming is simple:

© 0 N o ¢ W N e

e
= o

12
13
14
15

Start Hadoop and Yarn

start-dfs.sh

start-yarn.sh

Prepare Hadoop file system, need to do this once

hadoop fs -mkdir /user/

hadoop fs -mkdir /user/hpda

hadoop fs -mkdir /user/hpda/example

hadoop fs -copyFromLocal /etc/passwd /user/hpda/example/example.csv

Streaming example, what does this do?

yarn jar /home/hpda/hpda-samples/install/hadoop-3.3.1/share/hadoop/tools/lib/hadoop-streaming-3.3.1.jar
— -mapper $(which echo) -reducer $(which wc -1) -input /user/hpda/example -output /user/hpda/out

Getting the output

hadoop fs -getmerge /user/hpda/out out

Print output

cat out

Embedding Python is very simple using this functionality:©

w N R

yarn jar $HADOOP/share/hadoop/tools/lib/hadoop-streaming-3.3.1.jar \
-Dmapred.reduce.tasks=1 -Dmapred.map.tasks=11 \
-mapper $PWD/my-map.py -reducer $PWD/my-reduce.py -input <inputDir> -output <outputDir>

This runs the program my-map.py as mapper and my-reduce.py as reducer.

A trivial Python example works as follows:

-

N o o o~ W N

#!/usr/bin/python3
import sys

This program outputs for every input tuple (line for mapper, key/value pair for reduce)
the fixed tuple ("key", "value"). It is possible to filter and aggregate tuples (in reduce).
for line in sys.stdin:

print ("key\tvalue\n")

Portfolio (directory: 4/mapreduce-wordcount)

4/mapreduce-wordcount/Input.csv The chosen input data
4/mapreduce-wordcount/map.py The mapper as python program
4/mapreduce-wordcount/reduce.py The reducer as pythOH program

"http://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html
Shttp://www.michael-noll.com /tutorials/writing-an-hadoop-mapreduce-program-in-python/

HPDA — Exercise Week 4 4/5

http://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html

Hints

e To setup the required Python packages run in the shell: $§ pip3 install --user nltk

Further Reading

e https://princetonits.com/hadoop-mapreduce-streaming-using-bash-script/

HPDA — Exercise Week 4 5/5

https://princetonits.com/hadoop-mapreduce-streaming-using-bash-script/

	Task 1: MapReduce: Formulating of SQL-queries (60 min)
	Task 2: MapReduce: Processing of Text Data (Python) (180 min)
	Step 1: Python Surrogate
	Step 2: Emulation using a map and a reduce program
	Step 3: Implementation using Hadoop streaming - this task is scheduled for next week
	Step 4: Analysis
	Hints
	Stemming and Lemmatisation
	Hadoop streaming

