

High-Performance Data Analytics (HPDA)

Learning Outcomes

After the session, a participant should be able to:

- Name typical applications for high-performance data analytics
- Distinguish HPDA from D/P/S computing and how these topics blend
- Describe use-cases and challenges in the domain of D/P/S computing
- Describe how the scientific method relies on D/P/S computing
- Name big data challenges and the typical workflow
- Recite system characteristics for distributed/parallel/computational science
- Sketch generic D/P system architectures

Outline

- 2 Distributed Computing
- 3 Parallel Computing and HPC
- 4 Computational Science
- 5 BigData Challenges
- 6 Use Cases
- 7 Organization of the Lecture

Use Cases

High-Performance Data Analytics (HPDA)

Definition

High performance data analytics is the **process** of **quickly examining extremely large data sets** to find insights. This is done by using the **parallel processing** of high performance computing to run powerful analytic software.

Source: https://www.omnisci.com/technical-glossary/high-performance-data-analytics

Components to undestand

- Understanding analysis processes
- Managing large scale data sets
- Applying parallel processing
- Characterizing performance factors of high-performance compute and storage

Distributed Computing

Field in computer science that studies distributed systems¹

Definition

- System which components² are located on different networked computers
- Components communicate and coordinate actions by passing messages
- Components interact to achieve a common goal
- *In the wider sense*: autonomous processes coordinated by passing messages

Characteristics

- Distributed memory: components have their own (private) memory
- Concurrency of components: different components compute at the same time
- Lack of a global clock: clocks may diverge
- Independent failure of components, e.g., due to power outage

Example Distributed System and Distributed Program

- A distributed program (DP) runs on a distributed system
 - Processes are instances of one program running on one computer
- A distributed applications/algorithm may involve various DPs/different vendors

Software perspective (mapped to hw)

Example Distributed Applications and Algorithms

Applications

- The Internet and telecommunication networks
- Cloud computing
- Wireless sensor networks
- The Internet of Things (IoT) "everything is connected to the Internet"

Algorithms (selection from real world examples)

- Consensus: reliable agreement on a decision (malicious participants?)
- Leader election
- Reliable broadcast (of a message)
- Replication

Cloud Computing

Definition

- On-demand availability of computer system resources (data storage and computing)
 - Without direct active management by the user
- Typically relates to distributed resources
 - provided by data centers
 - to many users
 - over the Internet
- Fog/Edge Computing: brings cloud closer to user

Examples

- Applications: Dropbox, Google Mail, Office 365
- Infrastructure: Amazon, Google, Microsoft, Oracle

Some Facts: Cloud Computing and Data Centers

- Server workload (VMs or hardware): 350 Million, about 10 instances per server
- Data Center storage capacity: 1,750 Exabyte (10¹⁸), 720 Exabyte actually stored
 - 180 Exabyte from Big Data
- Global data center IP traffic: 14 Zettabyte (10²¹), 440 Terabyte/s
 - 15% volume communicated to the user: 20 KB/s per human
- Power consumption: US data centers alone 40% UK or 3% of global energy³
 - 416 Terawatt = energy bill: 50 Billion £ (12 cents/kWh)
 - Estimate for 2025: 20% worldwide for all DCs?

HPDA

Challenges using Distributed Systems

- Programming: concurrency introduces new types of programming mistakes
 - It is difficult to think about all cases of concurrency
 - Must coordinate between programs
 - No global view and debugging
 - Resource sharing: system shares resources between all users
- Scalability: system must be able to grow with the requirements
 - numbers of users/data volume/compute demand
 - retain performance level (response time)
 - requires to add hardware, though
- Fault handling: detect, mask, and recover from failures
 - Failures are innevitable and the normal mode of operation
- Heterogenity: system consists of different hardware/software
- Transparency: Users do not care about how/where code/data is
 - Security: Availability of services, confidentiality of data

HPDA

Outline

2 Distributed Computing

3 Parallel Computing and HPC

- Overview
- Architectures
- High-Performance Computing
- Challenges
- 4 Computational Science

5 BigData Challenges

HPDA

Definition: Parallel Computing

Many calculations \boldsymbol{or} the execution of processes are carried out simultaneously 4

Characteristics

- Goal is to improve performance for an application
 - Either allowing to solve problems within a deadline or increased accuracy
- Application/System must coordinate the otherwise independent parallel processing
 - There are various programming models for parallel applications
 - Different architectures to speed up computation: **may use** distributed systems

Levels of parallelism (from hardware perspective)

- Bit-level: process multiple bits concurrently (e.g., in an ALU)
- Instruction-level: process multiple instructions concurrently on a CPU
- Data: run the same computation on **different data**
- Task: run **different** computations concurrently

Parallel Architectures

In practice, systems are a mix of two paradigms:

Shared memory

- Processors can access a joint memory
 - Enables communication/coordination
- Cannot be scaled up to any size
- Very expensive to build one big system

Distributed memory systems (again!)

Parallel Programs

A parallel program runs on parallel hardware

In the strict sense: A parallel application coordinates concurrent processing

Schema of a multicore processor

Processor provides all levels of parallelism

- Multiple ALU/other units
- Pipelining of processing stages
- SIMD: Single Instruction Multiple Data
 - Same operation on multiple data
 - Instruction set: SSE, AVX
- Multiple cores
 - ► Each with own instruction pointer

High-Performance Computing

Definitions

- HPC: Field providing massive compute resources for a computational task
 - Task needs too much memory or time for a normal computer
 - \Rightarrow Enabler of complex challenging simulations, e.g., weather, astronomy
- Supercomputer: aggregates power of many compute devices
 - Nowadays: 100-1,000s of servers that are clustered together
- Example: Summit (Oak Ridge National Laboratories)
 - Compute: 4,608 nodes; 2.4 Million cores
 - Peak 200 Petaflop/s (10¹⁵)
 - 2x IBM POWER9 22C 3.07GHz; 6x NVIDIA Volta V100 GPU
 - 10 Petabyte memory (DRAM + HBM + GPU)
 - Network: 100G Infiniband; 12.5 GB/s per node; 115 TB/s bisection bandwidth
 - Storage: 32 PB capacity; 1 TB/s throughput

The Top500 is a list of the most performant supercomputers

Computational Science

BigData Challenges

Use Cases

Organization of the Lecture

Supercomputers & Data Centers

Credits: STFC

JASMIN Cluster at RAL / STFC Used for data analysis of the Centre for Environmental Data Analysis (CEDA)

Summarv

HPC in Göttingen

GWDG: unversity data center and providing innovative technology solutions

- HPC sytems for local scientists, German wide and for DLR
- Integrates research for HPC systems and services

Challenges

Programming: imports errors from distributed computed

- Low-level APIs and code-optimization to achieve performance
- Performance-optimized code is difficult to maintain
- Expensive and challenging to debug 1'000 concurrently running processes
- Utilizing all compute resources efficiently (load balancing)
- Grand challenges are difficult to test, as nobody knows the true answer
- Scalability: stricter than distributed systems
 - Strong-scaling: same problem, more parallelism shall improve performance
 - Weak-scaling: data scales with processors, retain time-to-solution
- Environment: bleeding edge and varying hardware/software systems
 - Obscure special-purpose hardware (FPGA/ASIC Application-Specific Integrated Circuit)
 - Limited knowledge to administrate, use, and to compare performance

Outline

- 2 Distributed Computing
- 3 Parallel Computing and HPC
- 4 Computational Science
 - Overview
 - Scientific Method
 - Example Predictive Models
 - Relevance

5 BigData Challenges

Computational Science

Definitions

- Multidiciplinary field using advanced computing capabilities to understand and solve complex problems
 - > Typically using mathematical models and computer simulation
 - Problems are motivated by industrial or societal challenges
- May utilize single computer, distributed systems, or supercomputers

Examples utilizing distributed computing

- Finding the higgs boson (CERN)
- Bioinformatics applications, e.g., gene sequencing

Examples utilizing high-performance computing

- Computing the weather forecast for tomorrow / next week
- Simulating a tokamak fusion reactor

21/56

 HPDA
 Distributed Computing
 Parallel Computing and HPC
 Computational Science
 BigData Challenges
 Use Cases
 Organization of the Lecture

 0
 000000
 00000000
 000000000
 000000000
 000000000
 000000000

Pillars of the Scientific Method

Summarv

HPDA

Summarv

Relation of the Scientific Method to D/P/S Computing

Simulation models real systems to gain new insight

- Instrument to make observations, e.g., high-resolution and fast timescale
- Typically used to validate/refine theories, identify new phenomen
- Classical computational science: hard facts (based on models)
- The frontier of science needs massive computing resources on supercomputers
- Data-intensive sciences like climate imposes challenges to data handling, too

Big Data Analytics extracts insight from data

- Provides a data pool to identify/mine new insight and to validate theories
- In business often approximate insight is enough (a small advantage)
- Distributed and parallel systems are needed to manage and analyze the data
- Gained knowledge is often made available as part of the cloud (for money)...

Big Data Analytics

Definition

- Extracting insight from data to support decisions
 - Vast amounts of data are available
 - Many different/heterogene data sources that can be correlated
 - Raw data is of low value (fine grained)

Analytics

- Analyzing data \Rightarrow Insight == value
 - For academia: knowledge
 - For industry: business advantage and money
- Levels of insight primary abstraction levels of analytics
 - > Exploration: study data and identify properties of (subsets) of data
 - ▶ Induction/Inference: infer properties of the full population
- Big data tools allow to construct a theory/model and validate it with data
 - Statistics and machine learning provide algorithms and models
 - Visual methods support data exploration and analysis

Group Work

- What question(s) you'd like to solve using the scientific method?
- Define the question, hypotheses, how could this be tested? What data is needed?
- Time: 5 min
- Organization: breakout groups please use your mic or chat

Example Predictive Models

Similarity is a (very) simplistic model and predictor for the world

- Humans use this approach in their cognitive process
- Uses the advantage of BigData

Weather prediction

- You may develop and rely on complex models of physics
- Or use a simple model for a particular day; e.g., expect it to be similar to the weather of the typical day over the last X years
 - Used by humans: rule of thumb for farmers

Preferences of Humans

- Identify a set of people which liked items you like
 - Predict you like also the items those people like but haven't rated

Relevance of Big Data and Parallel Computing

Big Data Analytics is emerging, relevance increases compared to supercomputing
 Nowadays all processors provide parallelism, thus, experts are needed

Figure: Google Search Trends, relative searches

Outline

- 2 Distributed Computing
- 3 Parallel Computing and HPC
- 4 Computational Science
- 5 BigData Challenges
 - Overview
 - Volume
 - Velocity
 - Variety
 - Veracity
 - Value

HPDA Distributed Computing

Computational Science

BigData Challenges

Use Cases

Organization of the Lecture

Summary

BigData Challenges & Characteristics

Dealing with large data is challenging in Big Data Analytics but also in Computational Science

Figure: Source: MarianVesper (Forrester Big Data Webinar. Holger Kisker, Martha Bennet. Big Data: Gold Rush Or Illusion?)

Use Cases

Organization of the Lecture

Summarv

Volume: The size of the Data

What is Big Data Terrabytes to 10s of petabytes

What is not Big Data

A few gigabytes

Examples

- Wikipedia corpus with history ca. 10 TByte
- Wikimedia commons ca. 23 TByte
- Google search index ca. 46 Gigawebpages⁵
- YouTube per year 76 PByte (2012⁶)

Use Cases

Organization of the Lecture

Summary

Velocity: Data Volume per Time

What is Big Data

30 KiB to 30 GiB per second (902 GiB/year to 902 PiB/year)

What is not Big Data

A never changing data set

Examples

- LHC (Cern) with all experiments about 25 GB/s ⁷
- Square Kilometre Array 700 TB/s (in 2018) ⁸
- 50k Google searches per s ⁹
- Facebook 30 Billion content pieces shared per month ¹⁰

Data Sources

Enterprise data

- Serves business objectives, well defined
- Customer information
- Transactions, e.g., purchases

Experimental/Observational data (EOD)

- Created by machines from sensors/devices
- Trading systems, satellites
 - Microscopes, video streams, smart meters

Social media

- Created by humans
- Messages, posts, blogs, Wikis

Use Cases

Organization of the Lecture

Summary

Variety: Types of Data

Structured data

- Like tables with fixed attributes
- Traditionally handled by relational databases
- Unstructured data
 - Usually generated by humans
 - Examples: natural language, voice, Wikipedia, Twitter posts
 - Must be processed into (semi-structured) data to gain value
- Semi-structured data
 - Has some structure in tags but it changes with documents
 - Examples: HTML, XML, JSON files, server logs

What is Big Data

- Use data from multiple sources and in multiple forms
- Involve unstructured and semi-structured data

Use Cases

Organization of the Lecture

Summarv

Veracity: Trustworthiness of Data

What is Big Data

- Data involves some uncertainty and ambiguities
- Mistakes can be introduced by humans and machines
- Examples
 - People sharing accounts
 - Like sth. today, dislike it tomorrorw
 - Wrong system timestamps

Data Quality is vital!

Analytics and conclusions rely on good data quality

- Garbage data + perfect model => garbage results
- Perfect data + garbage model => garbage results

GIGO paradigm: Garbage In – Garbage Out

Value of Data

What is Big Data

- Raw data of Big Data is of low value
 - ▶ For example, single observations of the weather, a bill
- The output of a large scale climate simulation that cost 10k to run
 - It still needs to be analyzed to come to conclusions!

Analytics and theory about the data increases the value

Analytics transform big data into smart (valuable) data!

Use Cases

Organization of the Lecture

Summarv

Abstraction Levels of Analytics and the Value of Data

- 5. Prescriptive analytics
 - "What should we do and why?"
- 4. Predictive analytics
 - "What will happen?"
- 3. Diagnostic analytics
 - "What went wrong?"
 - "Why did this happen"
- 2. Descriptive analytics^a
 - "What happened?"
- 1. Raw (observed) data

^aDecriptive and diagnostic analysis are like forensics

Relation to Computational Science

These analysis steps are still done just by running computational experiments

HPDA Distributed Computing

Computational Science

BigData Challenges

Use Cases

Organization of the Lecture

Summary

Analytics Abstraction Level

Figure: Source: Forrester report. Understanding The Business Intelligence Growth Opportunity. 20-08-2011

Outline

- 2 Distributed Computing
- 3 Parallel Computing and HPC
- 4 Computational Science
- 5 BigData Challenges

6 Use Cases ■ Overview

Julian Kunkel

Summarv

Use Cases for BigData Analytics

Increase efficiency of processes and systems

- Advertisement: Optimize for target audience
- Product: Acceptance (like/dislike) of buyer, dynamic pricing
- Decrease financial risks: fraud detection, account takeover
- Insurance policies: Modeling of catastrophes
- Recommendation engine: Stimulate purchase/consume
- Systems: Fault prediction and anomaly detection
- Monetization: Extract money from gamers [27]

Science

- Epidemiology research: Google searches indicate Flu spread
- Personalized Healthcare: Recommend good treatment
- Physics: Finding the Higgs-Boson, analyze telescope data

Use Cases

Organization of the Lecture

Summary

Example Use Case: Deutschland Card [2]

Goals

- Customer bonus card which tracks purchases
- Increase scalability and flexibility
 - Previous solution based on OLAP

Big Data Characteristics

- Volume: O(10) TB
- Variety: mostly structured data, schemes are extended steadily
- Velocity: data growth rate O(100) GB / month

- Much better scalability of the solution
- From dashboards to ad-hoc analysis within minutes

Use Cases

Organization of the Lecture

Summarv

Example Use Case: DM [2]

Goals

- Predict required number of employees per day and store
- Prevent staff changes on short-notice

Big Data Characteristics

- Input data: Opening hours, incoming goods, empl. preferences, holidays, weather
- Model: NeuroBayes (Bayes + neuronal networks)
- Predictions: Sales, employee planning
- 450.000 predictions per week

- Daily updated sales per store
- Reliable predictions for staff planning
- Customer and employee satisfaction

Use Cases

Organization of the Lecture

Summary

Example Use Case: OTTO [2]

Goals

Optimize inventory and prevent out-of-stock situations

Big Data Characteristics

- Input data: product characteristics, advertisement
- Volume/Velocity: 135 GB/week, 300 million records
- Model: NeuroBayes (Bayes + neuronal networks)
- 1 billion predictions per year

- Better prognostics of product sales (up to 40%)
- Real time data analytics

Computational Science

BigData Challenges

Use Cases ○○○○○○●○○○○ Organization of the Lecture

Summary

Example Use Case: Smarter Cities (by KTH) [2]

Goals

- Improve traffic management in Stockholm
 - Prediction of alternative routes

Big Data Characteristics

- Input data: Traffic videos/sensors, weather, GPS
- Volume/Velocity: 250k GPS-data/s + other data sources

- 20% less traffic
- 50% reduction in travel time
- 20% less emissions

Computational Science

BigData Challenges

Use Cases

Organization of the Lecture

Summary

Example Facebook Studies

"Insight" from [11] by exploring posts

- Young narcissists tweet more likely.
 Middle-aged narcissists update their status
- US students post more problematic information than German students
- US Government checks tweets/facebook messages for several reasons
- Human communication graph has an average diameter of 4.74

Manipulation of news feeds [13]

- News feeds have been changed to analysis people's behavior in subsequent posts
- Paper: "Experimental evidence of massive-scale emotional contagion through social networks"

Learning Behavior

Games

- DeepMind playing atari games [29]
- AlphaGo wins vs. humans in playing Go [26]
- AI beating world's best gamer in Dota 2 [28]

Motion

- Learning hand motion by human training [30]
- Robots learning to pick up items [31]

Systems: Fault Prediction and Anomaly Detection

Smart buildings [24]

- Predicting faults of heating and ventilation of an hospital
- Predicted 76 of 124 real faults and 41 of 44 exceptional temperatures
- May consider weather to control systems automatically

Google DeepMind AI [25]

- Controlling 120 variables in the data center (fans, ...)
- Saves 15% energy of the overall bill

Computational Science

BigData Challenges Use Cases

Use Cases Organization of the Lecture

Summary

Automatize Classification

Analysis of multimedia

- Voice, face, biometric recognition
- Speech recognition
- Counting (animal) species on pictures / videos
- Finding patterns on satellite images (e.g., damn, thunderstorms)
- Anomalies in behavior (depressed people)
- Anomalies in structures (operational condition)

Outline

- 2 Distributed Computing
- 3 Parallel Computing and HPC
- 4 Computational Science
- 5 BigData Challenges
- 6 Use Cases

7 Organization of the Lecture

Learning Objectives of the Lecture

- Assign big data challenges to a given use-case
- Outline use-case examples for high-performance data analytics
- Estimate performance and runtime for a given workload and system
- Create a suitable hardware configuration to execute a given workload within a deadline
- Construct suitable data models for a given use-case and discuss their pro/cons
- Discuss the rationales behind the design decisions for the tools
- Describe the concept of visual analytics and its potential in scientific workflows
- Compare the features and architectures of NoSQL solutions to the abstract concept of a parallel file system
- Appraise the requirements for designing system architectures for systems storing and processing data
- Apply distributed algorithms and data structures to a given problem instance and illustrate their processing steps in pseudocode
- Explain the importance of hardware characteristics when executing a given workload

Use Cases

Organization of the Lecture Summary

Organization of the Module: Components

Lecture (2h / week)

- Delivers concepts and gives an overview
- 1 invited talk (and this overview presentation)
- Practical for discussion of the exercise (2h / week)
 - Follows the schedule of the lecture, optional
 - Part 1: Students present their solution/questions to exercise tasks
 - > Part 2: We discuss the new excercise such that everyone understands the questions

Exercise (prescribed 4h / week)

- Self-study to practice lecture content (feel free to team up!)
- Each task comes with an estimated time for you to spend on it
- Contains introductory and harder tasks
- Recommend to store your work in a Git Repository a portfolio of the course

Group work: Some time of practical may be used for group work

BigData Challenges Use Cases

se Cases Org

Role of Exercises and Group Work

Assessment

- Module: Assessment is 100% exam, however,
- Exercises and group work is formative assessment that prepares for the exam
- Feedback of the lecturer during practicals for your exercises
- Some quizes are provided during lecture/exercises and for your self-study

Group work

- Discuss/Critice exercises of peers (groups of 2-4)
- Brainstorm/Design/Solve small tasks (groups of 2-4)
- The outcome should be stored in the Git portfolio

HPDA

BigData Challenges U

Use Cases C

Organization of the Lecture Summary

Proposed Learning Strategy/How to Achieve Good Marks

- Understand learning outcomes (provided in each slide deck)
- Participate in exercises
 - To understand the topic, types of questions, and how to solve issues
 - To get feedback from the lecturer (e.g., if you present) and from peers
- Schedule time for the exercises, best to team up in learning groups
 - Try to do the 3h/week!
 - Always do the easy tasks, if you are busy you may miss some harder tasks
 - Partial solutions are better than no attempt
- (Do further reading of topics you are interested in)
 - Team up again to prepare for the exam
- Ask questions to colleagues and to us
- We will support your learning journey but **YOU** are responsible for it

Communication

- I Webpage: https://hps.vi4io.org/teaching/autumn_term_2021/hpda
- Webpage provides
 - Slides for lectures/practical
 - Exercise sheets
 - Reading lists for topics
- StudIP for communication
 - ▶ We use it for announcements
 - Please use it for any purpose around the topic!
 - ▶ To solve exercises, to share an interesting link, to ask a question
 - To find peers to work with

HPDA	Distributed Computing	Parallel Computing and HPC	Computational Science	BigData Challenges	Use Cases	Organization of the Lecture	Summary
0	000000	0000000	000000000	0000000000	00000000000	000000	•0

Summary

- HPDA: process of quickly examing large data sets
- Simulation and Big data analytics is a pillar of science
 - Supports building of hypothesis and experimentation
- Challenges: 5 Vs Volume, velocity, variety, veracity, value

Characteristics and Differences of DC/PC

	Distibuted computing	Parallel computing		
Motivation	Decentrality/low costs	Performance/feasability		
Enables	business/cloud/big data analytics	interactivity/computational science		
Communication	message passing	may use shared resources		
Fault-tolerance	tolerate errors	needs reliable hardware		
Application	Weakly-coupled	Tightly-coupled		
	Multiple programs/vendors	Single application/vendor		

Bibliography

- 1 Book: Lillian Pierson, Data Science for Dummies, John Wiley & Sons
- 2 Report: Jürgen Urbanski et.al. Big Data im Praxiseinsatz - Szenarien, Beispiele, Effekte. BITKOM
- 3 http://winfwiki.wi-fom.de/
- Forrester Big Data Webinar, Holger Kisker, Martha Bennet, Big Data; Gold Rush Or Illusion? 4
- 5 http:
 - //blog.eoda.de/2013/10/10/veracity-sinnhaftigkeit-und-vertrauenswuerdigkeit-von-bigdata-als-kernherausforderung-im-informationszeitalter/
- 6 http://lehrerfortbildung-bw.de/kompetenzen/projektkompetenz/methoden/erkenntnis.htm
- Gilbert Miller, Peter Mork From Data to Decisions: A Value Chain for Big Data. http://www.fh-schmalkalden.de/Englmeier-p-790/_/ValueChainBigData.pdf 7
- 8 Andrew Stein. The Analytics Value Chain. http://steinvox.com/blog/big-data-and-analytics-the-analytics-value-chain/
- Dursun Delen, Haluk Demirkan, Decision Support Systems, Data, information and analytics as services. http://i.mp/11b19b9 9
- Wikipedia 10
- 11 Kashmir Hill, 46 Things We've Learned From Facebook Studies, Forbe, http://www.forbes.com/sites/kashmirhill/2013/06/21/46-things-weve-learned-from-facebook-studies/
- Hortonworks http://hortonworks.com/ 12
- http://www.huffingtonpost.com/2014/12/10/facebook-most-popular-paper_n_6302034.html 13
- http://hortonworks.com/blog/enterprise-hadoop-journey-data-lake/
- http://www.stacki.com/hadoop/?utm_campaign=Stacki+Hadoop+Infographic
- https://en.wikipedia.org/wiki/Scientific_method 22
- https://en.wikipedia.org/wiki/Exploratory_data_analysis
- https://www.newscientist.com/article/2118499-smart-buildings-predict-when-critical-systems-are-about-to-fail/ 24
- https://www.theverge.com/2016/7/21/12246258/google-deepmind-ai-data-center-cooling 25
- https://deepmind.com/research/alphago/ 26
- https://www.ibm.com/developerworks/library/ba-big-data-gaming/index.html
- http://monev.cnn.com/2017/08/12/technology/future/elon-musk-ai-dota-2/index.html 28
- 29 http://www.wired.co.uk/article/google-deepmind-atari
- 30 https://arxiv.org/abs/1603.06348
- 31 https://spectrum.jeee.org/automaton/robotics/artificial-intelligence/google-large-scale-robotic-grasping-project