

Department of Computer Science

Julian Kunkel

Summary for the Lecture High-Performance Data Analytics

Introduction	Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000	000000000000000000000000000000000000000	00000	00000	0000	0000	00000	0000

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

- 5 Big Data SQL using Hive
- 6 Dataflow Computation

7 Columnar Access

8 Document Storage

Julian M. Kunkel

Examination Preparation

Importance of Learning Objectives

- The exam will assess the learning objectives
- Study the learning objectives of each slide deck
- Study the learning objectives of the overall lecture

Importance of Exercises

- Exercises are often a good hint regarding the examination
- Won't ask too specific implementation questions
- But may ask something like "sketch a pig program that does X"...

This Lecture

- Aims to summarize some important points
 - Still: need to check all slide decks

Introduction	Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
000000	000000000000000000000000000000000000000	00000	00000	0000	0000	00000	0000

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

- 5 Big Data SQL using Hive
- 6 Dataflow Computation

7 Columnar Access

8 Document Storage

Julian M. Kunkel

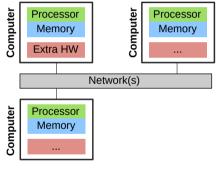
Parallel Architectures

In practice, systems are a mix of two paradigms:

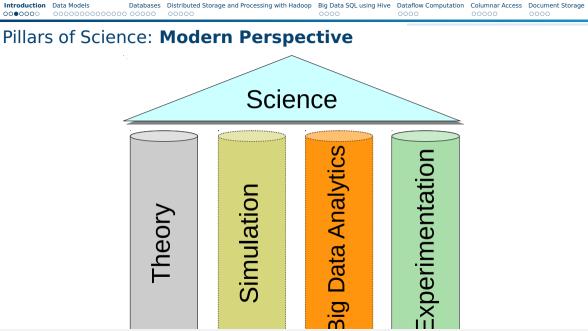
Shared memory Processor Processor Processor Network Memory

- Processors can access a joint memory
 - Enables communication/coordination
- Cannot be scaled up to any size
- Very expensive to build one big system

Distributed memory systems (again!)



- Processor can only see own memory
- Performance of the network is key



Relation of the Scientific Method to D/P/S Computing

Simulation models real systems to gain new insight

- Instrument to make observations, e.g., high-resolution and fast timescale
- Typically used to validate/refine theories, identify new phenomen
- Classical computational science: hard facts (based on models)
- The frontier of science needs massive computing resources on supercomputers
- Data-intensive sciences like climate imposes challenges to data handling, too

Big Data Analytics extracts insight from data

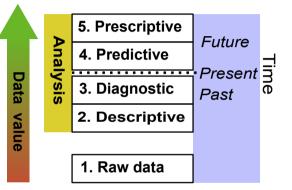
- Provides a data pool to identify/mine new insight and to validate theories
- In business often approximate insight is enough (a small advantage)
- Distributed and parallel systems are needed to manage and analyze the data
- Gained knowledge is often made available as part of the cloud (for money)...

Abstraction Levels of Analytics and the Value of Data

- 5. Prescriptive analytics
 - "What should we do and why?"
- 4. Predictive analytics
 - "What will happen?"
- 3. Diagnostic analytics
 - "What went wrong?"
 - "Why did this happen"
- 2. Descriptive analytics¹
 - "What happened?"
- 1. Raw (observed) data

Relation to Computational Science

- These analysis steps are still done just by running computational experiments
- Also the output of the simulation must be analyzed
- Decriptive and diagnostic analysis are like forensics



BigData Challenges & Characteristics

Dealing with large data is challenging in Big Data Analytics but also in Computational Science

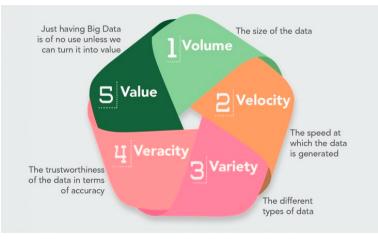


Figure: Source: MarianVesper (Forrester Big Data Webinar. Holger Kisker, Martha Bennet. Big Data: Gold Rush Or Illusion?)

Volume: The size of the Data

What is Big Data Terrabytes to 10s of petabytes

What is not Big Data

A few gigabytes

Examples

Wikipedia corpus with history ca. 10 TByte

Wikimedia commons ca. 23 TByte

Google search index ca. 46 Gigawebpages²

YouTube per year 76 PByte (2012³)

³ https://sumanrs.wordpress.com/2012/04/14/youtube-yearly-costs-for-storagenetworking-estimate/

² http://www.worldwidewebsize.com/

Introduction	Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000	•00000000000000000000000000000000000000	00000	00000	0000	0000	00000	0000

Outline

3 Databases

4 Distributed Storage and Processing with Hadoop

- 5 Big Data SQL using Hive
- 6 Dataflow Computation

7 Columnar Access

8 Document Storage

Julian M. Kunkel

Terminology for Managing Data [1, 10]

- **Data governance**: "control that ensures that the data entry ... meets precise standards such as business rule, a data definition and data integrity constraints in the data model" [10]
 - > Think about reasons that invalidate data that lead to catastrophic results...
 - Example: missinterpretation of data value "NaN" as "0" in a survey
- **Data provenance**: the documentation of input, transformations of data and involved systems to support analysis, tracing and reproducibility
 - ▶ e.g., Input (file.csv) ⇒Calculate means via x.py (result: means.csv) ⇒Create diagrams via d.py (result fig1.pdf)
- **Data-lineage** (Datenherkunft): forensics; allows to identify the source data used to generate data products (part of data provenance)
 - e.g., fig1.pdf has been produced from ... using Z...
 - I'm able to reproduce results and track errors from the product
- Service level agreements (SLAs): contract defining quality, e.g., performance/reliability & responsibilities between service user/provider

Data Analysis Workflow

The traditional approach proceeds in phases:

	Data discovery				Data exploitation	
Collect and annotate	Prepare	Organize	Integrate	Analyze	Visualize	Make decisions
Create an inventory of data sources and the metadata that describe them.	Enable access to sources and set up access-control rules.	ldentify syntax, structure, and sem- antics for each data source.	Establish a common data representation of the data. Main- tain data provenance.	Analyze integrated data.	Present analytic results to a decision maker as an inter- active application that supports exploration and refinement.	Determine what actions (if any) to take on the basis of the interpreted results.

Figure: Source: Gilbert Miller, Peter Mork From Data to Decisions: A Value Chain for Big Data. Analysis tools: machine learning, statistics, interactive visualization

- Limitation: Interactivity by browsing through prepared results
- Indirect feedback between visualization and analysis

Alternative Processing Technology

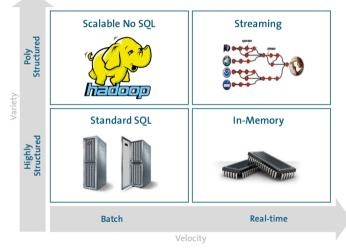
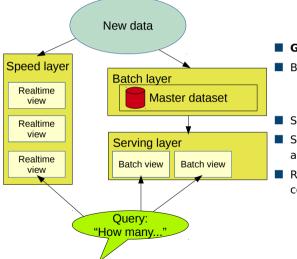


Figure: Source: Forrester Webinar. Big Data: Gold Rush Or Illusion? [4]

HPDA21

The Lambda Architecture [11]



- **Goal**: Interactive Processing
 - Batch layer pre-processes data
 - Master dataset is immutable/never changed
 - Operations are periodically performed
- Serving layer offers performance optimized views
 - Speed layer serves deltas of batch and recent activities, may approximate results
 - Robust: Errors/inaccuracies of realtime views are corrected in batch view

Data Models⁴ and their Instances [12]

- A data model describes how information is organized in a system
 - It is a tool to specify, access and process information
 - A model provide operations for accessing and manipulating data that follow certain semantics
 - Typical information is some kind of entity (virtual object) (e.g., car)
- Logical model: abstraction expressing objects and operations
- Physical model: maps logical structures onto hardware resources (e.g., files, bytes)
 - DM theory: Formal methods for describing data models with tool support

Applying theory creates a data model instance for a specific application

¹: The term is often used ambivalently for a data (meta) model concept/theory or an instance

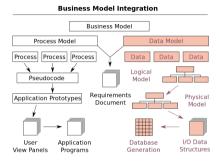


Figure: Source: [12]

Introduction	Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000	000000000000000000000000000000000000000	00000	00000	0000	0000	00000	0000

Operations

Operations define how you can interact with the data

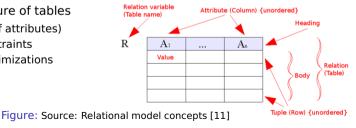
- Minimal: Need to somehow store and retrieve data
- Users may want to search for data, update existing data
- May want to offload some operations to the server side: active storage
 - Reduce data, e.g., compute mean/sum
 - Conditional updates

Typical Operations

- POSIX: create, open, write (anywhere), read (anywhere)
 - Does not distinguis between write and update
- CRUD: Create, Read, Update, Delete
- Amazon S3: Put (Overwrite), Get (Partially), Delete

Relational Model [10]

- Database model based on first-order predicate logic
 - Theoretic foundations: relational algebra and relational calculus
- Data is represented as tuples
 - In its original style, it does not support collections
- Relation/Table: groups tuples with similar semantics
 - Table consists of rows and named columns (attributes)
 - No (identical) duplicate of a row allowed
- Schema: specify structure of tables
 - Datatypes (domain of attributes)
 - Consistency via constraints
 - Organization and optimizations



Columnar Model

- Data is stored in rows and columns (similar to tables)
- A column is a tuple (name, value and timestamp)
- Each row can contain different columns
 - Columns can store complex objects, e.g., collections
- Wide columnar model: very sparse table of 100k+ columns
- Example technology: HBase, Cassandra, Accumulo

Row/Column:	student name	matrikel	lectures	lecture name
1	"Max Mustermann"	4711	[3]	-
2	"Nina Musterfrau"	4712	[3,4]	-
3	-	-	-	"Big Data Analytics"
4	-	-	-	"Hochleistungsrechnen"

Table: Example columnar model for the students, each value has its own timestamp (not shown). Note that lectures and students should be modeled with two tables

Key-Value Store

- Data is stored as value and addressed by a key
- The value can be complex objects, e.g., JSON or collections
- Keys can be forged to simplify lookup (evtl. tables with names)
- Example technology: CouchDB, BerkeleyDB, Memcached, BigTable

Key	Value
stud/4711	<name>Max Mustermann</name> <attended><id>1</id></attended>
stud/4712	<name>Nina Musterfrau</name> <attended><id>1</id><id>2</id></attended>
lec/1	<name>Big Data Analytics</name>
lec/2	<name>Hochleistungsrechnen</name>

Table: Example key-value model for the students with embedded XML

Document Model

- Collection of documents
- Documents contain semi-structured data (JSON, XML)
- Addressing to lookup documents are implementation specific
 - e.g., bucket/document key, (sub) collections, hierarchical namespace
- References between documents are possible
- Example technology: MongoDB, Couchbase, DocumentDB

```
1 <students>
2 <students>matrikel>4711</matrikel>
3 <lecturesAttended><id>1</id>
4 </student>
5 <student><name>Nna Musterfrau</name><matrikel>4712</matrikel>
6 <lecturesAttended><id>1</id>
5 <student>
6 <lecturesAttended><id>1</id>
6 </student>
7 </student>
8 </student>
9 </student>
9
```

Table: Example XML document storing students. Using a bucket/key namespace, the document could be addressed with key: "uni/stud" in the bucket "app1"

Introduction Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000 0000000000000000000000000000000	> 00000	00000	0000	0000	00000	0000

Graph

- Entities are stored as nodes and relations as edges in the graph
- Properties/Attributes provide additional information as key/value
- Example technology: Neo4J, InfiniteGraph

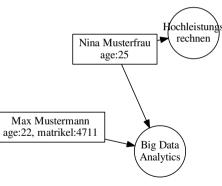


Figure: Graph representing the students (attributes are not shown)

Fact-Based Model [11]⁶

- Store raw data as timestamped atomic facts aka log files of change/current status
- Never delete true facts: Immutable data
- Make individual facts unique to prevent duplicates

Example: social web page

- Record all changes to user profiles as facts
- Benefits
 - Allows reconstruction of the profile state at any time
 - Can be queried at any time⁵

Example: purchases

Record each item purchase as facts together with location, time, ...

⁵ If the profile is changed recently, the query may return an old state.

⁶ Note that the definitions in the data warehousing (OLAP) and big data [11] domains are slightly different

From Big Data to the Data Lake

- With cheap storage costs, people promote the concept of the data lake
- Combines data from many sources (data silos) and of any type and model
- Allows for conducting future analysis and not miss any opportunity

Attributes of the data lake

- Collect everything: all time all data: raw sources and processed data
 - Decide during analysis which data is important, e.g., no "schema" until read
- Dive in anywhere: enable users across multiple business units to
 - Refine, explore and enrich data on their terms
- Flexible access: shared infrastructure supports various patterns
 - Batch, interactive, online, search

http://hortonworks.com/blog/enterprise-hadoop-journey-data-lake/

Introduction	Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000	000000000000000000000000000000000000000	00000	00000	0000	0000	00000	0000

Outline

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

- 5 Big Data SQL using Hive
- 6 Dataflow Computation

7 Columnar Access

8 Document Storage

Julian M. Kunkel

Entity Relationship Diagrams

- Illustrate the relational model and partly the database schema
- Elements: Entity, relation, attribute
 - Additional information about them, e.g., cardinality, data types

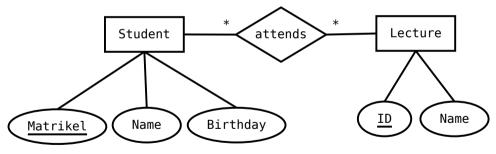


Figure: A student/lecture example in modified Chen notation * is the cardinality and means any number is fine

Queries [20]

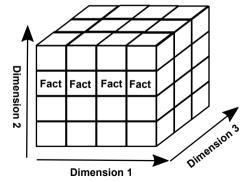
- A query retrieves/computes a (sub)table from tables
 - It does not change/mutate any content of existing tables
- Statement: SELECT < *column*1 >, < *column*2 >, ...
- Subqueries: nesting of queries is possible to create temporary tables

Supported clauses

- FROM: specify the table(s) to retrieve data
- WHERE: filter rows returned
- GROUP BY: group rows together that match conditions
- HAVING: filters grouped rows
- ORDER BY: sort the rows

The OLAP Cube: Typical Operations [27]

- Slice: Fix one value to reduce the dimension by one
- Dice: Pick specific values of multiple dimensions
- Roll-up: Summarize data along a dimension
 - Formulas can be applied, e.g., profit = income expense
- Pivot: Rotate the cube to see the faces



Star Schema Example Model



Introduction	Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000	000000000000000000000000000000000000000	00000	•0000	0000	0000	00000	0000

Outline

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

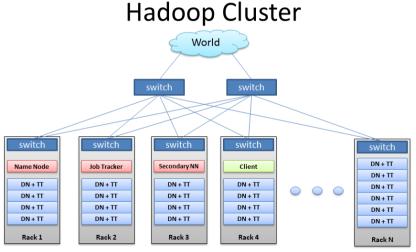
- 5 Big Data SQL using Hive
- 6 Dataflow Computation

7 Columnar Access

8 Document Storage

Julian M. Kunkel

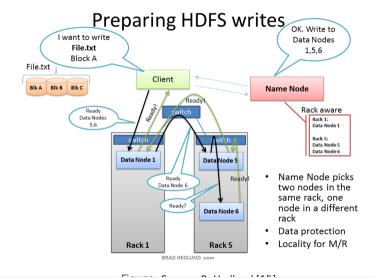
System-Level Perspective of Hadoop Clusters



BRAD HEDLUND .com

.

The HDFS Write Path



HPDA21

Map Reduce Execution Paradigm

Idea: Appy a processing pipeline consisting of map and reduce operations

- 1. Map: filter and convert input records (pos, data) to tuples (key, value)
- 2. Reduce: receives all tuples with the same key (key, list<value>)
- Hadoop takes care of reading input, distributing (key,value) to reduce
- Types for key, value & format, records depend on the configuration

Example: WordCount [10]: Count word frequency in large texts

```
1 map(key, text): # input: key=position, text=line

2 for each word in text:

3 Emit(word,1) # outputs: key/value

4 

5 reduce(key, list of values): # input: key == word, our mapper output

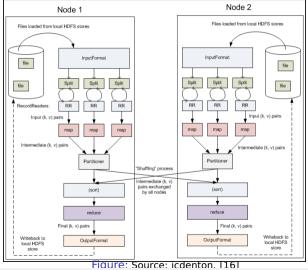
6 count = 0

7 for each v in values:

8 count += v

9 Emit(key, count) # it is possible to emit multiple (key, value) pairs here
```

Execution of MapReduce – the Big Picture



Julian M. Kunkel

HPDA21

Introduction	Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000	0000000000000000000	00000	00000	●000	0000	00000	0000

Outline

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

5 Big Data SQL using Hive

6 Dataflow Computation

7 Columnar Access

8 Document Storage

Julian M. Kunkel

Data Model [22]

Data types

- Primitive types (int, float, strings, dates, boolean)
- Bags (arrays), dictionaries
- Derived data types (structs) can be defined by users

Data organization

- Table: Like in relational databases with a schema
 - ▶ The Hive data definition language (DDL) manages tables
 - Data is stored in files on HDFS
- Partitions: table key determining the mapping to directories
 - Reduces the amount of data to be accessed in filters
 - Example key: /ds=<date> for table T
 - Predicate T.ds='2017-09-01' searches for files in /ds=2017-09-01/ directory
- Buckets/Clusters: Data of partitions are mapped into files
 - Hash value of a column determines partition

Hive Architecture and Query Execution in Hadoop

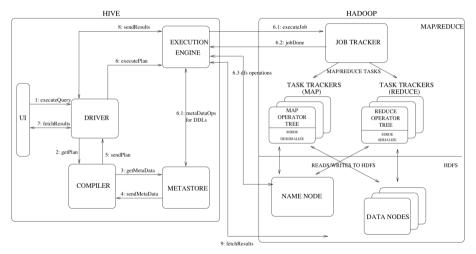
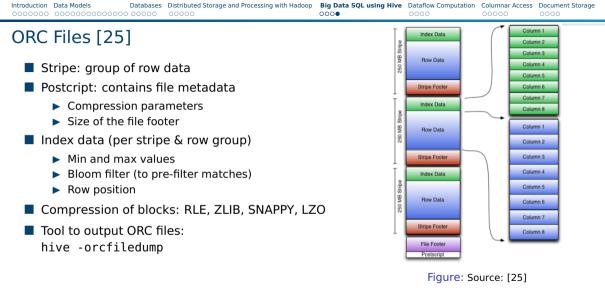


Figure: Architecture. Source: Design – Apache Hive [22]



Iulian M. Kunkel

Introduction	Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000	000000000000000000000000000000000000000	00000	00000	0000	0 000	00000	0000

Outline

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

- 5 Big Data SQL using Hive
- 6 Dataflow Computation

7 Columnar Access

8 Document Storage

General Data Model for Dataflow Languages

Data

- **Tuple** $t = (x_1, ..., x_n)$ where x_i may be of a given type
- Input/Output = list of tuples (like a table)

Typical Operators for Data-Flow Processing

- Operations process individual tuples
 - Map/Foreach: process or transform data of individual tuples or group
 - transform a tuple: student.Map((matrikel, name) \Rightarrow (matrikel + 4, name))
 - count members for each group: groupedStudents.Map((year) \Rightarrow count())
 - Filter tuples by comparing a key to a value
- Operations that require the complete input data
 - Group tuples by a key
 - Sort data according to a key
 - Join multiple relations together
 - Split tuples of a relation into multiple relations (based on a condition)

Pipe Diagrams⁷

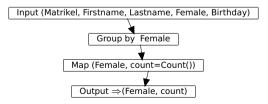
Goal: Visualize the processing pipeline of data-flows with a schema

Optional: Add examples to illustrate processing

Elements and diagram concepts

- Box: Operation
 - e.g., functions, filter, grouping, aggregating, mapping
 - Indicate also changes in schema

Arrows show processing order (DAG), joins have two inputs



⁷ We will use a variant from [11]

Execution of Pig Queries on MapReduce and TEZ

f = LOAD 'foo' AS (x, y, z); g1 = GROUP fBY y; g2 = GROUP fBY z; j = JOIN g1 BY group, g2 BY group:

Pig : Split & Group-by

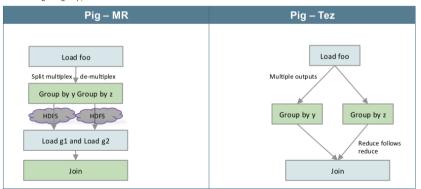


Figure: Source: H. Shah [20]

Introduction	Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000	000000000000000000000000000000000000000	00000	00000	0000	0000	00000	0000

Outline

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

- 5 Big Data SQL using Hive
- 6 Dataflow Computation

7 Columnar Access

8 Document Storage

Julian M. Kunkel

Zookeeper Overview [39, 40]

- Centralized service for coordination providing
 - Configuration information (e.g., service discovery)
 - Distributed synchronization (e.g., locking)
 - Group management (e.g., nodes belonging to a service)
- Simple: Uses a hierarchical namespace for coordination
- Strictly ordered access semantics
- Distributed and reliable using replication
- Scalable: A client can connect to any server

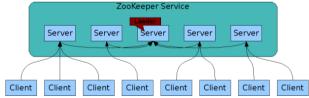


Figure: Source: ZooKeeper Service [40]

Main Operations of HBase

Data access

- **get**: return attributes for a row
- put: add row or update columns
- **increment**: increment values of multiple columns
- scan: iterate over multiple rows (potentially filtering)
- delete: remove a row, column or family
 - Data is only marked for deletion, finally removed during compaction

Schema operations

- create: create a table, specify the column families (flexible columns!)
- **alter**: change table properties
- describe: retrieve table/column family properties
- list: list tables

create_namespace: create a namespace

Distribution of Data [30]

- HBase uses HDFS as backend to store data
 - Utilize replication and place servers close to data
- Server (RegionServer) manage key ranges on a per table bases
 - Buffer I/O to multiple files on HDFS
 - Performs computation (and data filtering)
- Regions: base element for availability and distribution of tables
 - One store object per ColumnFamily
 - One Memstore for each store to write data to files
 - Multiple StoreFiles (HFile format) for each store (each sorted)
- Catalog Table *HBase:meta*, special non splittable table
 - Contains a list of all regions , < regionstartkey >, < regionid >

Table splitting

- Upon initialization of a table only one region is created
- Auto-Splitting: Based on a policy, a region is split into two
 - Typical policy: split when the region is sufficiently large
 - Benefit: increases parallelism, automatic scale-out

Sharding of a Table into Regions

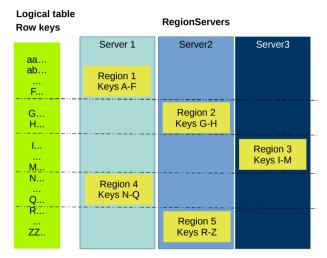


Figure: Distribution of keys to servers, values are stored with the row

Introduction	Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000	000000000000000000000000000000000000000	00000	00000	0000	0000	00000	0000

Outline

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

- 5 Big Data SQL using Hive
- 6 Dataflow Computation

7 Columnar Access

8 Document Storage

Julian M. Kunkel

MongoDB [11]

- Open-source document database
- High-performant and horizontally scalable for clusters
- Interfaces: Interactive mongo shell, REST, C, Python, ...
 - Connector for Hadoop for reading/writing to MongoDB

Data Model

- Database: As usual, defines permissions
- Document: BSON object (binary JSON) Consisting of subdocuments
 - Primary key: _id field (manually set or automatically filled)

```
1 "_id" : ObjectId("43459bc2341bc14b1b41b124"),
2 "students" : [ # subdocument
3 { "name" : "Julian", "id" : 4711, "birth" : ISODate("2000-10-01")},
4 { "name" : "Hans", "id" : 4712, "birth", ... } ]
```

Collection: Like a table of documents

- Addressing: Collection name, document _id field (choose appropriately)
- Documents can have individual schemas
- Support for indexes on fields (and compound fields)

Document references via object ids

Partitioning of Data (One Collection) [14]

Shard key: Immutable field(s) in every collection document

- Either by hashing of fields or by distributing ranges
- Performance relevant: Select an appropriate shard key
- Chunk: A contiguous range of shard key values
 - Chunks are automatically split and migrated between shards

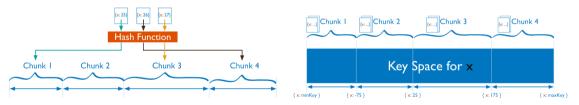


Figure: Hash and ranged sharding – Source: Reference [14]

- Internal processing of queries
 - Broadcast (scatter-gather) necessary if the query filter does not contain the shard key
 - If shard key is part of the query, only the subset of servers is contacted

Introduction Data Models	Databases	Distributed Storage and Processing with Hadoop	Big Data SQL using Hive	Dataflow Computation	Columnar Access	Document Storage
0000000 0000000000000000000000000000000	00000	00000	0000	0000	00000	0000

Examples

```
# Bulk insert some values into the collection uni (to be created)
2
   var bulk = db.uni.initializeUnorderedBulkOp();
   bulk.insert({"_id": "4711". "name": "Julian". "gender": "male". "major": "computer science". "birth": ISODate("2000-10-01")})
 3
   bulk_insert({" id": "4712", "name": "Hans", "gender": "male", "major": "computer science", "birth": TSODate("2000-10-01")})
   bulk.execute()
 5
   # BulkWriteResult({ "writeErrors" : [ ]. "writeConcernErrors" : [ ]. "nInserted" : 2. "nUpserted" : 0. "nMatched" : 0. "nModified" : 0. "nRemoved" :
           \hookrightarrow \Theta, "upserted" : [ ] })
7
 8
   # Create an index on the student's name
 Q
   db.uni.createIndex( { "name": 1 } )
10
11
   # Return the first 10 student names
   db.uni.find( {}, {"name" : 1} ).limit(10)
13
   #{ "_id" : "4711", "name" : "Julian" }
14 #{ "_id" : "4712", "name" : "Hans" }
15
16 # Return the student birth data where the name matches Hans
17
   db.uni.find( { "name" : "Hans" }. { "birth" : 1} )
18
   # { " id" : "4712". "birth" : ISODate("2000-10-01T00:00:00Z") }
19
20
   # Update the student, adding an address to all students with name Julian
   db.uni.update ( {"name" : "Julian" }, {$set : { "address" : { "plz" : 4711, "city" : "Hamburg" } } }, {multi: true} )
   # WriteResult({ "nMatched" : 1. "nUpserted" : 0. "nModified" : 1 })
23
24 # Aggregate to count the number of male and female computer science students
25 # The match stage filters the documents first
26 # The _id field indicates the field to use for grouping, here gender
   db.uni.aggregate( [ { $match: { "major": "computer science"} }.
28
                       { sqroup: { "_id": "sqender". "count": { sum: 1 } } } )
29
   # Returns: { "_id" : "male", "count" : 2 }
30
31 db.uni.drop() # remove collection
```

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage
• 0000 000	00000000	000000	0000	0000	000	0000000000

Outline

9 In-Memory Computation

- 10 Stream Processing
- **11** Designing Distributed Systems
- 12 Performance Modelling
- 13 Visual Analytics
- 14 Large Scale Data Analytics

15 Data Storage

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage

Spark Data Model

Distributed memory model: Resilient Distributed Datasets (RDDs)

Named collection of elements distributed in partitions

X = [1, 2, 3, 4, 5, ..., 1000] distributed into 4 partitions

- Typically a list or a map (key-value pairs)
- An RDD is immutatable, e.g., cannot be changed
- High-level APIs provide additional representations
 - e.g., SparkSQL uses DataFrames (aka tables)
- Shared variables offer shared memory access
- Durability of data
 - RDDs live until the SparkContext is terminated
 - To keep them, they need to be persisted (e.g., to HDFS)
- Fault-tolerance is provided by **re-computing** data (if an error occurs)

 In-Memory Computation
 Stream Processing
 Designing Distributed Systems

 OOOOO
 OOOOOOO
 OOOOOOO
 OOOOOOO

Resilient Distributed Datasets (RDDs) [13]

- Creation of an RDD by either
 - Parallelizing an existing collection

```
1 data = [1, 2, 3, 4, 5]
2 rdd = sc.parallelize(data, 5) # create 5 partitions
```

Referencing a dataset on distributed storage, HDFS, ...

```
rdd = sc.textFile("data.txt")
```

RDDs can be transformed into derived (newly named) RDDs

rdd2 = rdd.filter(lambda x : (x % 2 == 0)) # operation: filter odd tuples

- RDDs can be redistributed (called shuffle)
- RDD is computed if needed, but RDD can be cached in memory or stored
- Computation runs in parallel on the partitions
- RDD knows its data lineage (how it was computed)
- Fault-tolerant collection of elements (lists, dictionaries)
 - Split into choosable number of partitions and distributed
 - Derived RDDs can be re-computed by using the recorded lineage

In-Memory Computation

Stream Processing

Designing Distributed Systems

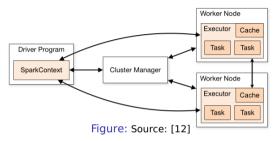
Performance Modelling

Visual Analytics

Large Scale Data Analytics

Data Storage

Execution of Applications [12, 21]



- Driver program: process runs main(), creates/uses SparkContext
- Task: A unit of work processed by one executor
- Job: A spark action triggering computation starts a job
- Stage: collection of tasks executing the same code; run concurrently
 - Works independently on partitions without data shuffling
- Executor process: provides slots to runs tasks
 - Isolates apps, thus data cannot be shared between apps
- Cluster manager: allocates cluster resources and runs executor

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage

Computation

Lazy execution: apply operations when results are needed (by actions)

- Intermediate RDDs can be re-computed multiple times
- Users can persist RDDs (in-memory or disk) for later use
- Many operations apply user-defined functions or lambda expressions
- Code and **closure** are serialized on the driver and send to executors
 - > Note: When using class instance functions, the object (and all members) are serialized
- RDD partitions are processed in parallel (data parallelism)
 - Concept: Use local data where possible

RDD Operation Types [13]

- **Transformations**: create a new RDD locally by applying operations
- Actions: return values to the driver program (or do I/O)
- Shuffle operations: re-distribute data across executors

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage
00000000	0000000	000000	0000	0000	000	000000000

Simple Example

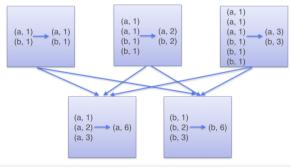
Example session when using pyspark

```
# Distribute the data: here we have a list of numbers from 1 to 10 million
2 # Store the data in an RDD called nums
3 nums = sc.parallelize( range(1.10000000) )
4
  # Compute a derived RDD by filtering odd values
  r1 = nums.filter( lambda x : (x % 2 == 1) )
7
  # Now compute squares for all remaining values and store key/value tuples
9 result = r1.map(lambda x : (x, x*x*x))
10 # Store results in memory, cached at first invocation of an action
  resultCached = result.cache()
11
12
  # Retrieve all distributed values into the driver and print them
13
14 # This will actually run the computation
15 print(result.collect()) # [(1, 1), (3, 27), (5, 125), (7, 343), (9, 729), (11, 1331), ... ]
```


Illustrating processing of KV RDDs [30]

ReduceBy applies reduction function locally, creates new RDD and then globally
 Reduces network traffic, prefferable solution

```
1 words = ["one", "two", "two", "three", "three", "three"]
2 wordPairsRDD = sc.parallelize(words).map(lambda word : (word, 1))
3 wordCountsWithReduce = wordPairsRDD.reduceByKey(lambda a, b : a+b).collect()
4 # [('two', 2), ('three', 3), ('one', 1)]
ReduceBvKev
```



```
In-Memory Computation
                    Stream Processing
                                    Designing Distributed Systems
                                                          Performance Modelling
                                                                            Visual Analytics
                                                                                         Large Scale Data Analytics
                                                                                                             Data Storage
0000000
Creating an In-memory Table from an RDD
   1 # Create a table from an array using the column names value, key
   2 # The data types of the columns are automatically inferred
   3 r = sglContext.createDataFrame([('test', 10), ('data', 11)], ["value", "kev"])
   4
   5 # Alternative: create/use an RDD
    rdd = sc.parallelize(range(1,10)), map(lambda x : (x. str(x)))
   7
   8 # Create the table from the RDD using the columnnames given, here "kev" / "value"
   9 schema = sglContext.createDataFrame(rdd, ["kev", "value"])
  10 schema.printSchema()
  11
  12 # Register table for use with SOL, we use a temporary table, so the table is NOT visible in Hive
    schema.registerTempTable("nums")
  13
  14
  15 # Now you can run SOL queries
  16 res = salContext.sal("SELECT * from nums")
  17
  18 # res is an DataFrame that uses columns according to the schema
    print( res.collect() ) # [Row(kev=1, value='1'), Row(kev=2, value='2'), ... ]
  19
  20
  21 # Save results as a table for Hive
  22 from pyspark.sgl import DataFrameWriter
  23 dw = DataFrameWriter(res)
  24 dw.saveAsTable("data")
```

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage

Outline

9 In-Memory Computation

10 Stream Processing

- 11 Designing Distributed Systems
- 12 Performance Modelling

13 Visual Analytics

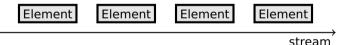
14 Large Scale Data Analytics

15 Data Storage

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage

Stream Processing [12]

- Stream processing paradigm = dataflow programming
- Programming
 - Implement operations (kernel) functions and define data dependencies
 - > Uniform streaming: Operation is executed on all elements individually
 - $\Rightarrow~$ Default: no view of the complete data at any time
- Advantages
 - Pipelining of operations and massive parallelism is possible
 - Data is in memory and often in CPU cache, i.e., in-memory computation
 - Data dependencies of kernels are known and can be dealt at compile time



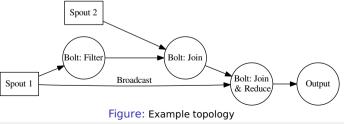
Overcoming restrictions of the programming model

- Windowing: sliding (overlapping) windows contain multiple elements
- Stateless vs. stateful (i.e., keep information for multiple elements)

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage
0000000	0000000	000000	0000	0000	000	0000000000

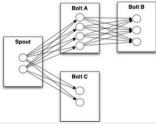
Storm Data Model [37, 38]

- Tuple: an ordered list of named elements
 - e.g., fields (weight, name, BMI) and tuple (1, "hans", 5.5)
 - Dynamic types (i.e., store anything in fields)
- Stream: a sequence of tuples
- Spouts: a source of streams for a computation
 - e.g., Kafka messages, tweets, real-time data
- Bolts: processors for input streams producing output streams
 - e.g., filtering, aggregation, join data, talk to databases
- Topology: the graph of the calculation represented as network
 - Note: the parallelism (tasks) is statically defined for a topology



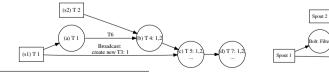
Partitions and Stream Groupings [38]

- Multiple instances (tasks) of spouts/bolts each processes a partition
- Stream grouping defines how to transfer tuples between partitions
- Selection of groupings (we note similarities to YARN)
 - Shuffle: send a tuple to a random task
 - Field: send tuples which share the values of a subset of fields to the same task, e.g., for counting word frequency
 - All: replicate/Broadcast tuple across all tasks of the target bolt
 - Local: prefer local tasks if available, otherwise use shuffle
 - Direct: producer decides which consumer task receives the tuple



Processing Strategy [11, 54]

- Track tuple processing
 - Each tuple has a random 64 Bit message ID
 - Explicit record **all spout tuple IDs** a tuple is derived of
- Acker task tracks the tuple DAG implicitly for each tuple
 - Spout informs Acker tasks of new tuple
 - Acker notifies all Spouts if a "derived" tuple completed
 - Hashing maps spout tuple ID to Acker task
- Acker uses 20 bytes per tuple to track the state of the tuple tree⁸
 - Map contains: tuple ID to Spout (creator) task AND 64 Bit ack value
 - Ack value is an XOR of all "derived" tuple IDs and all acked tuple IDs
 - If Ack value is 0, the processing of the tuple is complete



8 Independent of the size of the topology!

Spout 2

Bolt: Join

Bolt: Join

Broadcast

Exactly-Once Semantics [11, 54]

- Semantics guarantees each tuple is executed exactly once
- Operations depending on exactly-once semantics
 - Updates of stateful computation
 - Global counters (e.g., wordcount), database updates

Strategies to achieve exactly-once semantics

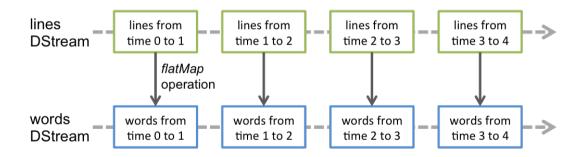
- 1 Provide idempotent operations: f(f(tuple)) = f(tuple)
 - Stateless (side-effect free) operations are idempotent
- 2 Execute tuples strongly ordered to avoid replicated execution
 - Create tuple IDs in the spout with a strong ordering
 - Bolts memorize last seen / executed tuple ID (transaction ID)
 - Perform updates only if tuple $\mathsf{ID}>\mathsf{last}$ seen ID
 - \Rightarrow ignore all tuples with tuple ID < failure
 - Requirement: Don't use random grouping
- 3 Use Storm's transactional topology [57]
 - Separate execution into processing phase and commit phase
 - Processing does not need exactly-once semantics
 - Commit phase requires strong ordering

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage

Spark: Processing of Streams

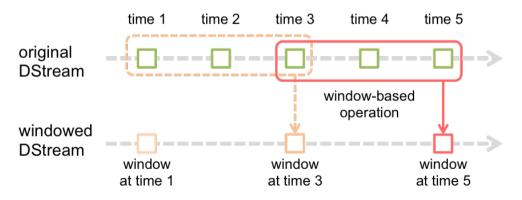
Basic processing concept is the same as for RDDs, example:

```
words = lines.flatMap(lambda l: l.split(" "))
```



In-Memory Computation	Stream Processing 0000000●	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage	
Window-Based Operations							

1 # Reduce a window of 30 seconds of data every 10 seconds
2 rdd = words.reduceByKeyAndWindow(lambda x, y: x + y, 30, 10)



ory Computation	Designing Distributed Systems ••••••••••••••••••••••••••••••••••••	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage
	2				

Outline

9 In-Memory Computation

10 Stream Processing

- 11 Designing Distributed Systems
- 12 Performance Modelling

13 Visual Analytics

14 Large Scale Data Analytics

15 Data Storage

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage
0000000	0000000	000000	0000	0000	000	0000000000

Semantics of a Service

Semantics describe operations and their behavior, i.e., the property of the service

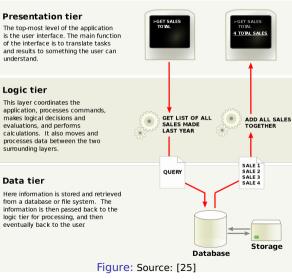
- Application programming interface (API)
- **Consistency**: Behavior of simultaneously executed operations
 - > Atomicity: Are partial modifications visible to other clients
 - Visibility: When are changes visible to other clients
 - Isolation: Are operations influencing other ongoing operations
- **Availability**: Readiness to serve operations
 - Robustness of the system for typical (hardware and software) errors
 - Scalability: availability and performance behaviour depending on the number of clients, concurrent requests, request size, etc.
 - > Partition tolerance: Continue to operate even if the network breaks partially
- **Durability**: Modifications should be stored on persistent storage
 - Consistency: Any operation leaves a consistent (correct) system state

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage
0000000	0000000	000000	0000	0000	000	0000000000

Wishlist for Distributed Software

- High-availability, i.e., you can use the service all the time
- Fault-tolerance, i.e., can tolerate errors
- Scalable, i.e., the ability to be used in a range of capabilities
 - Linear scalability with the data volume (or number of users served)
 - i.e., 2n servers handle 2n the data volume + same processing time
- Extensible, i.e., easy to introduce new features and data
- Usability: high user productivity i.e., simple programming models
- Ready for the cloud
- Debuggability
 - In respect to coding errors and performance issues
- High Performance
 - Real-time/interactive capabilities user interact with the system without noticing delay
- High efficiency, i.e., make good use of resources (compute and storage)

Multitier architecture [25]



Two-Phase Commit Protocol (2PC) [18]

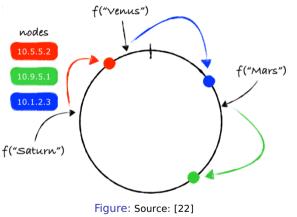
Idea: one process coordinates commit and checks that all agree on the decision

Sketch of the algorithm

- Prepare phase
 - 1 Coordinator sends message with transaction to all participants
 - Participant executes transaction until commit is needed. Replies yes (commit) or no (e.g. conflict). Records changes in undo/redo logs
 - 3 Coordinator checks decision by all replies, if all reply yes, decide commit
- 2 Commit phase
 - 1 Coordinator sends message to all processes with decision
 - 2 Processes commit or rollback the transactions, send acknowledgment
 - 3 Coordinator sends reply to requester
- Think about: What should happen if the coordinator fails?
- What should a "participant" do upon such failures, how to detect them?

Consistent Hashing (2)

- In this example, server IP addresses are hashed to the ring
 - They could be hashed several times for fault tolerance
- The items are strings, the hash determines where they are located
- The arrow shows the server responsible for the items



For more info, see https://www.youtube.com/watch?v=juxlRh4ZhoI and [22], [23]

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage
REST [31]						

Advantages of REST due to HTTP

- Simplicity of the interfaces
- Portability: Independent of client and server platform
- Cachable: Read requests can be cached close to the user
- Tracable: Communication can be inspected

Semantics of HTTP request verbs [33]

- GET: retrieve a representation of a resource (no updates)
- PUT: store the enclosed data under the given URI
- POST: transfer an entity/data as a subordinate of the web resource
- DELETE: remove the given URI
- PUT and DELETE are idempotent
 - GET also w/o concurrent updates

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling ●○○○	Visual Analytics	Large Scale Data Analytics	Data Storage
0.111						

Outline

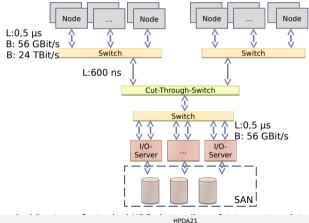
- 9 In-Memory Computation
- 10 Stream Processing
- 11 Designing Distributed Systems
- 12 Performance Modelling
- 13 Visual Analytics
- 14 Large Scale Data Analytics

15 Data Storage

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling ○●○○	Visual Analytics	Large Scale Data Analytics	Data Storage
	,					

HPC Cluster Characteristics

- High-end components
- Extra fast interconnect, global/shared storage with dedicated servers
- Network provides high (near-full) bisection bandwidth. Various topologies are possible.



Basic Approach

Question

Is the observed performance acceptable?

Basic Approach

Start with a simple model

- 1 Measure time for the execution of your workload
- 2 Quantify the workload with some metrics
 - E.g., amount of tuples or data processed, computational operations needed
 - E.g., you may use the statistics output for each Hadoop job
- 3 Compute W, the workload you process per time
- 4 Compute the expected performance *P* based on the system's hardware characteristics
- **5** Compare W with P, the efficiency is $E = \frac{W}{P}$
 - If E << 1, e.g., 0.01, you are using only 1% of the potential!

Refine the model as needed, e.g., include details about intermediate steps

Discussion: Comparing Pig and Hive Big Data Solutions

Benchmark by IBM [16], similar to Apache Benchmark

- Tests several operations, data set increases 10x in size
 - Set 1: 772 KB; 2: 6.4 MB; 3: 63 MB; 4: 628 MB; 5: 6.2 GB; 6: 62 GB

Five data/compute nodes, configured to run eight reduce and 11 map tasks

	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
Arithmetic	32	36	49	83	423	3900
Filter 10%	32	34	44	66	295	2640
Filter 90%	33	32	37	53	197	1657
Group	49	53	69	105	497	4394
Join	49	50	78	150	1045	10258

	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
Arithmetic	32	37.	72	300	2633	27821
Filter 10%	32	53.	59	209	1672	18222
Filter 90%	31	32.	36	69	331	3320
Group	48	47.	46	53	141	1233
Join	48	56.	10	517	4388	-
Distinct	48	53.	72	109	-	-

Figure: Time for Pig (left) and Hive. Source: B. Jakobus (modified), "Table 2: Averaged performance" [16]

Assessing performance

- How could we model performance here?
- How would you judge the runtime here?

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage
	6					

Outline

- 9 In-Memory Computation
- 10 Stream Processing
- **11** Designing Distributed Systems
- 12 Performance Modelling
- **13** Visual Analytics
- 14 Large Scale Data Analytics
- 15 Data Storage

Visual Analytics Workflow

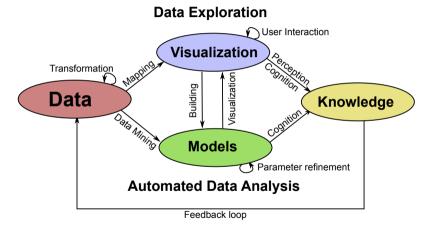


Figure: Figure based on [48]

Motto: Analyse First - Show the Important; Zoom, Filter and Analyse Further - Details on

Guidelines for Graphical Displays

Goals of graphical displays according to [42]

- show the data
- induce the viewer to think about the substance rather than about methodology, graphic design, the technology of graphic production, or something else
- avoid distorting what the data have to say
- present many numbers in a small space
- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from a broad overview to the fine structure
- serve a reasonably clear purpose: description, exploration, tabulation, or decoration
- be closely integrated with the statistical and verbal descriptions of a data set

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage

Guidelines

Simple rules

- Use the right visualization for the for data types
- Use building blocks for graphics (known plot styles)
- Reduce information to the essential part to be communicated
- Consistent use of building blocks and themes (retinal properties)

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics ●○○	Data Storage

Outline

- 9 In-Memory Computation
- 10 Stream Processing
- **11** Designing Distributed Systems
- 12 Performance Modelling
- **13** Visual Analytics
- 14 Large Scale Data Analytics
- 15 Data Storage

Large Scale Data Analytics for Scientific Computing

Scientific Computing

- Large-scale computing on the frontier of science
- Traditional workflow: execute scientific application, store results, analyze results

Challenges

- Large data volumes and velocities
 - How can we analyze 1 PByte of data?
 - How can we manage 100 M files?
- Complex system (and storage) topologies
- Understanding/optimization of system behavior is difficult
- Data movement between CPU and even memory storage is costly
 - 5000x more than a DP FLOP⁹
 - ▶ 10 pJ per Flop (2018), 2000 pJ for DRAM access
- ⁹ http://www.fatih.edu.tr/ esma.yildirim/DIDC2014-workshop/DIDC-parashar.pdf

In-situ and in-transit Analysis/Processing

In-situ: analyze results while the application is still computing

- How: define computation (e.g. data flow graph) of data a-priori
- Runtime deploys them with application execution
- Typically on either the same nodes as the application or dedicated servers

In-transit: analyze/post-process data while it is on the I/O path

- Extend in-situ idea with means to deploy parts of the processing across system
- Computational steering: interact with the application while it runs
 - e.g., modify simulation parameters, modify objects
- Example solutions that support analysis
 - DataSpaces¹⁰
 - ► ADIOS¹¹
 - Paraview (with Catalyst)

¹⁰ http://www.fatih.edu.tr/ esma.yildirim/DIDC2014-workshop/DIDC-parashar.pdf

¹¹ Paper: Combining in-situ and in-transit processing to enable extreme-scale scientific analysis, 2012

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage ●○○○○○○○○○

Outline

- 9 In-Memory Computation
- 10 Stream Processing
- **11** Designing Distributed Systems
- 12 Performance Modelling
- 13 Visual Analytics
- 14 Large Scale Data Analytics

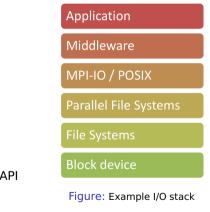
15 Data Storage

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage ○●○○○○○○○○

The I/O Stack

Parallel application

- Is distributed across many nodes
- Has a specific access pattern for I/O
- May use several interfaces
 File (POSIX, ADIOS, HDF5), SQL, NoSQL
- Middleware provides high-level access
- POSIX: ultimately file system access
- Parallel file system: Lustre, GPFS, PVFS2
- File system: EXT4, XFS, NTFS
- Block device: utilizes storage media to export a block API
- Operating system: (orthogonal aspect)



In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage ○○●○○○○○○○
1						

Storage Media

- Many technologies are available with different characteristics
- Block-accessible or byte-adressable (NVRAM)

	Memristor	РСМ	STT- RAM	DRAM	Flash	HD
Chip area per bit (F²)	4	8–16	14-64	6-8	4-8	n/a
Energy per bit (pJ) ²	0.1-3	2-100	0.1-1	2-4	101-104	105-107
Read time (ns)	<10	20-70	10-30	10-50	25,000	5-8x10 ⁶
Write time (ns)	20-30	50500	13-95	10-50	200,000	5-8x10 ⁶
Retention	>10 years	<10 years	Weeks	<second< td=""><td>~10 years</td><td>~10 years</td></second<>	~10 years	~10 years
Endurance (cycles)	~1012	10 ⁷ -10 ⁸	1015	>1017	10 ³ -10 ⁶	1015?
3D capability	Yes	No	No	No	Yes	n/a

Figure: Source: ZDNet [100]

Application I/O Types

Serial, multi-file parallel and shared file parallel I/O

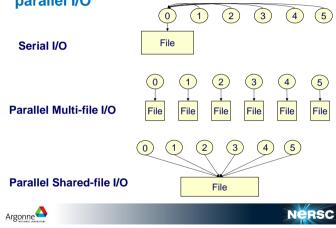
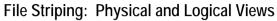
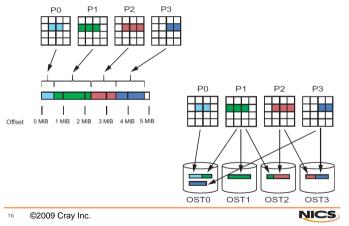


Figure: Source: Lonnie Crosby [101]

File Striping: Distributing Data Across Devices





In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

NetCDF: Common Data form Language

- Notation used to describe NetCDF object is called CDL (network Common Data form Language)
 - Provides a convenient way of describing NetCDF datasets
- Utilities allow producing CDL text files from binary NetCDF datasets and vice-versa
 - File contains dimensions, variables, and attributes
- Components are used together to capture the meaning of data and relations among data fields

netcdf filename { dimensions: lat = 3: lon = 4; time = UNLIMITED ; // (2 currently) variables: Coordinate float lat(lat) : variable lat:long_name = "Latitude" : lat:units = "degrees north"; float lon(lon) : lon:long_name = "Longitude" : lon:units = "degrees east" ; int time(time) : time:long name = "Time" : time:units = "days since 1895-01-01" : Variable time:calendar = "gregorian" ;---attribute float rainfall(time, lat, lon) ; rainfall:long name = "Precipitation" ; rainfall:units = "mm vr-1" : rainfall:missing value = -9999.f : // global attributes: :title = "Historical Climate Scenarios" : Global :Conventions = "CF-1.0" :attribute data: lat = 48,75, 48,25, 47,75; lon = -124.25, -123.75, -123.25, -122.75; time = 364, 730: rainfall = 761, 1265, 2184, 1812, 1405, 688, 366, 269, 328, 455, 524, 877, 1019, 714, 865, 697, 927, 926, 1452, 626, 275, 221, 196, 223;

Understanding of I/O Behavior and Systems

How can we understand system behavior?

- Observation
 - Measurement of runs on the system
 - Can be many cases to run
 - Slight bias since measurement perturbs behavior
 - Benchmarking: applications geared to exhibit certain system behavior
- Monitoring: system/tool-provided observation creation
- Theory: Performance models
 - Used to determine performance for a system/workload
 - Behavioral models

Build models based on ensemble of observations

- System/application simulation
 - Based on system and workload models

How Can Benchmarks Help to Analyze I/O?

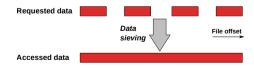
Benefits of benchmarks

- Can use simple/understandable sequence of operations
 - · Ease comparison with theoretic values (that requires understandable metrics)
- May use a pattern like a realistic workloads
 - Provides performance estimates or bounds for workloads!
- Sometimes only possibility to understand hardware capabilities
 - Because the theoretic analysis may be infeasible
- Benefits of benchmarks vs. applications
 - Are easier to code/understand/setup/run than applications
 - Come with less restrictive "license" limitations
- Flexible testing (strategies)
 - Single-shot: e.g., acceptance test
 - Periodically: regression tests

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage 00000000●0

Optimizations

- There are too many tunables and optimizations for I/O
 - Read-ahead, write-behind, async I/O
 - Distribution of data across servers (e.g., Lustre stripe size)
 - We will investigate the complexity of one example...
- Performance benefit of I/O optimizations is non-trival to predict
- Non-contiguous I/O supports data-sieving optimization
 - Transforms non-sequential I/O to large contiguous I/O
 - Tunable with MPI hints: enabled/disabled, buffer size
 - Benefit depends on system AND application



- Data sieving is difficult to parameterize
 - What should be recommended from a data center's perspective?

In-Memory Computation	Stream Processing	Designing Distributed Systems	Performance Modelling	Visual Analytics	Large Scale Data Analytics	Data Storage 000000000●
Summary	,					

...