

Summaryfor theLectureHigh-
PerformanceDataAnalytics

Julian Kunkel

Department of Computer Science

2022-02-27

)

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

5 Big Data SQL using Hive

6 Dataflow Computation

7 Columnar Access

8 Document Storage
Julian M. Kunkel HPDA21 3 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Examination Preparation

Importance of Learning Objectives

� The exam will assess the learning objectives

� Study the learning objectives of each slide deck

� Study the learning objectives of the overall lecture

Importance of Exercises

� Exercises are often a good hint regarding the examination

� Won’t ask too specific implementation questions

� But may ask something like "sketch a pig program that does X"...

This Lecture

� Aims to summarize some important points

� Still: need to check all slide decks

Julian M. Kunkel HPDA21 4 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

5 Big Data SQL using Hive

6 Dataflow Computation

7 Columnar Access

8 Document Storage
Julian M. Kunkel HPDA21 5 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Parallel Architectures

In practice, systems are a mix of two paradigms:

Shared memory

C
o
m
p
u
te
r

Network

Processor ProcessorProcessor

Memory

� Processors can access a joint memory

I Enables communication/coordination

� Cannot be scaled up to any size

� Very expensive to build one big system

Distributed memory systems (again!)

Processor

C
o
m
p
u
te
r

Memory

Extra HW

Processor
Memory

...

Processor
Memory

...

Network(s)

C
o
m
p
u
te
r

C
o
m
p
u
te
r

� Processor can only see own memory

� Performance of the network is key

Julian M. Kunkel HPDA21 6 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Pillars of Science: Modern Perspective

ScienceScience

T
he

or
y

E
xp

er
im

en
ta

tio
n

S
im

ul
at

io
n

B
ig

 D
at

a
A

na
ly

tic
s

Julian M. Kunkel HPDA21 7 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Relation of the Scientific Method to D/P/S Computing

Simulation models real systems to gain new insight

� Instrument to make observations, e.g., high-resolution and fast timescale

� Typically used to validate/refine theories, identify new phenomen

� Classical computational science: hard facts (based on models)

� The frontier of science needs massive computing resources on supercomputers

� Data-intensive sciences like climate imposes challenges to data handling, too

Big Data Analytics extracts insight from data

� Provides a data pool to identify/mine new insight and to validate theories

� In business often approximate insight is enough (a small advantage)

� Distributed and parallel systems are needed to manage and analyze the data

� Gained knowledge is often made available as part of the cloud (for money)...

Julian M. Kunkel HPDA21 8 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Abstraction Levels of Analytics and the Value of Data
5. Prescriptive analytics

I “What should we do and why?”

4. Predictive analytics

I “What will happen?”

3. Diagnostic analytics

I “What went wrong?“
I “Why did this happen”

2. Descriptive analytics1

I “What happened?”

1. Raw (observed) data

D
ata valu

e

1. Raw data

Present
Past

A
n

a
ly

s
is

2. Descriptive

3. Diagnostic

4. Predictive

5. Prescriptive

T
im
e

Future

Relation to Computational Science

� These analysis steps are still done just by running computational experiments

� Also the output of the simulation must be analyzed
1 Decriptive and diagnostic analysis are like forensics

Julian M. Kunkel HPDA21 9 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

BigData Challenges & Characteristics

Dealing with large data is challenging in Big Data Analytics but also in Computational Science

Figure: Source: MarianVesper (Forrester Big Data Webinar. Holger Kisker, Martha Bennet. Big Data: Gold Rush Or Illusion?)
Julian M. Kunkel HPDA21 10 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Volume: The size of the Data

What is Big Data

Terrabytes to 10s of petabytes

What is not Big Data

A few gigabytes

Examples

� Wikipedia corpus with history ca. 10 TByte

� Wikimedia commons ca. 23 TByte

� Google search index ca. 46 Gigawebpages2

� YouTube per year 76 PByte (20123)

2 http://www.worldwidewebsize.com/
3 https://sumanrs.wordpress.com/2012/04/14/youtube-yearly-costs-for-storagenetworking-estimate/

Julian M. Kunkel HPDA21 11 / 96

https://sumanrs.wordpress.com/2012/04/14/youtube-yearly-costs-for-storagenetworking-estimate/

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

5 Big Data SQL using Hive

6 Dataflow Computation

7 Columnar Access

8 Document Storage
Julian M. Kunkel HPDA21 12 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Terminology for Managing Data [1, 10]

� Data governance: “control that ensures that the data entry ... meets precise standards
such as business rule, a data definition and data integrity constraints in the data model”
[10]

I Think about reasons that invalidate data that lead to catastrophic results...
I Example: missinterpretation of data value "NaN" as "0" in a survey

� Data provenance: the documentation of input, transformations of data and involved
systems to support analysis, tracing and reproducibility

I e.g., Input (file.csv) ⇒Calculate means via x.py (result: means.csv) ⇒Create diagrams via d.py
(result fig1.pdf)

� Data-lineage (Datenherkunft): forensics; allows to identify the source data used to
generate data products (part of data provenance)

I e.g., fig1.pdf has been produced from ... using Z...
I I’m able to reproduce results and track errors from the product

� Service level agreements (SLAs): contract defining quality, e.g., performance/reliability
& responsibilities between service user/provider

Julian M. Kunkel HPDA21 13 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Data Analysis Workflow

The traditional approach proceeds in phases:

Figure: Source: Gilbert Miller, Peter Mork From Data to Decisions: A Value Chain for Big Data.
� Analysis tools: machine learning, statistics, interactive visualization

� Limitation: Interactivity by browsing through prepared results

� Indirect feedback between visualization and analysis

Julian M. Kunkel HPDA21 14 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Alternative Processing Technology

Figure: Source: Forrester Webinar. Big Data: Gold Rush Or Illusion? [4]

Julian M. Kunkel HPDA21 15 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

The Lambda Architecture [11]

Speed layer

Realtime
view

Realtime
view

Realtime
view

Realtime
view

Realtime
view

Batch layer

Master dataset

Serving layer

Batch viewBatch view Batch view

Query:
“How many...”

New data

Figure: Redrawn figure. Source: [11], Fig. 2.1

� Goal: Interactive Processing

� Batch layer pre-processes data

I Master dataset is immutable/never changed
I Operations are periodically performed

� Serving layer offers performance optimized views

� Speed layer serves deltas of batch and recent
activities, may approximate results

� Robust: Errors/inaccuracies of realtime views are
corrected in batch view

Julian M. Kunkel HPDA21 16 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Data Models4and their Instances [12]
� A data model describes how information is

organized in a system

I It is a tool to specify, access and process
information

I A model provide operations for accessing and
manipulating data that follow certain semantics

I Typical information is some kind of entity (virtual
object) (e.g., car)

� Logical model: abstraction expressing objects
and operations

� Physical model: maps logical structures onto
hardware resources (e.g., files, bytes)

Figure: Source: [12]

� DM theory: Formal methods for describing data models with tool support

� Applying theory creates a data model instance for a specific application
1: The term is often used ambivalently for a data (meta) model concept/theory or an instance

Julian M. Kunkel HPDA21 17 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Operations

� Operations define how you can interact with the data

I Minimal: Need to somehow store and retrieve data
I Users may want to search for data, update existing data

� May want to offload some operations to the server side: active storage

I Reduce data, e.g., compute mean/sum
I Conditional updates

Typical Operations

� POSIX: create, open, write (anywhere), read (anywhere)

I Does not distinguis between write and update

� CRUD: Create, Read, Update, Delete

� Amazon S3: Put (Overwrite), Get (Partially), Delete

Julian M. Kunkel HPDA21 18 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Relational Model [10]

� Database model based on first-order predicate logic

I Theoretic foundations: relational algebra and relational calculus

� Data is represented as tuples

I In its original style, it does not support collections

� Relation/Table: groups tuples with similar semantics

I Table consists of rows and named columns (attributes)
I No (identical) duplicate of a row allowed

� Schema: specify structure of tables

I Datatypes (domain of attributes)
I Consistency via constraints
I Organization and optimizations

Figure: Source: Relational model concepts [11]

Julian M. Kunkel HPDA21 19 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Columnar Model

� Data is stored in rows and columns (similar to tables)

� A column is a tuple (name, value and timestamp)

� Each row can contain different columns

I Columns can store complex objects, e.g., collections

� Wide columnar model: very sparse table of 100k+ columns

� Example technology: HBase, Cassandra, Accumulo

Row/Column: student name matrikel lectures lecture name
1 "Max Mustermann" 4711 [3] -
2 "Nina Musterfrau" 4712 [3,4] -
3 - - - "Big Data Analytics"
4 - - - "Hochleistungsrechnen"

Table: Example columnar model for the students, each value has its own timestamp (not shown).
Note that lectures and students should be modeled with two tables

Julian M. Kunkel HPDA21 20 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Key-Value Store

� Data is stored as value and addressed by a key

� The value can be complex objects, e.g., JSON or collections

� Keys can be forged to simplify lookup (evtl. tables with names)

� Example technology: CouchDB, BerkeleyDB, Memcached, BigTable

Key Value
stud/4711 <name>Max Mustermann</name><attended><id>1</id></attended>
stud/4712 <name>Nina Musterfrau</name><attended><id>1</id><id>2</id></attended>
lec/1 <name>Big Data Analytics</name>
lec/2 <name>Hochleistungsrechnen</name>

Table: Example key-value model for the students with embedded XML

Julian M. Kunkel HPDA21 21 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Document Model

� Collection of documents
� Documents contain semi-structured data (JSON, XML)
� Addressing to lookup documents are implementation specific

I e.g., bucket/document key, (sub) collections, hierarchical namespace

� References between documents are possible
� Example technology: MongoDB, Couchbase, DocumentDB

1 <students>
2 <student><name>Max Mustermann</name><matrikel>4711</matrikel>
3 <lecturesAttended><id>1</id></lecturesAttended>
4 </student>
5 <student><name>Nina Musterfrau</name><matrikel>4712</matrikel>
6 <lecturesAttended><id>1</id><id>2</id></lecturesAttended>
7 </student>
8 </students>

Table: Example XML document storing students. Using a bucket/key namespace, the document could be addressed
with key: “uni/stud” in the bucket “app1”

Julian M. Kunkel HPDA21 22 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Graph

� Entities are stored as nodes and relations as edges in the graph
� Properties/Attributes provide additional information as key/value
� Example technology: Neo4J, InfiniteGraph

Max Mustermann
age:22, matrikel:4711

Big Data
Analytics

Nina Musterfrau
age:25

Hochleistungs
rechnen

Figure: Graph representing the students (attributes are not shown)

Julian M. Kunkel HPDA21 23 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Fact-Based Model [11]6

� Store raw data as timestamped atomic facts aka log files of change/current status

� Never delete true facts: Immutable data

� Make individual facts unique to prevent duplicates

Example: social web page

� Record all changes to user profiles as facts

� Benefits

I Allows reconstruction of the profile state at any time
I Can be queried at any time5

Example: purchases

� Record each item purchase as facts together with location, time, ...

5 If the profile is changed recently, the query may return an old state.
6 Note that the definitions in the data warehousing (OLAP) and big data [11] domains are slightly different

Julian M. Kunkel HPDA21 24 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

From Big Data to the Data Lake

� With cheap storage costs, people promote the concept of the data lake

� Combines data from many sources (data silos) and of any type and model

� Allows for conducting future analysis and not miss any opportunity

Attributes of the data lake

� Collect everything: all time all data: raw sources and processed data

I Decide during analysis which data is important, e.g., no “schema“ until read

� Dive in anywhere: enable users across multiple business units to

I Refine, explore and enrich data on their terms

� Flexible access: shared infrastructure supports various patterns

I Batch, interactive, online, search

http://hortonworks.com/blog/enterprise-hadoop-journey-data-lake/
Julian M. Kunkel HPDA21 25 / 96

http://hortonworks.com/blog/enterprise-hadoop-journey-data-lake/

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

5 Big Data SQL using Hive

6 Dataflow Computation

7 Columnar Access

8 Document Storage
Julian M. Kunkel HPDA21 26 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Entity Relationship Diagrams

� Illustrate the relational model and partly the database schema

� Elements: Entity, relation, attribute

I Additional information about them, e.g., cardinality, data types

Student Lecture
* *

attends

NameMatrikel Birthday NameID

Figure: A student/lecture example in modified Chen notation
* is the cardinality and means any number is fine

Julian M. Kunkel HPDA21 27 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Queries [20]

� A query retrieves/computes a (sub)table from tables
I It does not change/mutate any content of existing tables

� Statement: SELECT < column1 >,< column2 >, ...

� Subqueries: nesting of queries is possible to create temporary tables

Supported clauses

� FROM: specify the table(s) to retrieve data

� WHERE: filter rows returned

� GROUP BY: group rows together that match conditions

� HAVING: filters grouped rows

� ORDER BY: sort the rows

1 SELECT Matrikel, Name FROM students WHERE Birthday=’22.04.1955’;
2 -- Returns a table with one row:
3 -- matrikel | name
4 -- ----------+------
5 -- 242 | Hans

Julian M. Kunkel HPDA21 28 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

The OLAP Cube: Typical Operations [27]

� Slice: Fix one value to reduce the dimension by one
� Dice: Pick specific values of multiple dimensions
� Roll-up: Summarize data along a dimension

I Formulas can be applied, e.g., profit = income - expense

� Pivot: Rotate the cube to see the faces

Dimension 1

D
im

en
sio

n
 2

Dim
ension 3

Fact FactFact Fact

Figure: Example 3D cube
Julian M. Kunkel HPDA21 29 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Star Schema Example Model

Customer
Date
Geography
Product

Fact table

ID
Name
Age
City ...

Customer

ID
Hour
Day
Month
Year

Date

ID
Store
Region
Country

Geography

ID
Name
Category
Description

Product
Price
Units_Sold

Figure: Star schema

Julian M. Kunkel HPDA21 30 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

5 Big Data SQL using Hive

6 Dataflow Computation

7 Columnar Access

8 Document Storage
Julian M. Kunkel HPDA21 31 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

System-Level Perspective of Hadoop Clusters

Figure: Source: B. Hedlund. [15]Julian M. Kunkel HPDA21 32 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

The HDFS Write Path

Figure: Source: B. Hedlund [15]Julian M. Kunkel HPDA21 33 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Map Reduce Execution Paradigm

Idea: Appy a processing pipeline consisting of map and reduce operations

1. Map: filter and convert input records (pos, data) to tuples (key, value)

2. Reduce: receives all tuples with the same key (key, list<value>)

� Hadoop takes care of reading input, distributing (key,value) to reduce

� Types for key, value & format, records depend on the configuration

Example: WordCount [10]: Count word frequency in large texts

1 map(key, text): # input: key=position, text=line
2 for each word in text:
3 Emit(word,1) # outputs: key/value
4

5 reduce(key, list of values): # input: key == word, our mapper output
6 count = 0
7 for each v in values:
8 count += v
9 Emit(key, count) # it is possible to emit multiple (key, value) pairs here

Julian M. Kunkel HPDA21 34 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Execution of MapReduce – the Big Picture

Figure: Source: jcdenton. [16]
Julian M. Kunkel HPDA21 35 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

5 Big Data SQL using Hive

6 Dataflow Computation

7 Columnar Access

8 Document Storage
Julian M. Kunkel HPDA21 36 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Data Model [22]

Data types
� Primitive types (int, float, strings, dates, boolean)

� Bags (arrays), dictionaries

� Derived data types (structs) can be defined by users

Data organization
� Table: Like in relational databases with a schema

I The Hive data definition language (DDL) manages tables
I Data is stored in files on HDFS

� Partitions: table key determining the mapping to directories

I Reduces the amount of data to be accessed in filters
I Example key: /ds=<date> for table T
I Predicate T.ds=’2017-09-01’ searches for files in /ds=2017-09-01/ directory

� Buckets/Clusters: Data of partitions are mapped into files

I Hash value of a column determines partition

Julian M. Kunkel HPDA21 37 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Hive Architecture and Query Execution in Hadoop

Figure: Architecture. Source: Design – Apache Hive [22]

Julian M. Kunkel HPDA21 38 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

ORC Files [25]

� Stripe: group of row data

� Postcript: contains file metadata

I Compression parameters
I Size of the file footer

� Index data (per stripe & row group)

I Min and max values
I Bloom filter (to pre-filter matches)
I Row position

� Compression of blocks: RLE, ZLIB, SNAPPY, LZO

� Tool to output ORC files:
hive -orcfiledump

Figure: Source: [25]

Row groups are by default 10k rows of one column

Julian M. Kunkel HPDA21 39 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

5 Big Data SQL using Hive

6 Dataflow Computation

7 Columnar Access

8 Document Storage
Julian M. Kunkel HPDA21 40 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

General Data Model for Dataflow Languages

Data

� Tuple t = (x1, ..., xn) where xi may be of a given type

� Input/Output = list of tuples (like a table)

Typical Operators for Data-Flow Processing

� Operations process individual tuples
I Map/Foreach: process or transform data of individual tuples or group

• transform a tuple: student.Map((matrikel, name) ⇒ (matrikel + 4, name))
• count members for each group: groupedStudents.Map((year) ⇒ count())

I Filter tuples by comparing a key to a value

� Operations that require the complete input data

I Group tuples by a key
I Sort data according to a key
I Join multiple relations together
I Split tuples of a relation into multiple relations (based on a condition)

Julian M. Kunkel HPDA21 41 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Pipe Diagrams7

� Goal: Visualize the processing pipeline of data-flows with a schema
I Optional: Add examples to illustrate processing

Elements and diagram concepts

� Box: Operation

I e.g., functions, filter, grouping, aggregating, mapping
I Indicate also changes in schema

� Arrows show processing order (DAG), joins have two inputs

Input (Matrikel, Firstname, Lastname, Female, Birthday)

Group by Female

Map (Female, count=Count())

Output ⇒(Female, count)

7 We will use a variant from [11]
Julian M. Kunkel HPDA21 42 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Execution of Pig Queries on MapReduce and TEZ

Figure: Source: H. Shah [20]

Julian M. Kunkel HPDA21 43 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

5 Big Data SQL using Hive

6 Dataflow Computation

7 Columnar Access

8 Document Storage
Julian M. Kunkel HPDA21 44 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Zookeeper Overview [39, 40]

� Centralized service for coordination providing
I Configuration information (e.g., service discovery)
I Distributed synchronization (e.g., locking)
I Group management (e.g., nodes belonging to a service)

� Simple: Uses a hierarchical namespace for coordination

� Strictly ordered access semantics

� Distributed and reliable using replication

� Scalable: A client can connect to any server

Figure: Source: ZooKeeper Service [40]

Julian M. Kunkel HPDA21 45 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Main Operations of HBase
Data access

� get: return attributes for a row

� put: add row or update columns

� increment: increment values of multiple columns

� scan: iterate over multiple rows (potentially filtering)

� delete: remove a row, column or family

I Data is only marked for deletion, finally removed during compaction

Schema operations

� create: create a table, specify the column families (flexible columns!)

� alter: change table properties

� describe: retrieve table/column family properties

� list: list tables

� create_namespace: create a namespace

� drop_namespace: remove a namespaceJulian M. Kunkel HPDA21 46 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Distribution of Data [30]

� HBase uses HDFS as backend to store data
I Utilize replication and place servers close to data

� Server (RegionServer) manage key ranges on a per table bases
I Buffer I/O to multiple files on HDFS
I Performs computation (and data filtering)

� Regions: base element for availability and distribution of tables
I One store object per ColumnFamily
I One Memstore for each store to write data to files
I Multiple StoreFiles (HFile format) for each store (each sorted)

� Catalog Table HBase:meta, special non splittable table
I Contains a list of all regions < table >,< regionstartkey >,< regionid >

Table splitting

� Upon initialization of a table only one region is created

� Auto-Splitting: Based on a policy, a region is split into two

I Typical policy: split when the region is sufficiently large
I Benefit: increases parallelism, automatic scale-out

� Manual splitting can be triggeredJulian M. Kunkel HPDA21 47 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Sharding of a Table into Regions

Server2 Server3Server 1

Logical table
Row keys

aa…
ab…

...
F...

G…
H...

I...
...

M...
N...
...

Q...
R...
...

ZZ..

Region 2
Keys G-H

Region 1
Keys A-F

Region 3
Keys I-M

Region 4
Keys N-Q

Region 5
Keys R-Z

RegionServers

Figure: Distribution of keys to servers, values are stored with the row

Julian M. Kunkel HPDA21 48 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Outline

1 Introduction

2 Data Models

3 Databases

4 Distributed Storage and Processing with Hadoop

5 Big Data SQL using Hive

6 Dataflow Computation

7 Columnar Access

8 Document Storage
Julian M. Kunkel HPDA21 49 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

MongoDB [11]
� Open-source document database
� High-performant and horizontally scalable for clusters
� Interfaces: Interactive mongo shell, REST, C, Python, ...

I Connector for Hadoop for reading/writing to MongoDB
Data Model
� Database: As usual, defines permissions

� Document: BSON object (binary JSON) – Consisting of subdocuments

I Primary key: _id field (manually set or automatically filled)

1 "_id" : ObjectId("43459bc2341bc14b1b41b124"),
2 "students" : [# subdocument
3 { "name" : "Julian", "id" : 4711, "birth" : ISODate("2000-10-01")},
4 { "name" : "Hans", "id" : 4712, "birth", ... }]

� Collection: Like a table of documents

I Addressing: Collection name, document _id field (choose appropriately)
I Documents can have individual schemas
I Support for indexes on fields (and compound fields)

� Document references via object ids
Julian M. Kunkel HPDA21 50 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Partitioning of Data (One Collection) [14]

� Shard key: Immutable field(s) in every collection document

I Either by hashing of fields or by distributing ranges
I Performance relevant: Select an appropriate shard key

� Chunk: A contiguous range of shard key values

I Chunks are automatically split and migrated between shards

Figure: Hash and ranged sharding – Source: Reference [14]

� Internal processing of queries

I Broadcast (scatter-gather) necessary if the query filter does not contain the shard key
I If shard key is part of the query, only the subset of servers is contacted

Julian M. Kunkel HPDA21 51 / 96

Introduction Data Models Databases Distributed Storage and Processing with Hadoop Big Data SQL using Hive Dataflow Computation Columnar Access Document Storage

Examples
1 # Bulk insert some values into the collection uni (to be created)
2 var bulk = db.uni.initializeUnorderedBulkOp();
3 bulk.insert({"_id": "4711", "name": "Julian", "gender": "male", "major": "computer science", "birth": ISODate("2000-10-01")})
4 bulk.insert({"_id": "4712", "name": "Hans", "gender": "male", "major": "computer science", "birth": ISODate("2000-10-01")})
5 bulk.execute()
6 # BulkWriteResult({ "writeErrors" : [], "writeConcernErrors" : [], "nInserted" : 2, "nUpserted" : 0, "nMatched" : 0, "nModified" : 0, "nRemoved" :

↪→ 0,"upserted" : [] })
7
8 # Create an index on the student’s name
9 db.uni.createIndex({ "name": 1 })

10
11 # Return the first 10 student names
12 db.uni.find({}, {"name" : 1}).limit(10)
13 #{ "_id" : "4711", "name" : "Julian" }
14 #{ "_id" : "4712", "name" : "Hans" }
15
16 # Return the student birth data where the name matches Hans
17 db.uni.find({ "name" : "Hans" }, {"birth" : 1})
18 # { "_id" : "4712", "birth" : ISODate("2000-10-01T00:00:00Z") }
19
20 # Update the student, adding an address to all students with name Julian
21 db.uni.update ({"name" : "Julian" }, {$set : { "address" : { "plz" : 4711, "city" : "Hamburg" } } }, {multi: true})
22 # WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
23
24 # Aggregate to count the number of male and female computer science students
25 # The match stage filters the documents first
26 # The _id field indicates the field to use for grouping, here gender
27 db.uni.aggregate([{ $match: { "major": "computer science"} },
28 { $group: { "_id": "$gender", "count": { $sum: 1 } } }])
29 # Returns: { "_id" : "male", "count" : 2 }
30
31 db.uni.drop() # remove collection

Julian M. Kunkel HPDA21 52 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Outline

9 In-Memory Computation

10 Stream Processing

11 Designing Distributed Systems

12 Performance Modelling

13 Visual Analytics

14 Large Scale Data Analytics

15 Data Storage

Julian M. Kunkel HPDA21 53 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Spark Data Model

� Distributed memory model: Resilient Distributed Datasets (RDDs)

I Named collection of elements distributed in partitions

P1 P2 P3 P4 RDD X

X = [1,2,3,4,5, ...,1000] distributed into 4 partitions

I Typically a list or a map (key-value pairs)
I An RDD is immutatable, e.g., cannot be changed
I High-level APIs provide additional representations

• e.g., SparkSQL uses DataFrames (aka tables)

� Shared variables offer shared memory access

� Durability of data

I RDDs live until the SparkContext is terminated
I To keep them, they need to be persisted (e.g., to HDFS)

� Fault-tolerance is provided by re-computing data (if an error occurs)

Julian M. Kunkel HPDA21 54 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Resilient Distributed Datasets (RDDs) [13]

� Creation of an RDD by either
I Parallelizing an existing collection

1 data = [1, 2, 3, 4, 5]
2 rdd = sc.parallelize(data, 5) # create 5 partitions

I Referencing a dataset on distributed storage, HDFS, ...

1 rdd = sc.textFile("data.txt")

� RDDs can be transformed into derived (newly named) RDDs

1 rdd2 = rdd.filter(lambda x : (x % 2 == 0)) # operation: filter odd tuples

I RDDs can be redistributed (called shuffle)
I RDD is computed if needed, but RDD can be cached in memory or stored
I Computation runs in parallel on the partitions
I RDD knows its data lineage (how it was computed)

� Fault-tolerant collection of elements (lists, dictionaries)
I Split into choosable number of partitions and distributed
I Derived RDDs can be re-computed by using the recorded lineage

Julian M. Kunkel HPDA21 55 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Execution of Applications [12, 21]

Figure: Source: [12]

� Driver program: process runs main(), creates/uses SparkContext
� Task: A unit of work processed by one executor
� Job: A spark action triggering computation starts a job
� Stage: collection of tasks executing the same code; run concurrently

I Works independently on partitions without data shuffling

� Executor process: provides slots to runs tasks
I Isolates apps, thus data cannot be shared between apps

� Cluster manager: allocates cluster resources and runs executor
Julian M. Kunkel HPDA21 56 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Computation

� Lazy execution: apply operations when results are needed (by actions)

I Intermediate RDDs can be re-computed multiple times
I Users can persist RDDs (in-memory or disk) for later use

� Many operations apply user-defined functions or lambda expressions

� Code and closure are serialized on the driver and send to executors

I Note: When using class instance functions, the object (and all members) are serialized

� RDD partitions are processed in parallel (data parallelism)

I Concept: Use local data where possible

RDD Operation Types [13]

� Transformations: create a new RDD locally by applying operations

� Actions: return values to the driver program (or do I/O)

� Shuffle operations: re-distribute data across executors

Julian M. Kunkel HPDA21 57 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Simple Example

� Example session when using pyspark

1 # Distribute the data: here we have a list of numbers from 1 to 10 million
2 # Store the data in an RDD called nums
3 nums = sc.parallelize(range(1,10000000))
4

5 # Compute a derived RDD by filtering odd values
6 r1 = nums.filter(lambda x : (x % 2 == 1))
7

8 # Now compute squares for all remaining values and store key/value tuples
9 result = r1.map(lambda x : (x, x*x*x))

10 # Store results in memory, cached at first invocation of an action
11 resultCached = result.cache()
12

13 # Retrieve all distributed values into the driver and print them
14 # This will actually run the computation
15 print(result.collect()) # [(1, 1), (3, 27), (5, 125), (7, 343), (9, 729), (11, 1331), ...]

Julian M. Kunkel HPDA21 58 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Illustrating processing of KV RDDs [30]
� ReduceBy applies reduction function locally, creates new RDD and then globally

� Reduces network traffic, prefferable solution

1 words = ["one", "two", "two", "three", "three", "three"]
2 wordPairsRDD = sc.parallelize(words).map(lambda word : (word, 1))
3 wordCountsWithReduce = wordPairsRDD.reduceByKey(lambda a, b : a+b).collect()
4 # [(’two’, 2), (’three’, 3), (’one’, 1)]

Julian M. Kunkel HPDA21 59 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Creating an In-memory Table from an RDD
1 # Create a table from an array using the column names value, key
2 # The data types of the columns are automatically inferred
3 r = sqlContext.createDataFrame([(’test’, 10), (’data’, 11)], ["value", "key"])
4

5 # Alternative: create/use an RDD
6 rdd = sc.parallelize(range(1,10)).map(lambda x : (x, str(x)))
7

8 # Create the table from the RDD using the columnnames given, here "key" / "value"
9 schema = sqlContext.createDataFrame(rdd, ["key", "value"])

10 schema.printSchema()
11

12 # Register table for use with SQL, we use a temporary table, so the table is NOT visible in Hive
13 schema.registerTempTable("nums")
14

15 # Now you can run SQL queries
16 res = sqlContext.sql("SELECT * from nums")
17

18 # res is an DataFrame that uses columns according to the schema
19 print(res.collect()) # [Row(key=1, value=’1’), Row(key=2, value=’2’), ...]
20

21 # Save results as a table for Hive
22 from pyspark.sql import DataFrameWriter
23 dw = DataFrameWriter(res)
24 dw.saveAsTable("data")

Julian M. Kunkel HPDA21 60 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Outline

9 In-Memory Computation

10 Stream Processing

11 Designing Distributed Systems

12 Performance Modelling

13 Visual Analytics

14 Large Scale Data Analytics

15 Data Storage

Julian M. Kunkel HPDA21 61 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Stream Processing [12]

� Stream processing paradigm = dataflow programming
� Programming

I Implement operations (kernel) functions and define data dependencies
I Uniform streaming: Operation is executed on all elements individually
⇒ Default: no view of the complete data at any time

� Advantages
I Pipelining of operations and massive parallelism is possible
I Data is in memory and often in CPU cache, i.e., in-memory computation
I Data dependencies of kernels are known and can be dealt at compile time

Element Element Element Element

stream

Overcoming restrictions of the programming model

� Windowing: sliding (overlapping) windows contain multiple elements

� Stateless vs. stateful (i.e., keep information for multiple elements)

Julian M. Kunkel HPDA21 62 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Storm Data Model [37, 38]
� Tuple: an ordered list of named elements

I e.g., fields (weight, name, BMI) and tuple (1, “hans”, 5.5)
I Dynamic types (i.e., store anything in fields)

� Stream: a sequence of tuples
� Spouts: a source of streams for a computation

I e.g., Kafka messages, tweets, real-time data
� Bolts: processors for input streams producing output streams

I e.g., filtering, aggregation, join data, talk to databases
� Topology: the graph of the calculation represented as network

I Note: the parallelism (tasks) is statically defined for a topology

Spout 1

Bolt: Filter

Bolt: Join
 & Reduce

Broadcast

Spout 2

Bolt: Join

Output

Figure: Example topology
Julian M. Kunkel HPDA21 63 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Partitions and Stream Groupings [38]

� Multiple instances (tasks) of spouts/bolts each processes a partition
� Stream grouping defines how to transfer tuples between partitions
� Selection of groupings (we note similarities to YARN)

I Shuffle: send a tuple to a random task
I Field: send tuples which share the values of a subset of fields to the same task, e.g., for

counting word frequency
I All: replicate/Broadcast tuple across all tasks of the target bolt
I Local: prefer local tasks if available, otherwise use shuffle
I Direct: producer decides which consumer task receives the tuple

Figure: Source: [38]
Julian M. Kunkel HPDA21 64 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Processing Strategy [11, 54]

� Track tuple processing
I Each tuple has a random 64 Bit message ID
I Explicit record all spout tuple IDs a tuple is derived of

� Acker task tracks the tuple DAG implicitly for each tuple
I Spout informs Acker tasks of new tuple
I Acker notifies all Spouts if a “derived” tuple completed
I Hashing maps spout tuple ID to Acker task

� Acker uses 20 bytes per tuple to track the state of the tuple tree8

I Map contains: tuple ID to Spout (creator) task AND 64 Bit ack value
I Ack value is an XOR of all “derived” tuple IDs and all acked tuple IDs
I If Ack value is 0, the processing of the tuple is complete

(s1) T 1

(a) T 1

(c) T 5: 1,2,
 ...

Broadcast:
create new T3: 1

(s2) T 2

(b) T 4: 1,2T6

(d) T 7: 1,2,
 ... Spout 1

Bolt: Filter

Bolt: Join
 & Reduce

Broadcast

Spout 2

Bolt: Join

Output

8 Independent of the size of the topology!
Julian M. Kunkel HPDA21 65 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Exactly-Once Semantics [11, 54]
� Semantics guarantees each tuple is executed exactly once
� Operations depending on exactly-once semantics

I Updates of stateful computation
I Global counters (e.g., wordcount), database updates

Strategies to achieve exactly-once semantics

1 Provide idempotent operations: f(f(tuple)) = f(tuple)

I Stateless (side-effect free) operations are idempotent

2 Execute tuples strongly ordered to avoid replicated execution

I Create tuple IDs in the spout with a strong ordering
I Bolts memorize last seen / executed tuple ID (transaction ID)

• Perform updates only if tuple ID > last seen ID
⇒ ignore all tuples with tuple ID < failure

I Requirement: Don’t use random grouping

3 Use Storm’s transactional topology [57]
I Separate execution into processing phase and commit phase

• Processing does not need exactly-once semantics
• Commit phase requires strong ordering

I Storm ensures: any time only one batch can be in commit phase
Julian M. Kunkel HPDA21 66 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Spark: Processing of Streams

Basic processing concept is the same as for RDDs, example:

1 words = lines.flatMap(lambda l: l.split(" "))

Figure: Source: [16]Julian M. Kunkel HPDA21 67 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Window-Based Operations

1 # Reduce a window of 30 seconds of data every 10 seconds
2 rdd = words.reduceByKeyAndWindow(lambda x, y: x + y, 30, 10)

Figure: Source: [16]

Julian M. Kunkel HPDA21 68 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Outline

9 In-Memory Computation

10 Stream Processing

11 Designing Distributed Systems

12 Performance Modelling

13 Visual Analytics

14 Large Scale Data Analytics

15 Data Storage

Julian M. Kunkel HPDA21 69 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Semantics of a Service

Semantics describe operations and their behavior, i.e., the property of the service

� Application programming interface (API)

� Consistency: Behavior of simultaneously executed operations

I Atomicity: Are partial modifications visible to other clients
I Visibility: When are changes visible to other clients
I Isolation: Are operations influencing other ongoing operations

� Availability: Readiness to serve operations

I Robustness of the system for typical (hardware and software) errors
I Scalability: availability and performance behaviour depending on the number of clients,

concurrent requests, request size, etc.
I Partition tolerance: Continue to operate even if the network breaks partially

� Durability: Modifications should be stored on persistent storage

I Consistency: Any operation leaves a consistent (correct) system state

Julian M. Kunkel HPDA21 70 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Wishlist for Distributed Software

� High-availability, i.e., you can use the service all the time

� Fault-tolerance, i.e., can tolerate errors

� Scalable, i.e., the ability to be used in a range of capabilities
I Linear scalability with the data volume (or number of users served)

• i.e., 2n servers handle 2n the data volume + same processing time

� Extensible, i.e., easy to introduce new features and data

� Usability: high user productivity - i.e., simple programming models

� Ready for the cloud

� Debuggability

I In respect to coding errors and performance issues

� High Performance

I Real-time/interactive capabilities - user interact with the system without noticing delay

� High efficiency, i.e., make good use of resources (compute and storage)

Julian M. Kunkel HPDA21 71 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Multitier architecture [25]

Figure: Source: [25]

Julian M. Kunkel HPDA21 72 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Two-Phase Commit Protocol (2PC) [18]

� Idea: one process coordinates commit and checks that all agree on the decision

Sketch of the algorithm

1 Prepare phase

1 Coordinator sends message with transaction to all participants
2 Participant executes transaction until commit is needed.

Replies yes (commit) or no (e.g. conflict). Records changes in undo/redo logs
3 Coordinator checks decision by all replies, if all reply yes, decide commit

2 Commit phase

1 Coordinator sends message to all processes with decision
2 Processes commit or rollback the transactions, send acknowledgment
3 Coordinator sends reply to requester

� Think about: What should happen if the coordinator fails?

� What should a "participant" do upon such failures, how to detect them?

Julian M. Kunkel HPDA21 73 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Consistent Hashing (2)

� In this example, server IP addresses
are hashed to the ring

I They could be hashed several
times for fault tolerance

� The items are strings, the hash
determines where they are located

� The arrow shows the server
responsible for the items

Figure: Source: [22]

� For more info, see https://www.youtube.com/watch?v=juxlRh4ZhoI and [22], [23]

Julian M. Kunkel HPDA21 74 / 96

https://www.youtube.com/watch?v=juxlRh4ZhoI

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

REST [31]

� Advantages of REST due to HTTP

I Simplicity of the interfaces
I Portability: Independent of client and server platform
I Cachable: Read requests can be cached close to the user
I Tracable: Communication can be inspected

Semantics of HTTP request verbs [33]

� GET: retrieve a representation of a resource (no updates)

� PUT: store the enclosed data under the given URI

� POST: transfer an entity/data as a subordinate of the web resource

� DELETE: remove the given URI

� PUT and DELETE are idempotent

I GET also w/o concurrent updates

Julian M. Kunkel HPDA21 75 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Outline

9 In-Memory Computation

10 Stream Processing

11 Designing Distributed Systems

12 Performance Modelling

13 Visual Analytics

14 Large Scale Data Analytics

15 Data Storage

Julian M. Kunkel HPDA21 76 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

HPC Cluster Characteristics

� High-end components
� Extra fast interconnect, global/shared storage with dedicated servers
� Network provides high (near-full) bisection bandwidth. Various topologies are possible.

Node …
Node … Node

…
Node … Node

SwitchSwitch

Cut-Through-SwitchCut-Through-Switch

SwitchSwitch

L:600 ns

L:0,5 µs
B: 56 GBit/s
B: 24 TBit/s

SwitchSwitch

I/O-
Server

I/O-
Server

I/O-
Server

I/O-
Server……

SAN

L:0,5 µs
B: 56 GBit/s

Figure: Architecture of a typical HPC cluster (here fat-tree network topology)Julian M. Kunkel HPDA21 77 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Basic Approach
Question
Is the observed performance acceptable?

Basic Approach

Start with a simple model

1 Measure time for the execution of your workload

2 Quantify the workload with some metrics

I E.g., amount of tuples or data processed, computational operations needed
I E.g., you may use the statistics output for each Hadoop job

3 Compute W, the workload you process per time

4 Compute the expected performance P based on the system’s hardware characteristics

5 Compare W with P, the efficiency is E = W
P

I If E << 1, e.g., 0.01, you are using only 1% of the potential!

Refine the model as needed, e.g., include details about intermediate steps

Julian M. Kunkel HPDA21 78 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Discussion: Comparing Pig and Hive Big Data Solutions

Benchmark by IBM [16], similar to Apache Benchmark

� Tests several operations, data set increases 10x in size

I Set 1: 772 KB; 2: 6.4 MB; 3: 63 MB; 4: 628 MB; 5: 6.2 GB; 6: 62 GB

� Five data/compute nodes, configured to run eight reduce and 11 map tasks

Figure: Time for Pig (left) and Hive. Source: B. Jakobus (modified), "Table 2: Averaged performance" [16]

Assessing performance

� How could we model performance here?

� How would you judge the runtime here?

Julian M. Kunkel HPDA21 79 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Outline

9 In-Memory Computation

10 Stream Processing

11 Designing Distributed Systems

12 Performance Modelling

13 Visual Analytics

14 Large Scale Data Analytics

15 Data Storage

Julian M. Kunkel HPDA21 80 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Visual Analytics Workflow

Data

Visualization

Knowledge

Models

Transformation

User Interaction

Parameter refinement

Data Mining

Mapping

V
is

ua
liz

at
io

n

B
ui

ld
in

g

Data Exploration

Automated Data Analysis

Feedback loop

Perception

Cognition

Cognitio
n

Figure: Figure based on [48]

Motto: Analyse First – Show the Important; Zoom, Filter and Analyse Further – Details on

Demand[34]Julian M. Kunkel HPDA21 81 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Guidelines for Graphical Displays

Goals of graphical displays according to [42]

� show the data

� induce the viewer to think about the substance rather than about methodology,
graphic design, the technology of graphic production, or something else

� avoid distorting what the data have to say

� present many numbers in a small space

� make large data sets coherent

� encourage the eye to compare different pieces of data

� reveal the data at several levels of detail, from a broad overview to the fine structure

� serve a reasonably clear purpose: description, exploration, tabulation, or decoration

� be closely integrated with the statistical and verbal descriptions of a data set

Julian M. Kunkel HPDA21 82 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Guidelines

Simple rules

� Use the right visualization for the for data types

� Use building blocks for graphics (known plot styles)

� Reduce information to the essential part to be communicated

� Consistent use of building blocks and themes (retinal properties)

Julian M. Kunkel HPDA21 83 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Outline

9 In-Memory Computation

10 Stream Processing

11 Designing Distributed Systems

12 Performance Modelling

13 Visual Analytics

14 Large Scale Data Analytics

15 Data Storage

Julian M. Kunkel HPDA21 84 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Large Scale Data Analytics for Scientific Computing

Scientific Computing

� Large-scale computing on the frontier of science

� Traditional workflow: execute scientific application, store results, analyze results

Challenges

� Large data volumes and velocities

I How can we analyze 1 PByte of data?
I How can we manage 100 M files?

� Complex system (and storage) topologies

� Understanding/optimization of system behavior is difficult

� Data movement between CPU and even memory storage is costly

I 5000x more than a DP FLOP9

I 10 pJ per Flop (2018), 2000 pJ for DRAM access
9 http://www.fatih.edu.tr/ esma.yildirim/DIDC2014-workshop/DIDC-parashar.pdf

Julian M. Kunkel HPDA21 85 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

In-situ and in-transit Analysis/Processing

� In-situ: analyze results while the application is still computing

I How: define computation (e.g. data flow graph) of data a-priori
I Runtime deploys them with application execution
I Typically on either the same nodes as the application or dedicated servers

� In-transit: analyze/post-process data while it is on the I/O path

I Extend in-situ idea with means to deploy parts of the processing across system

� Computational steering: interact with the application while it runs

I e.g., modify simulation parameters, modify objects

� Example solutions that support analysis

I DataSpaces10

I ADIOS11

I Paraview (with Catalyst)

10 http://www.fatih.edu.tr/ esma.yildirim/DIDC2014-workshop/DIDC-parashar.pdf
11 Paper: Combining in-situ and in-transit processing to enable extreme-scale scientific analysis, 2012

Julian M. Kunkel HPDA21 86 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Outline

9 In-Memory Computation

10 Stream Processing

11 Designing Distributed Systems

12 Performance Modelling

13 Visual Analytics

14 Large Scale Data Analytics

15 Data Storage

Julian M. Kunkel HPDA21 87 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

The I/O Stack

� Parallel application

I Is distributed across many nodes
I Has a specific access pattern for I/O
I May use several interfaces

File (POSIX, ADIOS, HDF5), SQL, NoSQL

� Middleware provides high-level access

� POSIX: ultimately file system access

� Parallel file system: Lustre, GPFS, PVFS2

� File system: EXT4, XFS, NTFS

� Block device: utilizes storage media to export a block API

� Operating system: (orthogonal aspect) Figure: Example I/O stack

Julian M. Kunkel HPDA21 88 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Storage Media

� Many technologies are available with different characteristics
� Block-accessible or byte-adressable (NVRAM)

Figure: Source: ZDNet [100]

Julian M. Kunkel HPDA21 89 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Application I/O Types
Serial, multi-file parallel and shared file
parallel I/O

Serial I/O

0 1 2 3 4

File

5

0 1 2 3 4

File File File File File

5

File

0 1 2 3 4

File

5

Parallel Multi-file I/O

Parallel Shared-file I/O

Figure: Source: Lonnie Crosby [101]

Julian M. Kunkel HPDA21 90 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

File Striping: Distributing Data Across Devices

File Striping: Physical and Logical Views

16 ©2009 Cray Inc.

Figure: Source: Lonnie Crosby [101]Julian M. Kunkel HPDA21 91 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

NetCDF: Common Data form Language

� Notation used to describe NetCDF object is called

CDL (network Common Data form Language)

I Provides a convenient way of describing
NetCDF datasets

� Utilities allow producing CDL text files from binary
NetCDF datasets and vice-versa

� File contains dimensions, variables, and attributes

� Components are used together to capture the
meaning of data and relations among data fields

Julian M. Kunkel HPDA21 92 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Understanding of I/O Behavior and Systems

How can we understand system behavior?

� Observation

I Measurement of runs on the system
I Can be many cases to run
I Slight bias since measurement perturbs behavior
I Benchmarking: applications geared to exhibit certain system behavior

� Monitoring: system/tool-provided observation creation

� Theory: Performance models

I Used to determine performance for a system/workload
I Behavioral models

Build models based on ensemble of observations

� System/application simulation

I Based on system and workload models

Julian M. Kunkel HPDA21 93 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

How Can Benchmarks Help to Analyze I/O?

� Benefits of benchmarks
I Can use simple/understandable sequence of operations

• Ease comparison with theoretic values (that requires understandable metrics)

I May use a pattern like a realistic workloads

• Provides performance estimates or bounds for workloads!

I Sometimes only possibility to understand hardware capabilities

• Because the theoretic analysis may be infeasible

� Benefits of benchmarks vs. applications

I Are easier to code/understand/setup/run than applications
I Come with less restrictive "license" limitations

� Flexible testing (strategies)

I Single-shot: e.g., acceptance test
I Periodically: regression tests

Julian M. Kunkel HPDA21 94 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Optimizations

� There are too many tunables and optimizations for I/O

I Read-ahead, write-behind, async I/O
I Distribution of data across servers (e.g., Lustre stripe size)
I We will investigate the complexity of one example...

� Performance benefit of I/O optimizations is non-trival to predict

� Non-contiguous I/O supports data-sieving optimization

I Transforms non-sequential I/O to large contiguous I/O
I Tunable with MPI hints: enabled/disabled, buffer size
I Benefit depends on system AND application

Requested data

Accessed data

Data
sieving

File offset

� Data sieving is difficult to parameterize

I What should be recommended from a data center’s perspective?

Julian M. Kunkel HPDA21 95 / 96

In-Memory Computation Stream Processing Designing Distributed Systems Performance Modelling Visual Analytics Large Scale Data Analytics Data Storage

Summary

...

Julian M. Kunkel HPDA21 96 / 96

	Introduction
	Volume

	Data Models
	Data Model
	Key-Value Store
	Document Model
	Data Lake

	Databases
	Distributed Storage and Processing with Hadoop
	Big Data SQL using Hive
	Dataflow Computation
	Pipe Diagrams

	Columnar Access
	Document Storage
	Appendix
	In-Memory Computation
	Simple Example

	Stream Processing
	Designing Distributed Systems
	Performance Modelling
	Visual Analytics
	Large Scale Data Analytics
	Data Storage

