A Data Lake Use Case for scientific research data management

Mark Greiner Max-Planck Institute for Chemical Energy Conversion 2022-01-31

Presentation Outline

Problem Space

Description of domain

Problem statement

Data Governance Architectures

Chosen solution (why)

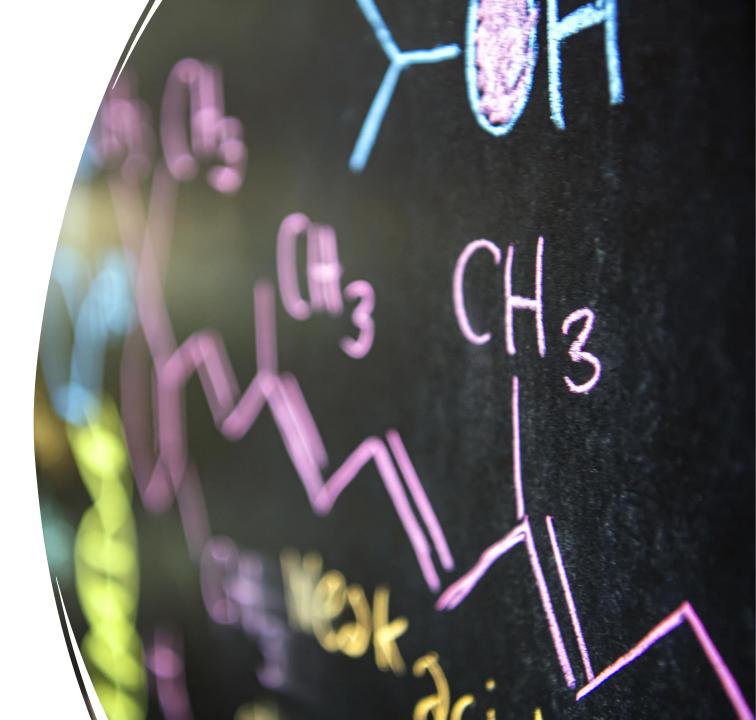
Lessons learned (pitfalls)

Future directions

Solution Space

1. Description of the Domain

Problem space


About MPI-CEC

Research Discipline

- Catalysis for chemical energy
- Water splitting, bio-catalysts, chemical production

Magnitude

- 218 Researchers
- 22 Research Groups
- 3 Departments

Synthesis Lab

- Focus on:
 - Creating new chemicals
- Workflow:
 - Plan, Synthesize, Characterize, Analyze results, Iterate, Test in some application
- Challenges:
 - Multi-disciplinary
 - Harmonize ELN with diverse data sources

Specialized Characterization

- Focus on:
 - in-depth analysis
- Workflow:
 - Job request, Plan with user, Sample management, Scheduling, Data analysis, Data to user
- Challenges:
 - Data analysis
 - Harmonize with user ELN

Self-service facilities

- Focus on:
 - routine measurements
- Can be performed with minimal training
- Workflow:
 - Schedule, Measure, Retrieve data, Analyze data,
- Challenge:
 - Harmonize users' ELN with instrument
 - Associate data with sample

Testing facilities

- Focus on:
 - Behavior in applications
 - Testing parameters
- Workflow:
 - Plan, Schedule, Measure, Retrieve data, Analyze data
- Challenges:
 - Analysis
 - Linking data-sample-conditions

Large facilities

- Focus on:
 - Characterizing
- Workflow:
 - Plan, Schedule, Measure, Retrieve data, Analyze data
- Major challenges:
 - Data sizes
 - Integrating with home ELN

Roles and skills

Student (Master/PhD)

Skills

- Conducts experiments
- Documents results

IT interactions

Measure things

Interact analysis software

Skills

- Designing experiments
- Analysis workflows
- Documents results

IT Interactions

- Interact measurement software
- Interact analysis software
- Supervise students
- Review results

Ø

Principal investigator

Skills

- Provides research questions
- Supervises research of Students and Post-Docs
- Administrative Tasks

IT Interactions

Interacts with management software

Roles and skills

Technical Staff

Skills

- Maintenance Laboratory equipment
- Keep services running
- Administer stock
- Supervise experiments

IT Interaction

 Interact with monitoring software

Group Leaders

Skills

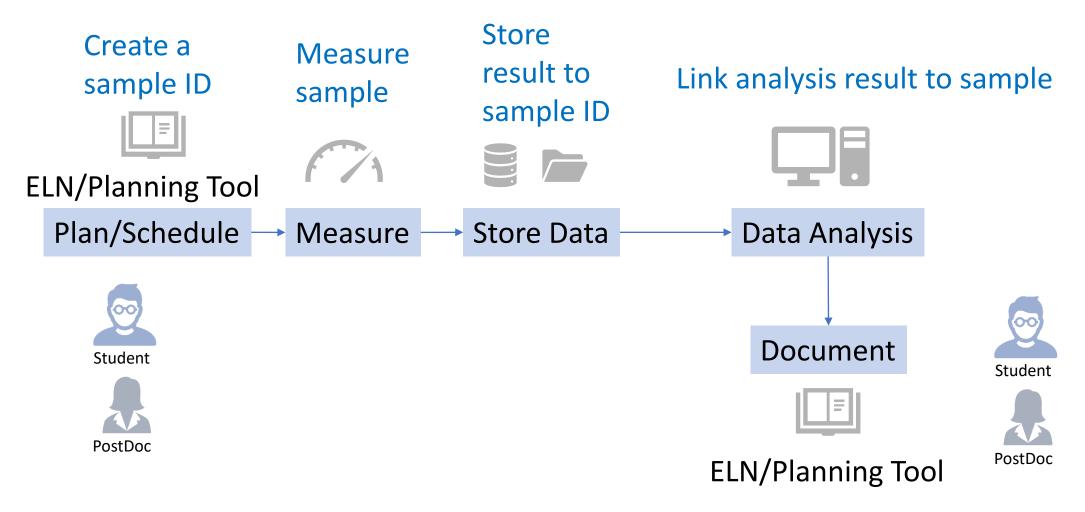
Project management

IT Interaction

Interact with management software

U T T T

Directors


Skills

Management

IT Interaction

 View dashboards and reports

Use Case: Self-service testing facitlity

Modified from 2021-05-31_NFDI4Cat Consortium meeting - ELN task force.pptx

2. Problem Statements

Problem Space

Problem Statement

- Data assets are not organized.
- It is distributed across many locations, with no contextual metadata.
- Thus, searching and organizing tools cannot be used to utilize the data.
- Knowledge cannot be automatically extracted from it.

Problem Statements

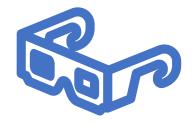
- Researchers spend too much time on repetitive manual work, related to organizing, searching and processing data.
- Takes away from value-added work, increases errors, leads to re-work.

Problem Statements

• Users do not have easy access to all their data assets.

Problem Statement

- It is difficult, sometimes impossible, to trace back the origin of a research result.
- Leads to excessive time spent searching when report revisions are needed.
- Decreases knowledge retention.



Problem Statement

- The structure of the organization's data assets are not suitable for large-scale analysis algorithms.
- Unable to utilize modern algorithms for meta-analysis.

3. Data Governance Architectures

Solution Space

What is a data strategy?

- A data strategy can be considered as an approach that enables to derive new knowledge from data
- A comprehensive data strategy is the basis for the successful implementation of data related projects

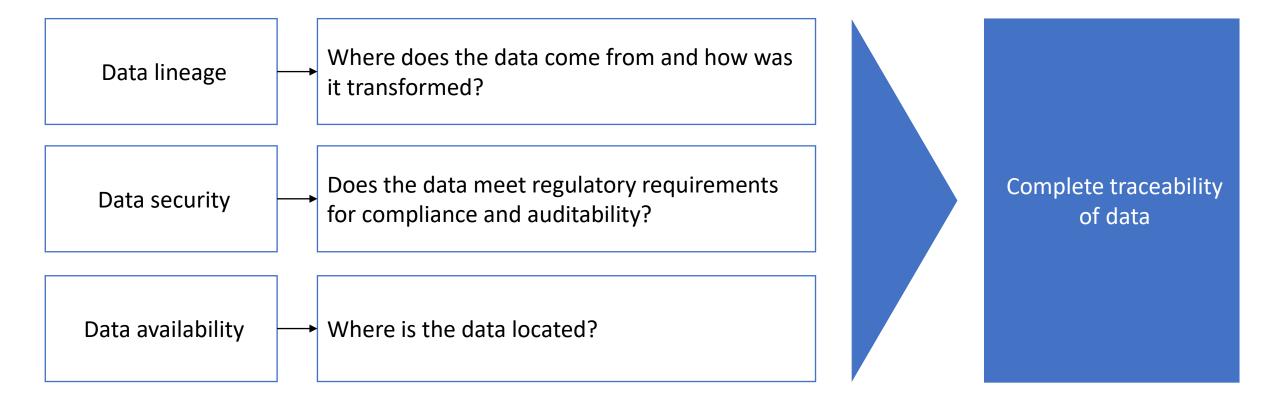
A Data Strategy describes the ...

- ... organizational structure for the successful use of data with relevant processes for dealing with data
- ... required skills & roles
- ... technology and tools

https://www.gartner.com/en/documents/3975595/creating-a-data-strategy

Vision

Users maintain their existing workflows, while their generated data is automatically digitized and categorized for them, and is, subsequently, available and easy to find at a future time.


Goals of a Data Strategy

https://datagovernance.com/goals-and-principles-for-data-governance/

Workshop MPI © Copyright Woodmark Consulting AG

Data Governance Concepts

https://datagovernance.com/goals-and-principles-for-data-governance/

Roles and skills in a business context

Transform and harmonise data

Data Architect

Provide data processing concepts

Data Scientist

Analyse and model data

Data Artist

Visualize data

Data Security Admin.

Data security concepts

Domain Expert

Domain knowledge

Data Custodian

Data storage and security

Data Steward

Steering and household data

Data Evangelist

Explores data potential

Data Governance Roles

Student (Master/PhD)

DG Roles

- Data engineer
- Data scientist

Post-Doc

DG Roles

- Data scientist
- Data architect
- Data engineer
- Domain expert

Principal investigator

DG Roles

- Data steward
- Data evangelist
- Domain expert

Data Governance Roles

Data steward

Group Leaders

DG Roles

- Data steward
- Data evangelist
- Domain expert

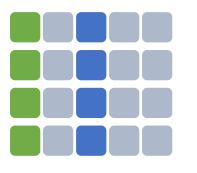
Metadata-Management is the key to a successful data governance strategy

		Metadata		Governance
Files	Technical	DatabasenameTablenameDatatype	Directory Layout	Auditable & Compliance
	Functional	DenominationClassificationTags		Security Standards
	Operational	Who? (Access)What & When? (Logs)Where? (IP)		Availability
	Data Lineage	 Data Origin and Transformation 		

Hortonworks (2016): BUILDING GOVERNANCE INTO BIG DATA

Metadaten-Management am Beispiel Hadoop

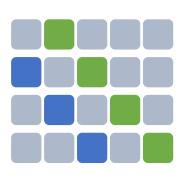
What is metadata?


- Data about data 🥥
- Metadata can describe a single piece of data, a dataset or collection.
- Standard types of metadata:
 - Descriptive: information about who created a resource, what it is about and what it includes (e.g. title, author, subjects, keywords etc.)
 - *Structural*: information about the way data elements are organized, their relationship and the structure they exist in (e.g. ER-model)
 - Administrative: information about the origin of resources, their type and access rights

(e.g. file type, date of creation etc.)

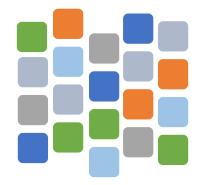
bo	ble with 4 oks, crea ⁻ e Dow			Descriptive	METADA	TA	
ID	Title	Author	Year	Cover	Edition	Price]
1	Emma	Austen	1815	Paperbac k	20th	€4,30	
2	Dracula	Stoker	1897	Hardback	15th	€ 10,00	
3	Ivanhoe	Scott	1820	Hardback	8th	€ 20,00	
4	Kidnapped	Stevenson	1886	Paperbac k	11th	€ 3,50	
Origin of resources: Book store Access rights: read only - everyone; write and read – Joe Dow Created on 5. January 2019							
Unsorted table; related to sales data; key is 'ID' Administrative METADATA							

What is data structure?


Data structure is the particular way of ORGANIZING & STORING digital information.

Structured data:

Information with a specific and high degree of organization (tabular form)

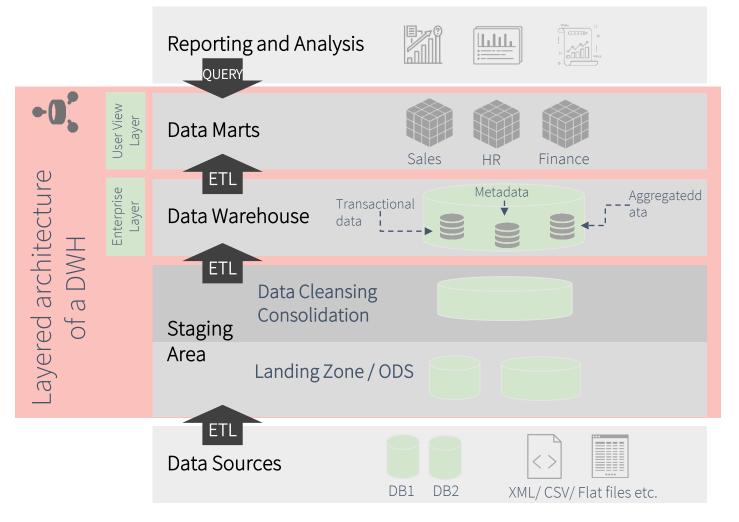


Semi-structured data:

Information with some degree of organization

Unstructured data:

Information with no predefined organizational structure


How do we store data?

	Data	abases	File System	Object Storage	
uc	Collection of stored data org and determined by the o database (e.g. ER-diagram) Relational DB	anized in lata model underlying the Non-relational DB	Store data in a space with a pre-defined scheme (e.g. a file hierarchy)	Store data as objects in a space with no pre- defined scheme Every file has a unique	
Definition	Based on relational data model (data is organized in tables) Structured Query Language (SQL) for querying the database	Based on any data model other than the relational model Examples include key- value stores, document stores and graph databases	ا ا ا ا ا ا	identifier, so it can be found (e.g. URL)	
Exam	 ☑ MS SQL Server, MySQL, ☑ Oracle 	MongoDB, Cassandra, Neo4J	NTFS (Windows), Hadoop Distributed File System, ext3	AWS S3 buckets Azure Blob Storage	

Why is it important to use the right data storage technology?

	Data	abases	(Distributed) File System	Object Storage
	Relational DB	Non-relational DB		
Use Case	Store medium-sized data (difficult to scale) Strict data consistency has to be ensured Complex queries for analysis of data	Data model together with rows	Store data in various form Large volumes of data	ns (structured, unstructured etc.)
Example	Storing data on customers and their bank accounts (e.g. balance), where strict consistency is absolutely required	Storing and retrieving chatbot conversations from a website, where low latency for chatbot to respond is ensured	Storing social media conter data and sensor data (e.g. (nt, e.g. pictures, alongside user- GPS)

What is a Data Warehouse?

"A Data Warehouse is a subject oriented, integrated, non-volatile and time-variant collection of data in support of management decisions"*

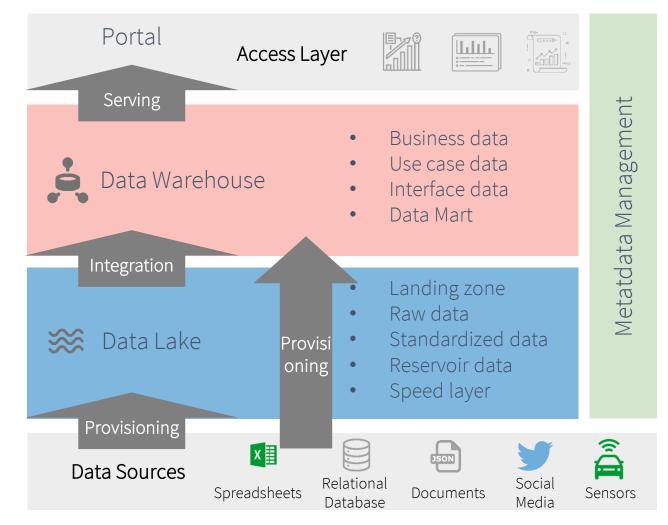
*Source: Immon, WH. Building the Data Warehouse

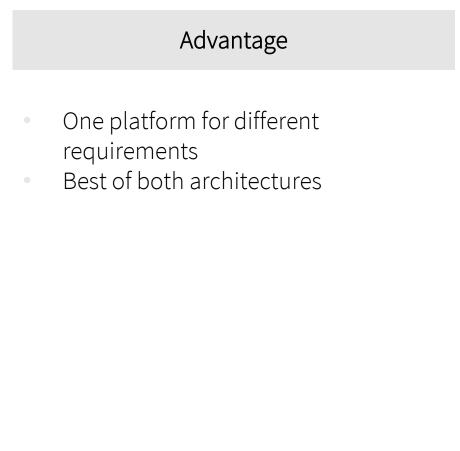
What is a Data Lake?

Reporting and Analysis

A Data Lake is a modular system of data storage and processing technologies. Like a DWH it is a logical concept rather than a tangible entity.

Benefits of a Data Lake

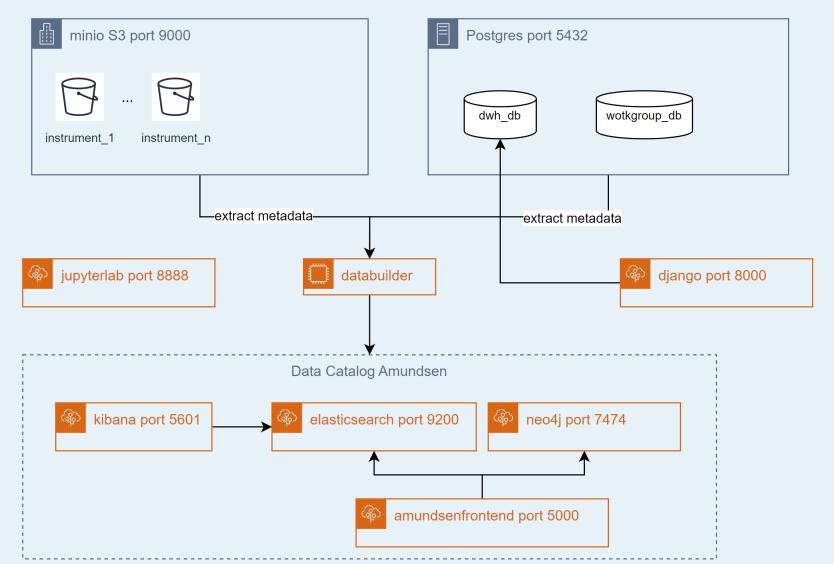

- stores all kinds of data, e.g.:
 - Structured Tables
 - o Text Documents
 - Pictures
- Central entry point for data access


What are the differences between a DWH and a Data Lake?

Data Lakes are not necessarily always the better architecture, each architecture has its pros and cons

	Data Warehouse	Data Lake		
Data Sources	Structured data Traditionally medium sized amounts of data (although high scalability available by now)	All kinds of data, both structured and unstructured Large volumes of data		
Use Cases	 Reports (dashboards, visualizations etc.) Data Analysis on structured data 	 Data Analysis on large data and unstructured Data, such as text or image 		
Agility & Effort	Data must often be transformed structured, and cleaned before storing Protection of doing the same thing Large initial effort	 Storage of raw data (danger of data swamp) and preparation steps often multiple times Transformation for analysis usually expensive Easier for prototypes 		
Set-up	Mature architecture Expertise is more available Easier maintenance and config.	 Due to modularity more complex configuration Up-to-date experts required 		

How can both architectures be combined?



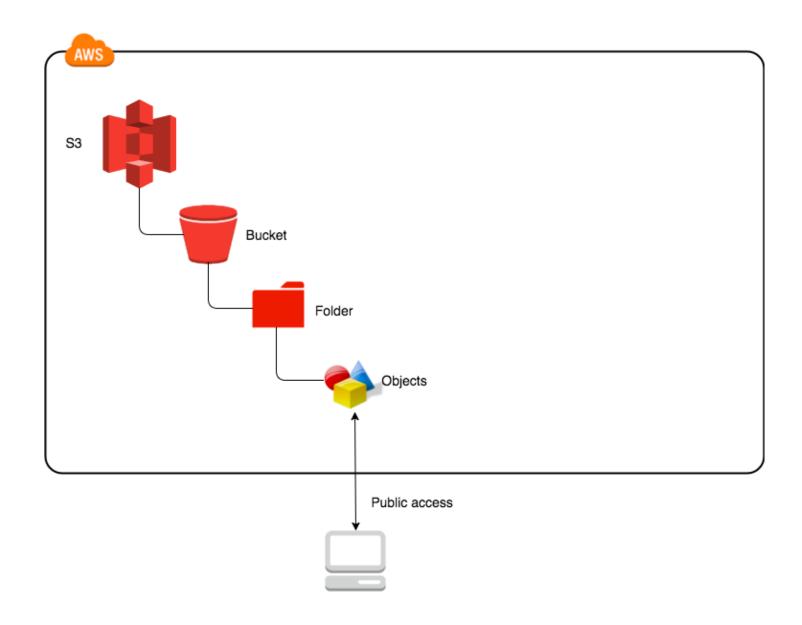
4. Chosen Solutions

Ē

Solution Space

Work in progress

Docker

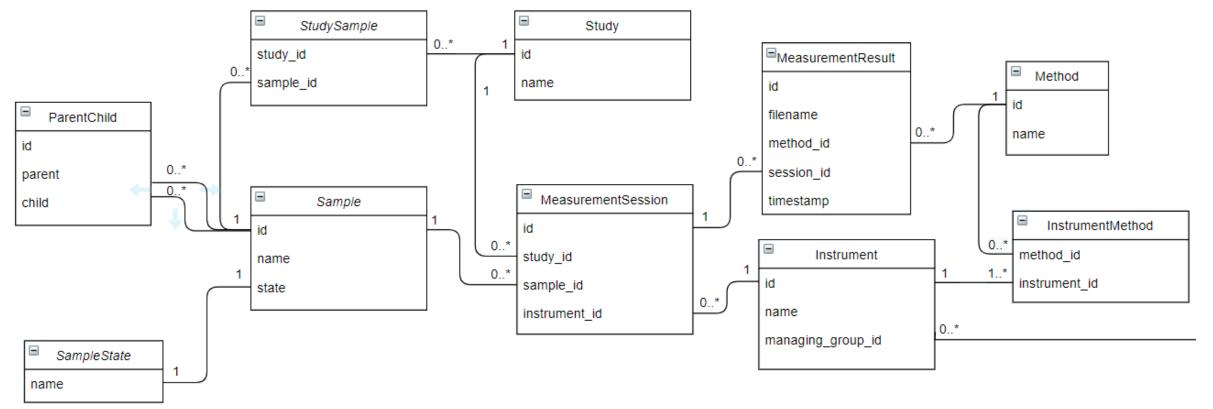

- Containers for running microservices
- Isolated environments
- Needs less resources than a VM

Minio

- Object storage
- Same as Amazon S3
- Can store any kind of data

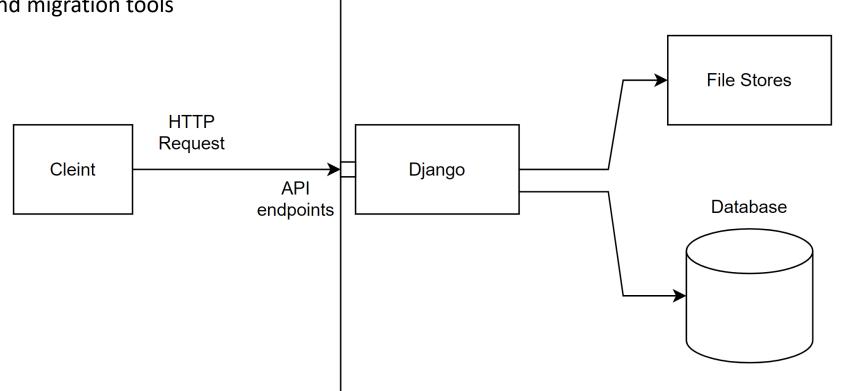
MINIO

- Buckets hold objects
 - Define access rights
- Objects have immutable metadata
- Client can access data over API


PostgreSQL

- Relational database
- Used for storing structured data
- Transactional data and data warehouse
- Strict and robust data models

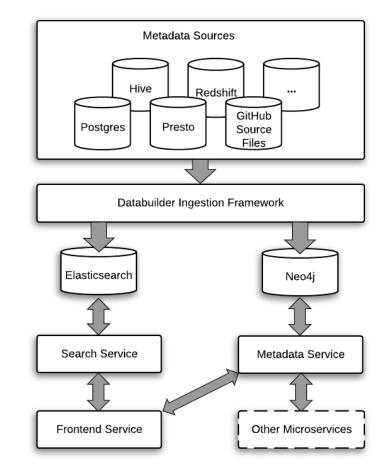
- Used for storing:
 - Transactional Data
 - Data Warehouse tables


Django

- Back-end Web application framework written in python
- Robust and scalable
- Used for providing REST API for accessing Relational Database

- API endpoints provide client with ability to CRUD database entries
- Will be used to connect front-end apps
- Access to File stores
- Django provides Authentication and Authorization to access resources
- Django provides convenient database schema history and migration tools

Amundsen

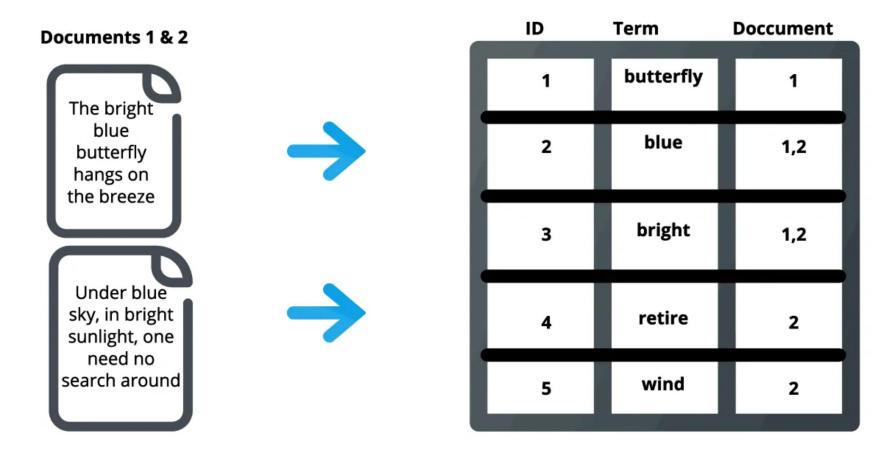

- Data catalog
- PageRank-inspired search algorithm
- Provides REST API for search engine

How does the data catalog work?

- Amundsen collects Metadata via the data builder ingestion framework
- Metadata and lineage data are stored in Neo4j and elasticsearch
- Metadata is made accessible via search interface
- Metadata can be made searchable for all users, whereas the content remains visible only with sufficient access permissions

Amundsen data catalog architecture

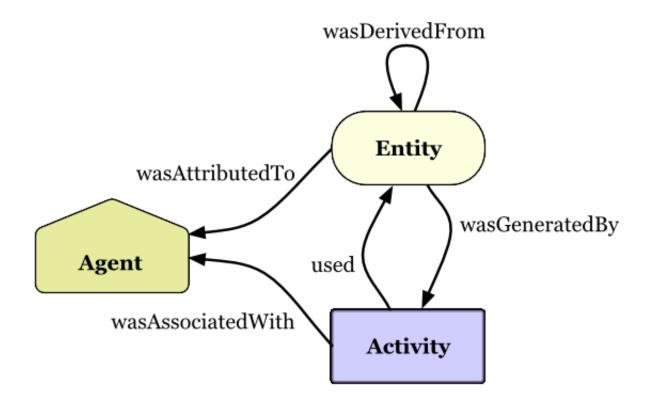
https://www.amundsen.io/amundsen/architecture/


Elasticsearch

- Search engine
- Service behind Amundsen's search library
- NoSQL data store
- Stores data as documents (like JSON)

Inverted Index

https://www.knowi.com/blog/what-is-elastic-search/


Neo4j

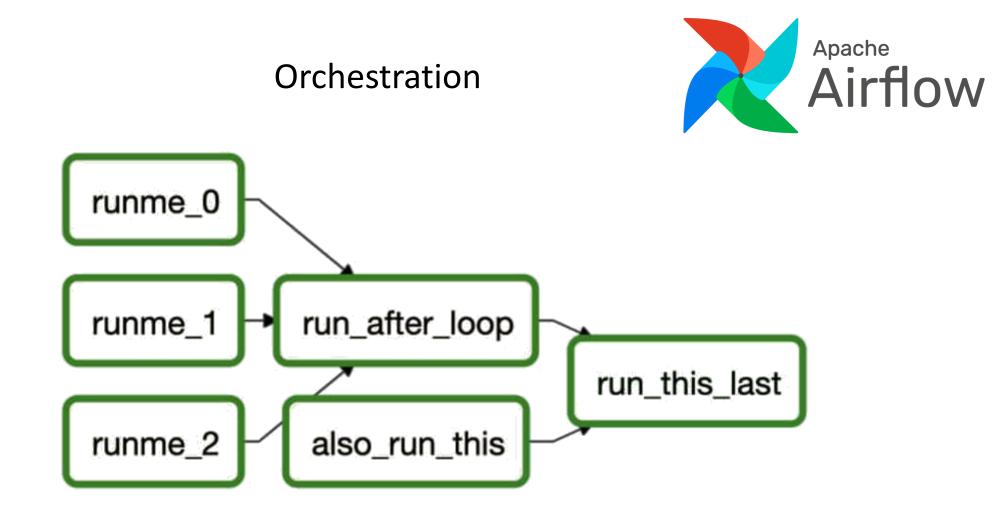
- Graph database behind Amunden's metadata service
- Stores 'Triples' (subject, predicate, object)
- Great for traversing relationships

Data Provenance

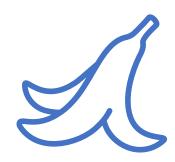


https://www.w3.org/TR/prov-primer/

ReactJS


- JavaScript framework ideal for building single-page apps
- Will be used for building front-end apps
- For user-interaction with Data Lake

Apache Airflow


- Orchestration tool
- Build for running complex cron jobs
- Will be used for ETL processes

https://www.qubole.com/tech-blog/apache-airflow-tutorial-dags-tasks-operators-sensors-hooks-xcom/

5. Lessons Learned and Pitfalls

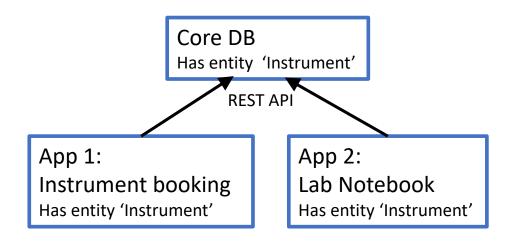
Solution Space

Provide Value as Soon as Possible

- Data Governance is a new concept to the organization
- Stakeholders expect immediate benefit
- Initial effort needed for back-end development does not immediately show value
- Set goal of a minimum viable product and achieve it in short term

Technological Debt

- Immediate needs at the cost of future needs
- Can result in substantial refactoring (technological debt)
 - E.g. CI-CD now or later?
- But are we really going to need it?
- Must be judicious about deciding when to incorporate components into the architecture


Preparing for the Long-term

- Product built by a team
- Teams change over time
- Keep good documentation
 - most maintainable when it is close to the code
- Automate documentation (e.g. Sphynx, swagger)
- Be diligent with writing unit tests and integration tests

'Single Source of Truth'

- Find central domain concepts
- Put in core layer of the DWH

6. Future Directions

Solution Space

Planned Features

- Git Repo for analysis code
- Jupyter Hub
- Logging analysis pipelines to get data lineage
- Curated data sets
 - E.g. Database of spectroscopy data
- Publishing pipelines

7. Summary

Problem Space

- Diverse requirements
- Non-conventional use case
- Overlapping roles

Solution Space

- Common Data governance Philosophies
- Common Data Governance Architectures
- Chosen solutions
 - Docker, Object storage (S3), RDBMS (PostgreSQL), Data catalogue (Amundsen), Orchestration (Airflow)
- MVP target
 - Get unstructured data into Data Lake with some additional metadata
 - Provide data access point