Vorhersage von E/A-Leistung im Hochleistungsrechnen unter der Verwendung von neuronalen Netzen

Jan Fabian Schmid Betreuer: Dr. Julian Kunkel

Universität Hamburg
2schmid@informatik.uni-hamburg.de

12.02.2016

Übersicht

Einleitung

Motivation und Ziele der Bachelorarbeit Modellierungsstrategien

Künstliche neuronale Netze

Modell des Ein-/Ausgabe-Pfads

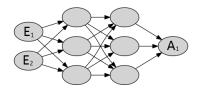
Messdaten

Attribute der Messdaten Exploration der Messdaten

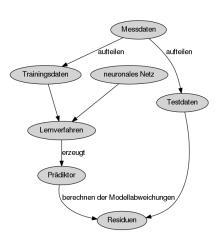
Modelle zur Leistungsvorhersage Ergebnisse

Einbeziehung des E/A-Pfads Fehlerklassen Ergebnisse von Modellen mit Fehlerklassen

Zusammenfassung

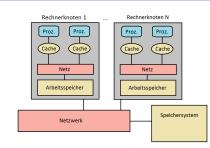

Motivation und Ziele der Bachelorarbeit

- ► Hochleistungsrechnen ist wichtig für die Wissenschaft
 - Verwendung massiv paralleler Systeme
- Effiziente Nutzung der Ressourcen ist schwierig
 - ► Hilfreich wäre ein Analysewerkzeug zur Beurteilung der Effizienz der Ein-/Ausgabe (E/A) eines Programms
- ► Ziel: Erstellung eines Modells für das E/A-System

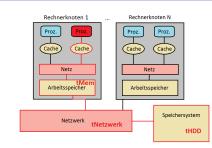

Modellierungsstrategien

- ▶ Meist nur E/A-Leistung auf einzelnen Festplatten betrachtet
- Zwei mögliche Ansätze:
 - ▶ White-Box-Modellierung
 - ► Black-Box-Modellierung

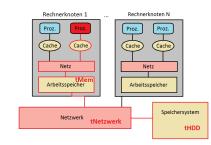
Künstliche neuronale Netze



- Verfahren des maschinellen Lernens
- Zur Regressionsanalyse verwendet
 - Überwachtes Lernen
- ► Trainieren durch Fehlerrückführung
- Mächtiger als lineare Regression


Modell des Ein-/Ausgabe-Pfads

- Verarbeitung eines Zugriffs entlang des E/A-Pfades
- Zugriffszeit wesentlich durch tiefe des Pfades bestimmt


Modell des Ein-/Ausgabe-Pfads

- Verarbeitung eines Zugriffs entlang des E/A-Pfades
- Zugriffszeit wesentlich durch tiefe des Pfades bestimmt

Modell des Ein-/Ausgabe-Pfads

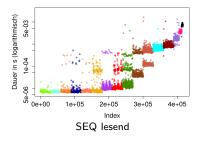
- Verarbeitung eines Zugriffs entlang des E/A-Pfades
- Zugriffszeit wesentlich durch tiefe des Pfades bestimmt

└ Attribute der Messdaten

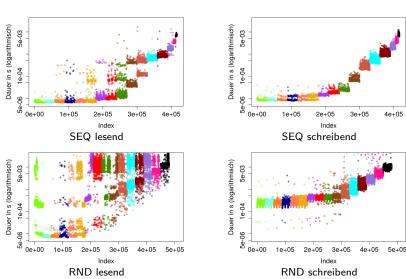
Attribute der Messdaten

- ► Parameter eines E/A-Aufrufs:
 - Datei ID
 - Zugriffsgröße
 - Operationstyp
 - Offset
 - Delta-Offset
- Messbare Größen:
 - Zeitpunkt der Anfrage
 - Zugriffszeit
- ► Keine Informationen über den E/A-Pfad

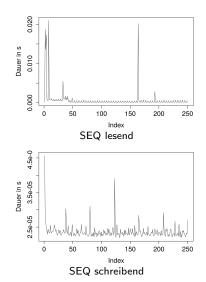
LAttribute der Messdaten

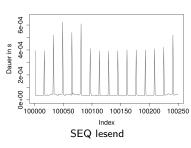

Benchmark-Tests

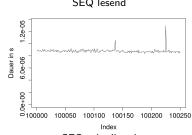
- Daten wurden zur Verfügung gestellt
- Zwei untersuchte Anwendungsfälle:
 - ▶ **SEQ:** Sequentieller Zugriff auf hintereinanderliegende Daten
 - RND: Zufälliger Zugriffsort
- Zugriffsgrößen von 1B bis 16 MiB
- Jeweils lesende und schreibende Messreihen
- Ausführung mit einem Thread


Hardwarekonfiguration des Testsystems Mistral

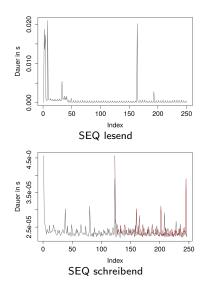
- Über 1500 Knoten
- 30 Petabyte Speicherkapazität
- Speichersystem Lustre

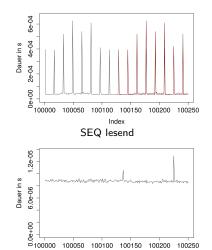

Messungen sortiert nach Zugriffsgröße




Messungen sortiert nach Zugriffsgröße

Detailbetrachtung: 250 Messungen auf SEQ



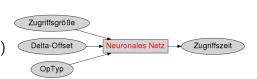


SEQ schreibend

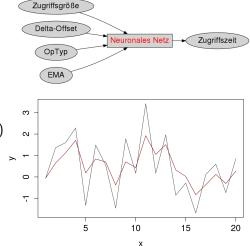
10 / 19

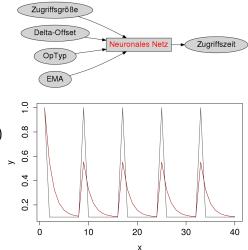
Detailbetrachtung: 250 Messungen auf SEQ

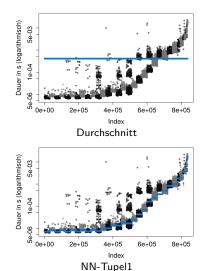
Index

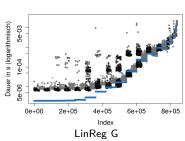

SEQ schreibend

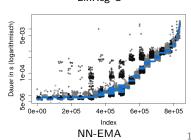
Durchschnittliche Zugriffszeit (Durchschnitt)


- Durchschnittliche Zugriffszeit (Durchschnitt)
- ► Lineare Regression nach der Zugriffsgröße (**LinReg G**)

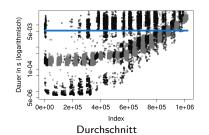

- Durchschnittliche Zugriffszeit (Durchschnitt)
- ► Lineare Regression nach der Zugriffsgröße (**LinReg G**)
- Einfaches Modell mit neuronalem Netz (NN-Tupel1)

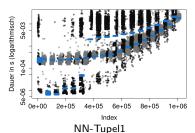

- Durchschnittliche Zugriffszeit (Durchschnitt)
- ► Lineare Regression nach der Zugriffsgröße (LinReg G)
- Einfaches Modell mit neuronalem Netz (NN-Tupel1)
- Ausnutzen zeitlicher Abhängigkeit mit dem exponential moving average(NN-EMA)

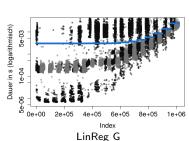


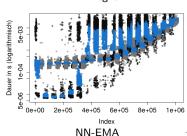

- Durchschnittliche Zugriffszeit (Durchschnitt)
- ► Lineare Regression nach der Zugriffsgröße (LinReg G)
- Einfaches Modell mit neuronalem Netz (NN-Tupel1)
- Ausnutzen zeitlicher Abhängigkeit mit dem exponential moving average(NN-EMA)

Modelle angewendet auf SEQ

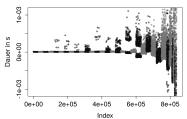






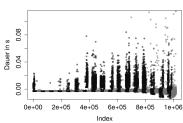

Ergebnisse

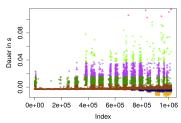
Modelle angewendet auf RND



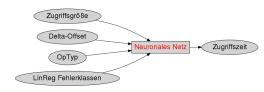
Einbeziehung des E/A-Pfads


- ▶ Bisher keine Unterscheidung von E/A-Pfaden
- ▶ Idee: Residuen eines einfachen Modells zur Bestimmung einer Näherung des E/A-Pfades eines Dateizugriffs nutzen
- ► Clustering der Residuen mit *k-Means* in 10 Gruppen
 - Diese bezeichnen wir als Fehlerklassen
- ► Fehlerklassen sind nicht für die Vorhersage von Zugriffszeiten geeignet
 - Dafür kann eine Näherung des E/A-Pfades bestimmt werden

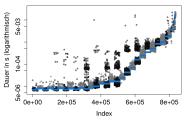

Erstellung der Fehlerklassen


Residuen von LinReg G auf SEQ

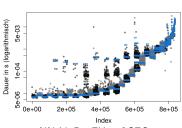
Farblich markierte Fehlerklassen


Residuen von LinReg G auf RND

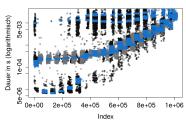
Farblich markierte Fehlerklassen


Modell mit Fehlerklassen

- Durchschnitt
- ▶ LinReg G
- ► NN-Tupel1
- ► NN-EMA
- Einfaches Modell mit neuronalem Netz und
 Fehlerklassen (NN-LinRegFK)


Ergebnisse von Modellen mit Fehlerklassen

Mit und ohne Fehlerklassen



NN-Tupel1 auf SEQ

NN-LinRegFK auf SEQ

NN-LinRegFK auf RND

Zusammenfassung

- Vorhersagen einfacher Modelle mit neuronalen Netzen gut für schreibende Zugriffe
- Lineare Modelle unzureichend
- ► E/A-Pfad entscheidender Faktor für die Zugriffszeiten
 - ▶ Keine Kenntnisse über den E/A-Pfad einer Messung gegeben
- Periodische Abhängigkeiten konnten nicht auf einfache Weise genutzt werden
- ▶ Unterscheidung von E/A-Pfaden durch Fehlerklassen möglich

Ende der Präsentation

Modell mit Fehlerklassen auf SEQ

Modell	MAE(s)	MAPE(%)	MSPE (%)	RMax (%)
NN-LinRegFK	2.0e-05	8.6	14	275
NN-EMA	5.7e-05	13.7	22	2336
NN-Tupel1	6.0e-05	14.1	22	295
LinReg G	7.6e-05	50.8	59	326
Durchschnitt	5.9e-04	2939.6	3757	6537

► MAE: mean absolute error

► MAPE: mean absolute percentage error

► MSPE: mean square percentage error

RMax: maximale relative Modellabweichung

Modell mit Fehlerklassen auf RND

Modell	MAE(s)	MAPE(%)	MSPE (%)	RMax (%)
NN-LinRegFK	0.00103	31	119	4272
NN-Tupel1	0.00313	103	530	21786
NN-EMA	0.00305	86	619	45320
LinReg G	0.00476	5578.4	14185	46941
Durchschnitt	0.00692	10243.5	26035	86139

► MAE: mean absolute error

► MAPE: mean absolute percentage error

▶ MSPE: mean square percentage error

RMax: maximale relative Modellabweichung

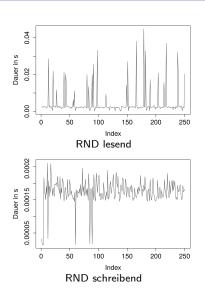
Reserve Folien

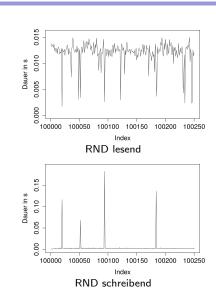
Ergebnisse der Modelle

Reserve Folien
Fehlerklassen

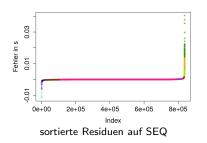
Fehlerklassen auf SEQ

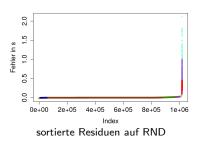
	gemittelte Angaben		Angaben zu den Residuen			zugeordnete Messungen	
Klasse	Durchsatz (B/s)	Größe (B)	Dauer (s)	Min (s)	Durchschnitt (s)	Max (s)	auf SEQ
1	3.8e+09	1.7e+07	0.00452	-1.2e-02	-1.1e-02	-6.7e-03	101
2	1.3e+09	1.2e+07	0.00948	-6.0e-03	-1.4e-03	-1.0e-03	2128
3	1.3e+09	6.1e+06	0.00490	-1.0e-03	-6.6e-04	-4.7e-04	8689
4	1.7e+09	1.8e+06	0.00137	-4.7e-04	-2.8e-04	-2.0e-04	38820
5	1.6e+09	9.4e+05	0.00073	-2.0e-04	-1.3e-04	-5.9e-05	71237
6	4.3e+08	1.1e+05	0.00011	-5.9e-05	9.2e-06	2.2e-04	682997
7	6.8e+08	1.6e+06	0.00193	2.2e-04	4.3e-04	1.1e-03	29496
8	7.8e+08	7.5e+06	0.00869	1.1e-03	1.9e-03	3.7e-03	3527
9	6.5e+08	1.2e+07	0.01653	3.8e-03	5.7e-03	1.1e-02	527
10	1.6e+08	4.1e+06	0.02094	1.1e-02	1.7e-02	4.0e-02	78


Reserve Folien
Fehlerklassen


Fehlerklassen auf RND

	gemittelte Angaben		Angaben zu den Residuen			zugeordnete Messungen	
Klasse	Durchsatz (B/s)	Größe (B)	Dauer (s)	Min (s)	Durchschnitt (s)	Max (s)	auf RND
1	1.4e+09	1.5e+07	0.0130	-0.0210	-0.0090	-0.0069	9467
2	9.9e+08	9.1e+06	0.0101	-0.0069	-0.0047	-0.0036	54371
3	2.3e+08	1.4e+06	0.0024	-0.0036	-0.0025	0.0036	825974
4	5.5e+07	1.2e+06	0.0143	0.0036	0.0096	0.0156	85462
5	6.1e+07	2.3e+06	0.0276	0.0156	0.0216	0.0366	37862
6	5.8e+07	4.0e+06	0.0598	0.0366	0.0516	0.0976	4695
7	3.2e+07	4.7e+06	0.1528	0.0977	0.1438	0.2066	1443
8	4.5e+06	1.2e+06	0.2741	0.2067	0.2696	0.4728	567
9	3.0e+05	1.6e+05	0.6956	0.4822	0.6923	1.0063	123
10	9.4e+02	1.0e+03	1.3627	1.0396	1.3597	2.1216	36


Reserve Folien


Exploration der Messdaten

Darstellung der Fehlerklassen nach sortierten Residuen

Ausblick

- ▶ Periodische Zusammenhänge im E/A-System besser ausnutzen
- Zusammenhang zwischen Fehlerklassen und E/A-Pfaden genauer untersuchen
- ► Fehlerklassen aus Residuen verschiedener Modelle vergleichen
- Problem beheben, dass die Residuen größerer Laufzeiten die Fehlerklassen dominieren