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Abstract

Modern high-resolution microscopes produce large amounts of image and metadata. To manage the data and
make it accessible for researchers and medical staff, Research Data Management (RDM) systems are utilised.
These are capable of managing users and groups, enabling collaboration between them, managing access
controls, and handling large data repositories. To extract insights and knowledge from the large amount of
data, computer-aided analysis workflows are needed.

This thesis designs a connection pipeline between the microscopy RDM system Open Microscopy Environ-
ment Remote Objects (OMERO) and the computing resources of a modern High-Performance Computing
(HPC) system. This allows researchers and medical staff to directly start analysis steps from the browser
without having to learn the usage of HPC job executions. This enables more users to integrate HPC usage
into their scientific workflows.

For this, an existing analysis workflow, CellDetectot, is evaluated. The requirements are grouped into five
categories: performance, usability, security, scalability, and transferability. Based on the requirements, a
pipeline design is created that establishes a secure connection between the OMERO system environment and
the HPC system environment. The connection utilises the SSH forced command mechanism to limit access
to the HPC system, securing both the user space and the HPC system. Additional integrated user interfaces
are created to initiate the analysis steps and improve usability.

After implementing the pipeline with the CellDetector workflow, the system is evaluated. The updated work-
flow shows improvements in performance and usability while remaining secure and scalable. Furthermore,
the proposed pipeline design is transferable to similar system environments.
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Chapter 1

Introduction

Over the past few years, many research areas have experienced a significant increase in the volume
of data generated. As a result, the demand for analysis and processing capabilities for large datasets
is also increasing [1]. High-Performance Computing (HPC) systems can help researchers process
these large amounts of data within reasonable timeframes [2]. However, connecting existing
systems to HPC resources can be cumbersome and complicated for users, disrupting established
workflows [3].

One research area that produces large amounts of data in the form of high-resolution microscopy
images, in various formats and sizes, is neuropathology [4]. To extract knowledge from these
images, the often large datasets must be analyzed promptly or prepared for further processing.
The goal of this thesis is to develop a pipeline design proposal to connect the open-source Research
Data Management (RDM) system, Open Microscopy Environment Remote Objects (OMERO),
with HPC resources and to create support for image analysis. In this use case, the OMERO
system used at the Universititsmedizin Gottingen (UMG) will be connected to the HPC system
at the Gesellschaft fiir wissenschaftliche Datenverarbeitung mbH (GWDG) to improve existing
workflows.

OMERO supports a wide range of microscopy file formats from various manufacturers, making it
a suitable system for the centralized storage and management of images [5]]. To support the staff at
the UMG, a workflow was created to analyse tissue sample images and detect cells. In the next
step, the analysis results are used to further train a pre-trained Artificial Intelligence (AI) model,
thereby creating an image recognition model for specific cell types. The Al model can then be used
on new images to assist the user in identifying and quantifying these cell types in parts of the
tissue sample and to recognise the state of a medical condition of a patient or use the analysis for

research.
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1.1 Goal Definition

The current pipeline has certain limitations that require improvement. The primary challenges are
the long processing times and the system’s complexity for users without a background in computer
science.

From these challenges, several Key Performance Indicators (KPIs) can be derived:

* Performance: Wall-clock time required for the different processing steps to complete success-

fully.
¢ Usability: User experience when working through the workflow steps.
¢ Security: System and data security when connecting different system environments.
e Scalability: Accommodate increasing numbers of users and data.

* Transferability: Extending the pipeline design to different workflows and being able to apply
the pipeline approach to other similar system environments.

These challenges give rise to several research questions, which will be addressed in this thesis and
are presented in Table

Name | Research Question

Q1 | What are the options for improving the performance of analysing
and processing microscope images by utilising HPC resources?
Q2 | How can the operation of the HPC resources in this workflow be
made more user-friendly?
Q3 What potential security issues could arise, and how could they be
addressed or minimised?
Q4 What aspects need to be considered as the amount of data, number
of users, and future workflows grow?

Table 1.1: Research Questions

1.2 Research Methodology

The research methodology used for this thesis is the Design Science Research Process (DSRP)
Model [6] which is a Design Science approach for information systems. Similar to other Design
Science Research methodologies, DSRP involves the design of an artifact intended to address a
particular problem, followed by an evaluation of the artifact. The six activities from the model will

be followed and evaluated based on the described use case. The activities are as follows:

1. Problem identification and motivation: This activity analyzes the problem of the use case

and how the solution can offer value.
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1.3

Objectives of a solution: The objectives of the work will be identified by examining the
stated problems and reviewing related research.

Design and development: This activity describes the design and implementation of the
desired artifact. It includes the functionality and architecture, as well as the process by which

the design solution is developed.
Demonstration: The completed artifact will be tested in the context of the use case.
Evaluation: The results will be assessed and evaluated.

Communication: The thesis, along with the discussions with potential users about the

solution, represent the communication.

Contributions

By addressing the research questions, several contributions will be presented in the following

thesis:

1.4

Proposing an improved pipeline design based on the requirements and an analysis of the

current system.
Improvement of performance to allow for a more efficient workflow.

The workflow’s usability will be improved to make it more accessible to a larger group of

users.

Integration of a secure communication method and secure data exchange between the

systems.

The scalability and transferability of the systems in the pipeline, with regard to future
workflows, will be ensured.

Structure

The thesis consists of seven chapters and is structured as follows:

Chapter 2: The current state of the existing system is analysed and a requirements analysis is
conducted. Based on the requirements, the main KPIs are identified and prioritised.

Chapter 3: In this chapter, background information about the data management system
OMERO and the topic of HPC is provided. The related literature is analysed.

Chapter 4: The general pipeline design is developed by evaluating options and proposing a
general system architecture.



CHAPTER 1. INTRODUCTION
¢ Chapter 5: Based on the design concepts and requirements, an implementation of the pipeline
in the context of the use case is conducted.
¢ Chapter 6: The workflow is evaluated with the help of the identified KPIs.

e Chapter 7: This chapter draws a conclusion and proposes topics for further research.



Chapter 2

Current State and Requirement Analysis

To improve and expand the current workflow of the use case, the requirements of such a system
have to be identified. To do this, Section 2.1 gives a few insights into the use case. Section 2.2
describes the current state of the running workflow and in Section 2.3 a requirement analysis is
done. With these results, multiple KPI can be derived to measure the changes.

This thesis is about connecting the RDM system OMERO with HPC resources to improve mi-
croscopy image analysis. To do this, an existing workflow will be adjusted and integrated. The
system and workflow this thesis describes and wants to improve, is created by Dr. med. Jonas
Franz from the UMG and the Institute of Neuropathology. The existing system is presently in use
at the UMG and connects to ressources of the GWDG. In the context of this thesis a limited set of

research data is used for improving the system.

2.1 Use Case Description

The Institute of Neuropathology employs both traditional and digital microscopy for diag-
nostic and research purposes. One technology, which is part of digital microscopy, is Whole
Slide Imaging (WSI). To enhance the diagnosis quality and accelerate research, Whole Slide
Images are widely used in the field of neuropathology [4]. WSI is often called "virtual mi-
croscopy” [7] and it tries to improve on conventional light microscopy through a computer-
generated model [8]. WSI has several advantages over traditional microscopy but also sev-
eral limitations. The advantages include workflow improvements, like remote access to the
images, sharing of images and simultaneous access. Furthermore the image and staining qual-
ity does not deteriorate over time [8]. The digitisation of the images also enables computer-
aided analysis, like in this use case. The limitations and challenges include, the high initial
cost for the scanner, storage and network infrastructure and possible image fidelity differ-
ences [9]. To obtain a WSI, several steps have to be performed in the laboratory of the UMG.

5
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Figure [2.1]illustrates a typical workflow required to create WSIs. The steps can
vary depending on factors like chemicals used, time, temperature and many oth-
ers. At first, a tissue sample must be collected. In neuropathological diagnostics
the sample is obtained through a biopsy or in the case of a deceased person,
during an autopsy examination. To fixate the tissue sample and preserve the
cellular structure, a fixative, such as phosphate formalin, is used. The fixative
depends on the tissue type and the time in this process can influence the staining
step. Afterwards, the fixative and other fluids are cleared with alcohol, which
is subsequently removed. In the next step, the specimen is embedded in a sup-
porting material, such as paraffin wax, chilled, and then sectioned into thin slices
using a microtome. Any folds are afterwars removed with the aid of a water bath.
To highlight certain components of the specimen, chemical compounds are added
as dyes. The chemical reactions of these compounds provide valuable informa-
tion for an analysis. The prepared samples are covered with a mounting media
and protected by a glass cover. The final step involves scanning the specimen
using a WSI scanner. The scanner is capable of operating in bright-field mode,
using fluorescence illumination, or combining both techniques. Different scales
and magnification levels can be applied during scanning. Various WSI scanner

vendors employ distinct file formats and metadata conventions [10].

Figure [2.2|shows an example of a WSI in different magnification levels and with
two highlighted dye channels. The green channel, fluorescein isothiocyanate
(FITC), is used to visualise certain proteins and cellular structures, while the
blue channel, 4,6-diamidino-2-phenylindole (DAPI), is used to visualise cell
nuclei as it binds to DNA. The digitised images can subsequently be used for
visual observations as well as for computer-assisted analysis. High-resolution
images are typically multiple gigabytes in storage size and some can reach up
to 40 gigabyte [11] [12]. To visualise and manage the images, vendor tools or

/ / \
/ \

Fixation, %
Clearing

Embedding
I \

Sectioning
@
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Scanning

=

Figure 2.1:
WSI
tion steps

acquisi-

open-source tools, such as OMERO, are used. To store the images, sufficient storage capacity in a

data repository must be reserved.

Figure 2.2: Example: WSI of a mouse tissue section
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The main goal of this project is to design a pipeline for microscopy analysis workflows
based on the existing approach. The design choices aim to enable broader adoption of these

workflows by researchers and medical staff.

The workflow is part of the project "CellDetector: Deep transfer learning based classification
of single cells in tissue" by Dr. med. Jonas Franz [13]. Regions of Interest (ROIs) of the tissue
are annotated on the WSI in OMERO. With these WSI a nuclei detection algorithm and image
analysis is started. Based on the results of this step, the pre-sorted cells must be annotated in a web
application. The images and corresponding annotations are used to train a neural network (NN).

The resulting model can then be used to support users in subsequent research and analysis steps.

2.2 Current State

The architecture of the current system consists of several components of the UMG and GWDG
and is illustrated in Figure The source of the WSI are the WSI-Scanners of the UMG and their
image repositories. The images originate from different teams and include important research data
and/or highly sensitive health data of patients, and therefore have to be handled confidentially
and securely. Workstations are used to analyse the images and to prepare the image data for further
processing.

The current workflow depicted in this thesis uses the open-source RDM system OMERO. An
OMERO server instance is deployed across two virtual servers provided by GWDG. One virtual
server hosts the OMERO.web software, while the other hosts the OMERO.server software and the
data repository. Two additional virtual servers from the GWDG are used for the image processing
steps. One server functions as a relational database server running PostgreSQL, while the second
server operates as a web server using Jupyter Notebook with the Voila extension to create a web
application. To gain information from the WSI, the images are analysed using the HPC system of
the GWDG. The connection to the HPC login node is via Secure Shell (SSH) and the associated
public-private key encryption over a shell user interface.

The current workflow consists of three steps:
* Preprocessing: Analysing the images and preparing the necessary data for the training step.
* Neural Network Training: Training a NN model with the data of the preprocessing step.

¢ Neural Network Prediction: Using the NN model on new and existing image data to help

the medical/research staff.

Step 1: Preprocessing: The preprocessing step is needed to analyse the images and gather the
data needed to train the NN model. The preprocessing itself consists of three steps. For this part
of the workflow, the user utilises Apache Airflow. Apache Airflow is an open-source workflow
management software and is used for data engineering pipelines [14]. The data pipelines are
depicted as Directed Acyclic Graphs (DAGs) and consist of nodes and connections. The nodes
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Figure 2.3: Overview of the system architecture

represent tasks which can be code (e.g. Python, Bash) and the connections represent the order in
which the tasks are executed. The DAGs themselves are written in Python. One DAG represents
the preprocessing steps and executes these automatically in the right order after the DAG is started.
First, the user gathers the image IDs in OMERO using the web interface (OMERO.web) and
prepares a list of these IDs in the form of a Comma-Separated Values (CSV) file. This list serves
as the input for the preprocessing DAG. Another important input for the preprocessing step are
the ROIs. The user has to annotate specific areas in the WSI to specify and differentiate parts
of the sample (e.g. tissue, hole). These annotations are performed in the OMERO.web interface.
The output of the DAG consists of files required to initiate work on the HPC and to prepare for
the subsequent steps of the workflow. The necessary files have to be transferred over the the
default SSH port 22 to the HPC-system and saved on its storage nodes. On the HPC login nodes,
processing of the WSI can be initiated using the Slurm Workload Manager. The Slurm Workload
Manager is an open-source job-scheduler, that distributes workloads across the HPC compute
nodes [15]. The three scripts of the preprocessing step are started, with a Slurm template, in a fixed

order.

1. Zarr file creation: The first script uses the Python Application Programming Interface (API),
OMERO.py, to connect to the OMERO.server. By default, this connection uses port 4064
on the OMERO server and operates over the Transmission Control Protocol (TCP). The
script transfers the pixel data of the selected WSI and creates a new Zarr file with this data.
The Zarr file format is an open standard for the storage of large multidimensional arrays.
The Zarr standard supports high-throughput distributed I/O on different storage systems.
A Zarr file is a directory-based file in the form of a grid of chunks, each as its own file,
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that store the multidimensional array and additional metadata files, that describe the file.
This format enables random access to subsets of huge datasets and allows for parallel and
distributed workflows [16]]. The chunks can be compressed to reduce storage requirements,
and programs can read and write only the necessary chunks, thereby reducing memory
usage. The pixel data of the WSI is then stored as a Zarr file on the HPC storage for further

analysis steps.

2. Cellpose: In the next step, the Python script retrieves the pixel data of the WSI from the
OMERO.server and prepares it for the initial image processing step. To extract information
from the raw WS], it is necessary to differentiate objects within the image data. This process
is often performed manually by research members and medical staff, but it can be accelerated
with the use of image segmentation tools. One such a tool is Cellpose, a generalist algorithm
for cellular segmentation [17]. It is a deep learning-based model that is trained on over
70,000 segmented objects of cells. It supports 2D and 3D image data. Cellpose differentiates
and segments cell bodies, membranes and nuclei. With the the prepared WSI and Cellpose
the script analyses the image data for cell nuclei by using the deep learning model. The
output consists of a list containing the results from Cellpose, along with additional image
data statistics required for the subsequent steps. This list is stored on the HPC storage and is
uploaded to the OMERO.server with the OMERO Command Line Interface (OMERO.cli)
and is attached to the image as an annotation file.

3. empirical Cumulative Density Function (eCDF): The final step of preprocessing involves
calculating the eCDF over the ROIs defined in OMERO. The script uses the OMERO.py API
to connect to OMERO and get the polygonal regions. The Zarr file stored on the HPC is
used for this step. For each distinct region, the eCDF is calculated. The eCDF is an empirical
distribution function that measures what fraction of the data is less or equal to a given value
and is in this case used to analyse background noise and colors of the regions of the image.
The outputs of this step are the eCDF values, which are saved on the HPC storage and
uploaded to the OMERO.server using OMERO.cli, where they are attached to the images as
annotation files.

Step 2: Neural Network Training: The next step of the workflow is the annotation of the cells for
the training of the NN. For this step the current system uses Jupyter Voila as a web application.
Jupyter Notebook is an open-source tool that integrates code, text, and visualizations in a single
document and is frequently used in teaching and research [18]. Jupyter Voila is an extension to
Jupyter Notebook and turns a Jupyter Notebook into a web application. This web application is
the user interface to annotate the cells. To reduce the number of cells that must be annotated, a
preselection is performed using the additional results from the preprocessing steps. This process
filters out cells that are less likely to belong to the target cell type, intentionally introducing a
bias into the dataset. Each user loads its own generated data and sees multiple images of one
cell candidate in different perspectives. The user can then decide whether a cell belongs to the



10 CHAPTER 2. CURRENT STATE AND REQUIREMENT ANALYSIS

selected cell type, does not belong, or should be skipped. After submission, the next candidate cell
is presented. The cell annotations are stored for each user on the PosgreSQL server.

With the results of the cell annotation and the second DAG, a pretrained ResNet-50 model is
trained on the HPC compute nodes with the open-source deep learning framework PyTorch.

Step 3: Neural Network Prediction: The final step of the workflow is to apply the trained NN
model on existing and new WSIs. For this purpose, a prediction Python script is executed on the
HPC compute nodes, using the outputs of the Cellpose step to classify the cells. The predictions of
the classification are stored on the HPC storage.

The third and fourth DAG are used to visualise the results in OMERO.web. It duplicates the WSI
in OMERO and creates ROIs which indicate all predicted Cells and their percentages. Additionally,
statistics are computed, such as the cell density within a specific ROL

The system has currently one user that utilises the whole workflow, Dr. med. Jonas Franz, and
several users that are only utilising a small part of the workflow, like the annotation of cell images.
All users are part of the Institute of Neuropathology. Depending on the WSIs, the number of WSIs
and on the storage size of the WSIs, the processing of the workflow can take multiple days of
compute time. Based on these observations of the current system, a set of requirements can be
derived to improve the workflow.

2.3 Requirement Analysis

To create a transferable pipeline, that connects the RDM system OMERO with HPC resources,
it is necessary to define requirements for the design process and analyse the constraints. The
requirement gathering is split into two phases, the requirement elicitation and the requirement
analysis. The requirement elicitation is about gathering the raw requirements of the stakeholders
and discussing their needs [[19]. A part of this elicitation phase is already presented in Section 2.2
as part of the overview of the current system. The requirements could be gathered from observing
the workflow, looking at the existing code repositories and in discussions with the project manager,
Dr. med. Jonas Franz. These requirements consist of a number of functional and non-functional

requirements.

Constraints: The requirements that define boundaries for the system and the design of
the solution are called constraint requirements and are shown in Table

The goal of the thesis sets key requirements, that translate to constraint requirements. For this
use case it is a requirement to utilise the existing OMERO system and its data repository. The
workflow is also already working and should be adapted to the new design proposal, instead of
rewriting it. Developing a pipeline between OMERO and HPC resources also requires an HPC
connection between those two.



2.3. REQUIREMENT ANALYSIS 11

Requirement ID

Description

CR-01 The RDM system OMERO shall be used as data repository and
frontend Web application.

CR-02 The existing OMERO.server, OMERO.web and the existing data
repository shall be used.

CR-03 The existing Python code base for the workflow should be used
and adapted.

CR-04 The compute-intensive processes shall run on a HPC system.

CR-05 The OMERO.server and the HPC system shall be connected to

run processing steps.

Table 2.1: Requirements: Constraints

Usability: One important goal of this project is to enable more users to execute more

parts of the workflow, especially concerning the connection to the HPC resources. Table

describes the requirements connected to the usability of a new solution.

Requirement ID | Description

UR-01 One or multiple graphical user interfaces (GUI) shall be developed
for parts of the workflow and replace the need for a shell user
interface.

UR-02 The GUI shall connect to the data of the OMERO.server.

UR-03 The GUI should be started from the OMERO.web interface.

UR-04 The GUI shall connect OMERO to the HPC resources.

Table 2.2: Requirements: Usability

A challenge of the current system is, that most of the possible users do not have much experience

with HPC systems and shell user interfaces. The requirements for creating a GUI aim to make the

user experience more accessible and to remove potential barriers for new users. By integrating the
GUI into OMERO.web, the process is further streamlined.

Performance: The steps described in Section 2.2 are computationally intensive and bene-

fit from scalable HPC resources. This results in the requirements shown in Table

Requirement ID

Description

PR-01 Compute bottlenecks shall be identified.

PR-02 1/0 bottlenecks shall be identified.

PR-03 Network bottlenecks shall be identified.

PR-04 The performance/efficiency of the largest bottlenecks should be

improved.

Table 2.3: Requirements: Performance

HPC resources are suitable for scalable workloads. By designing a connection to the HPC system,
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it is important to understand the current limitations of the current code base, system architecture
and data management and search for solutions to improve the utilisation of the HPC resources. If

the analysis identifies any areas for improvement, they should be addressed.

Security: The management of sensitive image data and the secure connection to the HPC
system have to be taken into account. Table 2.4]lists the requirements connected to security.

Requirement ID | Description

SeR-01 Management, transfer and processing of the WSI shall be secure
and confidential.

SeR-02 The connection to the HPC shall comply with the security stan-
dards of the HPC.

SeR-03 Access to the OMERO server and its data repository shall be
secure.

Table 2.4: Requirements: Security

The WEIs represent scientific images, data, and patient information. Therefore, it must be ensured
that only the responsible scientific and medical staff have access to this data. The access has to
be limited for the entire data lifecycle in this workflow. Furthermore, connecting two different
systems, such as the virtual servers and the HPC system, can introduce additional attack vectors.

It is important to identify these vulnerabilities and mitigate or minimize the associated risks.

Scalability: Table lists the requirements that allow the system to reach a broader user

base by scaling up its technical capacity.

Requirement ID | Description

ScR-01 The data repository should be able to scale according to the de-
mand.

ScR-02 The Web application should be able to scale with an increase in
users.

ScR-03 The processing infrastructure should be able to support an in-
crease in workloads.

Table 2.5: Requirements: Scalability

The WSI require sufficient storage capacity and the demand increases with each new user and
team. The system should be able to adapt accordingly. The same considerations apply to the
user-oriented web interface and the processing infrastructure.

Transferability: The design of this use case should be applicable to other similar work-
flows. The transferability requirements can be seen in Table

The pipeline developed in this thesis is designed to enable similar workflows, using OMERO as
the data management system and an HPC system for computationally intensive processing steps.
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Requirement ID | Description

TR-01 The new GUI design shall be transferable to other workflows.

TR-02 The OMERO - HPC connection shall be applicable to other work-
flows.

TR-03 The workload distribution on the HPC system shall be transfer-
able to other workflows.

Table 2.6: Requirements: Transferability

Therefore, it is important that the developed components and design work in comparable system
environments.

The requirements listed in this requirement analysis are already categorised into different
groups. While the requirements guide the design of the pipeline and its components, Key
Performance Indicators can help with decision making, success measurement and prioritising [20].
The identified requirement groups represent KPIs that should be achieved. Table[2.7]describes the
KPIs and how the success of the KPI can be achieved.

KPI Name Description Measurement Method
Performance The time the compute-intensive workloads | Slurm output logs, pro-
need to compute. filer, timed tests
Usability The User Experience for the improved parts | User feedback, user sto-
of the workflow. ries
Security The process, data and system security of the | Security analysis
system.
Scalability The technical scalability of key components. | Pipeline design proposal
Transferability | The transferability of the key components to | Pipeline design proposal
other similar system environments and use
cases.

Table 2.7: List of KPIs

The Constraint Requirements are integrated into the whole development process and are not a KPI.
Each of the other categories of requirements represent a general KPI as a goal. The performance
KPI can be measured and timed and a comparison with the existing system can be drawn.
Feedback from the target group and user stories help to assess the usability. For the security KPI,
an analysis of the threats and vulnerabilities can be made. The success of the KPIs for scalability
and transferability depends on the decisions made during the system’s design process and the
constraints of its operating environment.

The collected requirements and KPIs serve as the foundation for the design and evaluation stages.



Chapter 3

Basics and Related Works

The previous chapters mentioned the RDM system OMERO, some of its system components,
and High-Performance Computing. This chapter explains these systems in more detail and
provides information that will later be necessary for designing the new pipeline. Section 3.1
gives an introduction to OMERO while Section 3.2 gives an overview about HPC. Section 3.3
is a literature review and and analysis of the related work.

3.1 OMERO

Research Data Management (RDM) is an important part of research in all fields. RDM includes all
activities that organise, store, share, document and preserve research data. By adopting a RDM
strategy it ensures to improve the scientific quality, reliability and the efficiency of scientific work.
A widely accepted guiding principle for RDM is FAIR [21].

The FAIR foundational principles are Findability, Accesibility, Interoperability and Reusability.
These foundational principles include 15 principles to allow for machine-actionability and better
data management and they guide data producers and publishers in activities concerning digital
research [22]. These principles extend to all types of research data and activities. In the context of
this thesis, the focus is on bioimaging data.

Bioimaging refers to technologies for viewing biological samples and observing processes and
structures of the subject. The technologies included are light microscopy, digital microscopy,
electron microscopy, ultrasound, computed tomography scan (CT-scan), magnetic resonance
imaging (MRI) and others [23]. Bioimage research data management systems enable RDM
strategies for bioimaging research. Over the years some bioimaging research systems have been
developed, like Bio-Image Semantic Query User Environment (BisQue) [24], Cytomine [25],
OMERO [5] and more. They all share the goal of enabling better support for collaborative research
with large image formats.

The focus for this thesis is OMERO. OMERO was first published in 2012 and is now the most
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widely used bioimaging RDM system [26]. OMERO is an open-source server software developed
by the Open Microscopy Environment (OME) consortium. It aims to reduce vendor lock-in
situations because imaging systems often use specialised hardware and software solutions,
resulting in proprietary file formats [5]. OMERO supports over 150 file formats and creates
new standard file formats, like OME-XML, OME-NGFF and OME-Zarr, to make existing file
formats interoperable for different systems. This is mostly done by mapping file informations (e.g.
metadata) to a standardised schema, the OME data model [5]. The OMERO system consists of
different components and table[3.T| presents the core components, each of which is described in
greater detail below.

Name Description

OMERO.server | Core server application for management of scientific image data.
OMERO.web Web-based interface for the OMERO.server. Allows users to inter-
act with the image data.

OMERO.insight | Desktop client for OMERO.server. Handles the uploading of
image data.

OMERO.cli Command-line interface for OMERO.server.

OMERO API Programming language bindings for software development. Pro-
vides API to access and manipulate image data.

Table 3.1: OMERO core components

The OMERO.server is the core component of OMERO. It is a java-based server application
software and consists of multiple systems and features [27]. Figure 3.1|shows a overview of some
its parts.

OMERO.grid

OMERO.blitz

RDEMS File
(Indexing) Storage

Figure 3.1: OMERO.server architecture
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The OMERO.server software is responsible for coordinating the data storage and data management,
user management and access control, data import and export and it provides interfaces for other
systems. The data storage is split in multiple parts, the image data repository, OMERO.fs, that
stores the image data in its original data format, a pixel storage and a database in which the
metadata of the image is saved in form of the OME data model and a link to the associated image
file. By storing the image in its original file format, it is possible to retain all information and it
eliminates the need to duplicate the image when preserving the original image and the image
in the OME data model format. The database is a Relational Database Management Software
(RDBMS) like PostgreSQL and OMERO supports indexing for faster search queries [5] [27].
OMERO.grid is unifying several components of OMERO. It is used to to monitor and control
processes that can be distributed over numerous remote systems. With OMERO.grid it is possible
to manage multiple OMERO.server process nodes and storage repositories and manage them
as one system [5] [27]. It is based on ZeroC’s IceGrid framework, a middleware platform that
simplifies the creation and management of distributed applications by deploying a central registry
where all server processes are managed and a single daemon tool on each node [27] [28].

The OMERO.blitz component is responsible for providing secure access to data and metadata.
It manages user sessions by granting access to users and removing closed and old sessions.
OMERO.blitz is used by other OMERO components and it allows for OMERO APIs to connect to
the OMERO.server. OMERO'’s user management allows for setting permissions at different levels

to ensure controlled access to sensitive and confidential data [5] [27].

The next core system of OMERO is OMERO.web. It allows users to interact with the
OMERO.server image data with a browser. OMERO.web uses the Python framework Django
to generate Hypertext Markup Language (HTML) and JavaScript Object Notation (JSON) files
with data from the OMERO.server. It uses the OMERO.blitz interface to access the data. The main
applications of OMERO.web are the webclient for navigating the image data, the webgateway
that provides rendered images and JSON data to other applications, and the webadmin tools to
manage users, groups and permissions. Additionally, it provides aa interface for OMERO.scripts.
These are community developed Python scripts with a user interface. Extensions to the interface
can be developed as integrated Django applications. The main view of the interface is split into
three parts, as shown in Figure the project and file browser on the left side, the thumbnail

previews of the images in the center and file-specific information on the right side [5] [27].

Another user interface is OMERO.insight. It is a desktop application that runs on the
user’s system and can connect to the OMERO.server. The interface looks similar to OMERO.web
and has a project and file browser, a list with thumbnails of the images, file-specific information
and it also has an image inspection window. It differs to OMERO.web because it is one of the
systems that allow to import new image data. The import to OMERO.server transfers the original
files to the file repository managed by OMERO.fs. An import of files to OMERO.server also
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Figure 3.2: OMERO.web user interface

includes the generation of preview images as thumbnails for the OMERO applications, creation of
the OME data model using the tool Bio-Formats [29] and saving the metadata in the database.
Some image file formats support pyramidal images. These are potentially large images that are
hard to load in memory at once. Instead, tiles of the image data are stored at multiple image
resolutions in a pyramid-like structure. The original image is downsampled to create a series of
smaller images. Each level of the pyramid shows the image at a different level of detail. This
means that only parts of the image need to be loaded into memory at a higher resolution. For
images that don’t include the pyramidal data, OMERO creates them upon import [5] [27].

Another way to connect to the OMERO.server is with the OMERO Command Line Inter-
face (OMERO.cli). It is set of Python tools used for system-administration, deployment and for
more advanced users of OMERO. It is also the second way to import image data and supports
bulk imports for large numbers of files and datasets [5] [27].

For the development of different tools or automation of workflows it is necessary to have
the OMERO API. Developed for the API are multiple programming language bindings. These
include Java, Python, C++ and MATLAB [5] [27].

The components of OMERO allow for external applications to access the image data. Therefore
there are plugins for other open-source bioimaging applications that directly connect to OMERO,
like the image processing tools Fiji, Napari, ilastik, QuPath and more. Efforts to develop interfaces

for various tools are also driven by the OMERO bioimaging community.
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3.2 High-Performance Computing

An HPC system is used to solve computationally intensive tasks much faster than a normal com-
puter. This enables researchers, analysts, and engineers to solve more complex problems more
time-efficiently.

An HPC system consists of several computing nodes. Each node has at least one Central Pro-
cessing Unit (CPU), memory and also at least one network interface. The nodes are connected
using high-speed, low-latency networks to allow for efficient computations. The interconnects are
InfiniBand, high-speed Ethernet or proprietary solutions like Omni-Path [30] [31]].

HPC systems can vary greatly in scale, as can be seen in the Top500 [32] list, but the general
architecture remains the same. The main components of an HPC system are three types of nodes:
the login (or head) nodes, the compute nodes and the storage nodes. Figure [3.3|depicts a typical
architecture.

Login Nodes

Service Nodes
- Management
- Metadata
- Scheduler

Compute Modes
Storage Nodes - CPU Nodes
- GPU Modes

Figure 3.3: HPC architecture

Additionally to the three main node types, there are the service nodes, that are used to manage
the system. They are utilised for monitoring, provisioning, scheduling, providing metadata, and
more. For the stability of the system, sufficient redundancy of the service functions has to be
implemented. The compute nodes provide the processing power for the tasks. They are divided
into CPU nodes and Graphics Processing Unit (GPU) (or accelerator) nodes. The CPU nodes are
general-purpose processing nodes, while the faster GPU nodes are for specialised tasks [30] [31].
The user of an HPC system usually connects to the login node using software that enables SSH
connections. On the login nodes each user has its own environment for files, processes and software
modules. It is also possible to group users for collaborative projects to share storage space. The
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login node is used to prepare the workflow by organizing and transferring data to and from the
HPC system. The compute nodes are not accessed directly. They are controlled by the scheduler
software on the service nodes, which manages the access. The scheduler software receives requests
for the compute nodes and manages the distribution of tasks according to a set of rules, as shown

in Figure[3.4}

Storage-Nodes
) . Login-Nodes Scheduler
’ ‘ sul:‘njnﬁ:;inn disI;'Ji?:.llion Compute-Nodes
- prepare data ) Job queue )
‘ LB }_> - prepare code CPU-Nodes
- prepare job script GPU-Nodes

Figure 3.4: HPC scheduling

Nodes with similar characteristics can be grouped into partitions. Partitions are created based on
hardware properties, queue policies, job size, or they are used for controlling account permissions.
To take advantage of an HPC system, the user must program the tasks (or jobs) accordingly. Each
compute node has a fixed number of cores and threads, and the nodes can communicate with
each other. The program, which starts with the job script, can be more efficient if it can compute
as large a part as possible in parallel. The parallel execution can reduce the wall-clock time if
the task and the storage I/O scale properly. Therefore, it is necessary to choose a fitting parallel
programming model to distribute the tasks into smaller tasks that can be executed at the same time.
Among the the most prominent parallel programming models are distributed-memory models,
shared-memory models and GPU and accelerator programming models [33]]. Each of these models
has a different approach to parallelisation and is suitable for different problem structures.

The most well-known application of the distributed-memory model is the Message Passing Inter-
face (MPI). Its goal is to enable communication and data exchange between independent processes.
These processes each have their own memory space and are often located on different HPC com-
pute nodes. MPI supports point-to-point communication as well as collective communication
functions that send messages to a group of processes. A challenge of MPI programs is the potential
for communication overhead to limit the scalability. This can happen when the number of nodes
and processes grows, while the problem size remains fixed. Another challenge is communication
latency and data locality, which can slow down the application [34].

OpenMP is an implementation of the shared-memory model. The shared-memory model is used
on single nodes with a high processor core count. It uses multithreaded programming and has
access to the same memory space for each thread. OpenMP simplifies multithreaded programming
by using pragmas that automatically handle thread creation and workload distribution. The scala-
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bility of shared-memory applications can be a challenge because they are limited to using a single
compute node. Because of this, hybrid models of distributed- and shared-memory programming
can be used. These are more complex, but they combine the advantages of both approaches [33].
The GPU and accelerator programming models, as the name suggests, use GPU or General-Purpose
Computing on Graphics Processing Units (GPGPU) hardware. These hardware units have a large
number of GPU processing cores that are specialised for parallel computing of simple, fixed tasks.
The parallelism is on-chip and therefore highly efficient. It is mostly used in the context of the
"Single Instruction, Multiple Data" (SIMD) classification, where the same instruction is executed
on multiple GPU cores in parallel, but with different data. A challenge of this model can be the
transfer of data between the CPU and GPU. They operate at different speeds, which can result in a
bottleneck [33].

Examples of the applied model include Compute Unified Device Architecture (CUDA) from
NVIDIA, Heterogeneous-Compute Interface for Portability (HIP) from AMD, and Open Accelera-
tors (OpenACC).

Table[3.2|summarises the characteristics of the three approaches.

Characteristic Distributed- Shared-memory GPU and acceler-
memory models models ator programming
models
Communication | Message passing Shared memory CPU - GPU transfer
Parallelism Process-level Thread-level On-chip
Hardware Distributed Cluster | CPU GPGPUs
Nodes Cores/Threads
Examples MPI OpenMP CUDA, HIP, Ope-
nACC

Table 3.2: Characteristics: parallel programming models

3.3 Related Work

Advances in bioimaging technologies are generating larger volumes of image data with improved
spatial and temporal resolution [4]. This enables new scientific approaches to data analysis,
while simultaneously increasing the demand for greater processing power, storage capacity, and
data-transfer capabilities. Processing a single data batch can take several days, and the resulting
throughput may be insufficient for certain workflows. HPC systems can help address these
challenges, and tools that perform parallel data processing are increasingly important [35].

OMERO, as a research data management platform, tries to support interoperability with existing
tools by standardising file formats and providing developers with several programming-language
bindings for its APL. Depending on the requirements, OMERO can be deployed as a full installation
on a single server, distributed across multiple servers, or as a simple container for small-scale
deployments such as development or test environments. OMERO offers support for integrating
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third-party tools to use the data stored in OMERO. These tools include popular bioimaging
software such as Fiji, CellProfiler, QuPath, and more [27].

Pierre Pouchin et al. [36] introduce a workflow that uses the open-source image processing
package Fiji for Image] as the user interface and scripting library, with OMERO serving as the
backend data management software. They developed a Java client library for interacting with
the OMERO server, a Fiji plugin to run macro programs on batches of microscopy images, and
new macro functions to facilitate OMERO interaction for developers. Their goal is to increase the
accessibility of image analysis functionality for users of the OMERO platform. The connectivity of
the library depends on the Java OMERO APL. The plugin retrieves image data from the OMERO
server and performs the image analysis on the local workstation. The results can be saved locally
or imported into OMERO.

This workflow setup can be extended with the work from Jan KoZusznik et al. [37]. They showcase
another Fiji plugin that connects to a middleware software based on the HPC-as-a-Service concept.
The middleware they use is the High-End Application Execution Middleware (HEAppE). It
manages information about submitted jobs and the data flow between the client system and
the HPC environment. HEAppE uses SSH connections to the HPC system with password- and
key-based credentials, which are secured on the server using the HashiCorp Vault tool [38]. This
open-source tool is used to encrypt the user credentials and implement access control and audit
logging.

Another adjacent approach is described by Samuel S. Welborn et al. [39]. They utilise the HPC
system of the National Energy Research Scientific Computing (NERSC) and the laboratory of the
National Center for Electron Microscopy (NCEM) in California. Through a web application called
Distiller, the user can issue jobs the the HPC system. The authentication of the user is handled
with Open Authorization 2.0 (OAuth). OAuth 2.0 is a token-based authorisation framework in
which a resource owner, the user, interacts with a client software system. The client software
attempts to access resources on a resource server by redirecting the user to the authorisation server,
where the user’s identity is verified. The authorisation server then sends a temporary token to
the client software, which can use this token to perform the requested actions [40]. Distiller has
access to the images of the NCEM laboratory in real time. The images are loaded into memory
at the NCEM, and when a job is issued, the image data is transferred directly to the compute
nodes’ memory using a streaming service that relies on the network socket library Zero Message
Queue (ZeroMQ). This avoids writing to storage and overcomes I/O bottlenecks. This approach is
specialised for the system environment. The user can also initiate data analysis using NERSC’s
Jupyter ecosystem running on the HPC system via Distiller [39].

A different approach, more directly linked to OMERO and HPC systems, is the Biolmage
analysis in OMERO (BIOMERO) framework [41] [42]. The BIOMERO framework allows users to
start bioimage analysis workflows from the OMERO system and connects to an HPC system to
run the computational steps. Its goal is to provide users with a set of predefined bioimage analysis
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workflows, while also enabling developers to integrate additional containerised workflows for
HPC processing. BIOMERO connects to the HPC system via SSH and exports the image data from
OMERO, transferring it to the HPC storage nodes. The results are later reimported into OMERO.

3.4 Analysis of Related Work

The related work, particularly the BIOMERO framework, is discussed with respect to the
requirements identified in Section 2.3. A gap analysis is conducted by comparing the current state
of the related work to the desired state of the system, highlighting its limitations and gaps.

The architectural or constraint requirements regarding OMERO and an HPC system overlap
only with the BIOMERO framework. The other publications focus either on the extended
OMERO platform ecosystem or on other bioimaging systems that connect to HPC resources. The
connections to the HPC system discussed are primarily SSH connections, while one publication
introduces an OAuth connection. BIOMERO makes use of several OMERO components like
OMERO.server, OMERO.web, OMERO.scrips and OMERO Django web applications. On the
HPC system BIOMERO uses Slurm jobs for workload managing, Singularity/ Apptainer for
containerised workload environments and Git for additional scripts.

The security requirement regarding the secure transfer of sensitive image data is largely
fulfilled by using SSH to transfer the data via an encrypted tunnel. The approach of Distiller is
not considered because it focuses on memory-to-memory data transfers and performance, and
it makes no mention of encryption. BIOMERO and the other publication using SSH store SSH
credentials for every user on their external server systems. This introduces a potential security risk
to the HPC system and its provider. By storing the SSH details and allowing full user access to the
HPC system, an attacker could have access to a number of user accounts. This could cause severe
harm to the system and to user data. Possible risks include the misuse of compute resources for
malicious purposes (e.g., cryptomining) or intentionally slowing down the system, the theft of
sensitive data, especially medical data, privilege escalation by exploiting system vulnerabilities,
the modification of data or code, resulting in false outputs, and the installation of backdoors.

All the mentioned approaches aim to improve the usability of running image analysis on
an HPC system. They incorporate graphical interfaces that users are already familiar with. While
Fiji and OMERO use external systems, Distiller also directly supports Jupyter Notebooks on the
compute nodes. All interfaces are directly tied to their specific workflow scenarios.

The main goal of connecting to an HPC system is to achieve performance improvements.
All publications discuss these improvements, and some showcase them on a particular workflow.

The performance benchmarks are specific to the system, data, and workflow.
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The BIOMERO framework uses the regular OMERO system components and doesnt mention the
initial setup of OMERO. A concern regarding scalability is that every image is exported as a Zarr
file on the OMERO.server before being transferred. This image data conversion could impact
server performance when a large number of images need to be processed simultaneously. With
image data redundancy, the storage is also temporarily impacted.

BIOMERO allows additional workflows to be added, addressing certain aspects of the
transferability requirements. The format for these additions is fixed to code on GitHub, a Singu-
larity / Apptainer container, and the development of a custom user interface for OMERO.scripts.
This approach adds generality for other workflows, but it can also be challenging to integrate
more flexible workflows and existing ones.

Aspect BIOMERO BIOMERO re- | Thesis contribu-
quirement fulfill- | tion
ment
Architecture / Con- | OMERO  compo- | Fulfills requirement | Satisfy the con-
straints nents / SSH / straints
Slurm
Security OMERO functional- | Fails requirement Secure HPC access
ity / SSH Tunnel / Secure data trans-
fer
Usability OMERO.scripts /| Depends on the im- | Intuitive user inter-
OMERO web app | plementation face
Performance Improvements Depends on the im- | Performance im-
based on workflow, | plementation provement of
system, data existing workflow
Scalability OMERO  compo- | Fails requirement | Scalable design con-
nents cept
Transferability OMERO.scripts Depends on the im- | Transferable design
/  Container /| plementation concept
GitHub

Table 3.3: Gap analysis

Table 3.3|compares the BIOMERO framework with the identified requirement groups and outlines
the targeted contributions of this thesis.

BIOMERQO is the only related system proposal that satisfies the constraint requirements. No other
approach links OMERO directly to HPC resources for image analysis. This may indicate a research
gap in a developing field. Most publications assume that the traditional HPC system uses an SSH
connection to authorise users. Another approach mentioned is OAuth, which is not yet commonly
used in HPC environments. The SSH connection can be a risk factor for HPC systems, especially if
a number of SSH credentials are managed on an external system not controlled by the HPC system
provider. This risk has to be mitigated. Although usability and performance are emphasized
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as primary criteria in the proposed systems, security receives little attention. The usability and
performance are strongly linked to the specific workflow and its users, the implementation, and
the system environment. The BIOMERO framework allows developers to integrate both new and
existing workflows. For general image analysis, it is a suitable solution, however, for multi-step

workflows involving different systems, it can be a limiting factor.



Chapter 4

Design

Based on the analysed requirements and the information gained from the previous chapter, a
pipeline for an OMERO to HPC system workflow is designed. For this, the architecture of
OMERQO is discussed in Section 4.1. In Section 4.2, the user interaction and user interface are
presented. Section 4.3 explains and evaluates the options for a remote HPC access, and Section
4.4 covers the design decisions regarding the workflow. Section 4.5 concludes the design with a
summarising overview of the general architecture of the proposed pipeline.

The goal of designing a pipeline for workflows that utilise OMERO and HPC systems is to
derive guidelines and decisions for other, similar workflows operating in comparable system
environments. Therefore, the CellDetector workflow introduced in Chapter 2 serves as an example
of what a similar workflow could look like and how it could be improved.

A major bottleneck of the current CellDetector workflow is the way other users interact with the
HPC computing steps. These users have little to no experience operating on a typical shell interface
connected to an HPC system. This entry barrier prevents users from working efficiently and shifts
the workload to colleagues who have greater HPC expertise. To address this bottleneck, the most
frequent and time-consuming steps should be improved and simplified to make them accessible to
more users.

The preprocessing steps described in Section 2.2 are examples of such steps. To make them more
accessible, several components are needed. Starting with a GUI that initiates the three functions,
sends additional information and connects to OMERQO, a connection method is needed to link this
interface with the HPC system, in this case, the HPC login nodes. This connection method must
be able to connect and authenticate the OMERO user with an HPC user account. From the HPC
login node, tasks must be automatically sent to the job scheduler. It should also be possible to start
different jobs and workloads without using the shell interface. To analyse the WSIs stored on the
OMERO server, they must be made available to the HPC system. This includes the secure transfer
and storage on the HPC storage nodes. To improve the efficiency of the analysis, the computing
steps should be able to utilise the processing power of the HPC compute nodes. The results should
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be made viewable to the user from the OMERO workspace. Furthermore, the designed system
should be able to scale with increased user activity and growing storage needs for the bioimage
data.

To improve the user experience, the following design shifts the user interaction from a traditional
HPC model, where the user connects to and interacts with the system through a shell interface, to a
more workflow- or use-case-driven approach, in which the user interacts through a GUI connected
to established software that interfaces with the HPC system. The differences between the user
interaction with an HPC system are shown in Figure

Traditional user interaction

HPC-System

Storage-Nodes j
j: i . Workload- Compute-
HPC User Shelldnterface Login-Nodes H Manager H Nodes ‘

Workflow-driven user interaction

HPC-System

Storage-Nodes
| H |— RDM \
GuUl . Workload- Compute-
HPC User _
Lo IR Manager H Nodes ‘

Figure 4.1: HPC user interaction approaches

The traditional interaction approach also supports running software modules with GUIs directly on
the compute nodes, if they are supported by the HPC system provider, such as Jupyter Notebooks.
Such a module can be run as a batch job that is managed by the scheduler [43].

By changing the way the user interacts with the HPC system, it can also influence user behaviour
and productivity. Bradlee Rothwell et al. [44] observe usage patterns after integrating the HPC
web platforms Open OnDemand and NICE DCV. Open OnDemand includes HPC features such as
drag-and-drop file access, job management, and one-click launching of interactive applications
like Jupyter or MATLAB, as well as personalised remote desktops. All of these functionalities
are available through a GUI for the HPC user. Their study shows that, after introducing Open
OnDemand to their users, the average time between HPC account creation to first job submission
decreases. They conclude that this is the result of reduced friction between the user and the HPC
system.

The evaluation of the design choices is divided into four parts. Afterwards, an overview of the
pipeline’s architecture is provided.
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1. Research Data Management System: Deployment, administration and scalability decisions.
2. User Interface: Evaluation of interface options.
3. Remote HPC Access: Overview and analysis of different remote HPC access designs.

4. OMERO Access and Code Optimisations: OMERO access decisions and use-case specific

considerations.
5. Pipeline Architecture Design Proposal: Combined view of the architecture and functionality.

The following Sections discuss these different parts and their design in more detail.

4.1 Research Data Management System

The research data management system used in this pipeline is OMERO. The requirements out-
lined in Section 2.3 specify the constraints for this use case. For a more general architectural
design, the deployment of OMERO must also be taken into account. The deployment depends
on various factors, such as the existing system environment, costs, security and data policies,
available IT expertise, and more. For general workflows, several OMERO components are required.
OMERO.server is the central server platftorm. OMERO.web provides a web-based application and
serves as the main interface for OMERO users. OMERO.insight is an optional user client that must
be downloaded and configured by the user. OMERO.insight, together with OMERO.cli and the
AP], is used for data import.

There are multiple deployment methods for an OMERO system. Bare metal, Virtual Machines
(VMs), and containers can be used to set up an OMERO environment. Table 4.1 provides a brief
comparison of these methods. While the bare metal deployment method offers the best perfor-

Aspect Bare Metal Virtual Machine Container

Performance | High (direct hard- | Slightly lower (vir- | Slightly lower (con-
ware access) tualization layer) tainer overhead)

Scalability Low (fixed hard- | High High (supports or-
ware) chestration)

Flexibility Less flexible for | Easier to move Very flexible
moving

Complexity | Higher initial setup | Moderate Can be automated
(OS/config) (requires container

knowledge)
Isolation Low High Medium

Table 4.1: Comparison of deployment methods for OMERO

mance, it is not advisable for a flexible and scalable OMERO system architecture because the
hardware is fixed and cannot be scaled quickly. For OMERO, it is recommended to use either VMs,
in the form of virtual or cloud servers, or custom OMERO containers. Regarding scalability in
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the VM approaches, it is easier to allocate or adjust resources for cloud servers than for virtual
servers, because the latter are limited by the underlying physical hardware, whereas cloud servers
are built on distributed infrastructure. For containerised services, there are two main scaling
approaches: horizontal scaling and vertical scaling. Horizontal scaling adds more instances of
the same container, while vertical scaling increases the resources of a single container. By default,
containers don’t retain internal data when removed, so many containerised services are designed
to be stateless and scale well horizontally [45]. OMERO.server uses stateful functionality and
doesn’t scale well horizontally. OMERO.web is designed to be stateless and can scale horizontally.
OMERO.server is responsible for user sessions and access to file storage and must be consistent,
but it is possible to manage multiple nodes with outsourced worker processes via OMERO.grid.
OMERO is a customisable platform and can add or remove functionalities as needed by its users.
This includes OMERO.script and the ability to add new Django applications that have access to
OMERO user and image data through the OMERO APIL. For the virtual server and cloud server
approach, the process of adding and removing functionalities is straightforward. For the container-
ised approach, this means that the container image’s definition file must be modified, the image
rebuild and the container redeployed. For non-production systems, such as development environ-
ments, containers enable fast deployment cycles. Another difference is the rollback capabilities
that are common for VMs, such as system and disk state snapshots. Containers don’t capture the
full system state, and for storage volumes outside the container scope, filesystem snapshots would
be needed to achieve similar functionality. From a scalability standpoint, both the virtual/cloud
server and the containerised server approaches are viable. The differences lie in how the system
must be deployed, modified, and maintained, which also depend on the existing infrastructure as
well as the expertise and preferences of the IT team.

Alongside the OMERO core systems, additional features are needed to support a scalable system
environment. If multiple nodes, such as OMERO.web nodes, are deployed, the incoming network
traffic must be evenly distributed. This can be achieved with a load balancer that ensures no single
node receives too much traffic, preventing a decline in performance and availability of the service.
OMERO also supports Lightweight Directory Access Protocol (LDAP) authentication. LDAP is
used to access and maintain distributed directory information over a network [46]. The directory
is a hierarchical, tree-like structure used to store information about users, groups, and other re-
sources. LDAP allows other applications and systems to look up and authenticate users. If the
OMERO.server is connected to the network’s LDAP service and a new user registered in the LDAP
directory tries to log in to OMERO, the server first searches its own user list and then queries the
LDAP service with the username. If the username and password exist and match, a new OMERO
user is created with the given username and added to a predefined OMERO group. The LDAP
service is also queried to check whether a user is no longer registered in the directory, in which
case access is denied [27]. LDAP support enables the management of large numbers of users across
different systems.

There are few examples of OMERO system architectures public available. One example is dis-
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cussed by Anett Jannasch et al. [47] for the Core Facility Cellular Imaging (CFCI) at the Technische
Universitdt Dresden. They use a VM with 16 gigabytes (GB) of memory and initially started with
2 terabytes (TB) of storage, but had to increase it to 20 TB. They utilise a containerised approach
with OMERO.server, OMERO.web, and Traefik containers, with Traefik acting as a reverse proxy
and load balancer. They authenticate users using an OpenLDAP container that is connected to the
institute’s LDAP servers.

Another example is from the Image Data Resource (IDR) [48] managed by the University of Dundee
and OME. The IDR is a community project that serves as a public repository for image data from
scientific studies and currently stores 415 TB of data. The architecture consists of seven cloud
servers. One PostgreSQL server is for the central database. One internal server with read and write
permissions for OMERO.server and OMERO.web with 16 CPUs and 64 GB memory. Additional
IDR has four servers with read-only permissions for OMERO.server and OMERO.web with 8 CPUs
and 32 GB memory each. The last component are front-end proxies with Nginx and Haproxy that
load balance and cache the web traffic and the access to the OMERO API. These multiple OMERO
servers can access the central database in parallel, but only one server has write permissions, while
the other public servers have read-only access. Otherwise, it could lead to data inconsistencies.
The evaluation of the deployment methods and the comparison of existing public approaches
lead to a general OMERO system architecture, as illustrated in Figure[#.2l OMERO.server should

Load balancer

comnecting LDAP ' mERO.server —| OMERO.web OMERO.web
File storage —
Central

database
Figure 4.2: General OMERO architecture

be able to scale vertically, whether it is deployed as a VM or a container. OMERO.web can scale
horizontally as a VM or a container if traffic or performance demands it. LDAP is optional and
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depends on whether other existing systems have already integrated it. The central database and
file storage should not reside on the same node, and there should be support for data backup and
recovery.

The system architecture of the CellDetector workflow is determined by the requirements in Section
2.3. It uses two separate virtual servers for OMERO.server and OMERO.web, which mitigates
some performance concerns and is viable for the current user base. If the user base increases,

adjustments would have to be made.

4.2 User Interface

From the user’s perspective, the user interface represents the core functionality for working with
data stored in OMERO. For the pipeline design, there are three possible ways to integrate a user
interface with OMERO in a manner that fits the requirements described in Section 2.3 and one
additional option. These will be introduced, discussed and evaluated in the following.

OMERO.scripts

OMERO.scripts are similar to a plugin system for OMERO. It allows users to run automated
scripts on images and metadata stored in OMERO. Popular scripts are integrated into the core
scripts in newer OMERO versions. The scripts are mainly written in Python, but OMERO also
supports additional languages such as Jython and MATLAB. The scripts support tasks such
as image analysis, batch processing, data import/export, and metadata management. They
can be started from OMERO.insight and OMERO.web. OMERO.blitz enables the scripts to be
run on the OMERO.server, and script execution is passed to OMERO.grid, which delegates the
node where the processing step is conducted. Each script has its own simple GUI, which is
integrated into the interfaces of OMERO.insight and OMERO.web. The GUI is automatically
generated from the script. The GUI elements are limited to a few commonly used types, such as
text fields, dropdown lists, and checkboxes. The scripts support auto-filling text fields as lists
with the selected images in OMERO.web and OMERO.insight. The GUI isn’t fully customisable
and only generates elements according to the defined variable types required for user input [5] [27].

OMERO.web application

OMERO.web is a Django-based web client for OMERO. It also supports the creation of user-
designed custom web applications based on the Django framework. The Django framework
uses the Model-View-Controller (MVC) architectural pattern, which separates the user interface,
programming logic, and data model layer [49]. These web applications can leverage the core
OMERO.web application by extending its existing functionality. The Uniform Resource Locator
(URL) of each application is an extension of the OMERO.web address. They use the user’s active
session to connect to OMERO and load data using the Python APIL The web application can be
linked to from OMERO.web or integrated into the OMERO.web page layout, such as the center or
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right panel [27].
The web applications are fully customisable but need knowledge of the Django framework.

Web application linked in OMERO.web

Similar to user-created OMERO.web applications, it is also possible to create external web
applications and link to them from OMERO.web. These can be independent of the Django
framework and use a different software stack. To connect to OMERO and access image data and
metadata, they must use the OMERO APL. They are fully customisable.

Standalone application

A standalone application could be downloaded and used as an external application to connect to
OMERO using the OMERO APL It could use any GUI framework and would be fully customisable.
However, a standalone application does not fully fulfill the requirement UR-03 in Section 2.3,
which states that the GUI must be started from OMERO.web.

Table compares the GUI options in several categories. OMERO.scripts and OMERO.web

Aspect OMERO.scripts | OMERO.web Linked web ap- | Standalone ap-
application plication plication

Type Server- OMERO.web Separate web | Independent ap-
side script, | extension application plication
callable  from | (Django-based) | linked to
OMERO.web OMERO.web
and
OMERO.insight

Integration High High Medium Low

Level

User Interface

Auto-generated
form for param-

Fully customis-
able Django ap-

Fully customis-
able web appli-

Fully customis-
able standalone

eters plication cation application
OMERO Data | OMERO.web, OMERO.web, OMERO API OMERO API
Access Method | OMERO API OMERO API
Strengths Directly in GUI, | Directly in GUI, | Flexible, can use | Flexible, can use
simple imple- | flexible any web frame- | any framework
mentation work
Limitations Limited  cus- | Requires No direct | Requirement
tomisability, few | Django ex- | OMERO embed- | not  fulfilled,
Ul elements pertise ding possible Most complex

Table 4.2: Comparison of GUI options

applications are the most integrated options. They are called directly from the OMERO.web
interface, which benefits the workflow. For simple workflow steps, OMERO.scripts is the best
option. The scripts are simple to implement and provide features to support the user, such
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as automatically filling an image ID list with the images selected in OMERO.web. The GUI
options for OMERO.scripts are very limited, which restricts its possible use cases. OMERO.web
applications are suitable for more complex use cases. They are fully customisable and can be
embedded into OMERO.web. Separately linked web applications can be an option for existing
workflow steps that should be more integrated into OMERO. They don’t have to be reimplemented
as a Django framework application, and they can be accessed from OMERO. While independent
standalone applications are an option, they don’t fulfill the requirements and cannot be integrated
into OMERO.web. This would mean that every user would have to download an additional
application, which would need to be provided on a file server. This option is more useful for
applications that offer a wider range of functionalities, such as Fiji and Napari, and additionally
support an OMERO connection.

The preprocessing and prediction steps of the CellDetector workflow can be implemented using
OMERO.scripts. These are Python scripts with clearly defined parameters that can be mapped
to user inputs in the OMERO.scripts GUI The cell annotation step can be implemented using
OMERO.web applications or by linking the existing Jupyter Voila application from within
OMERO.web. This step needs to display parts of the WSI in different dye channels to the user,
which is not possible with the functionality of OMERO.scripts.

4.3 Remote HPC Access

To compute parts of the workflow on an HPC system, it is necessary to create a connection between
the OMERO system environment and the HPC system. An OMERO user should be able to start
a compute-intensive task from the GUI launched via OMERO.web. This task should schedule
one or more jobs on an HPC system without further interaction from the user. This requires a
communication interface that works for various workflows. Furthermore, the connection must be
secure and, if possible, transferable to other similar HPC system environments. For traditional
HPC systems, there are a few options for connecting to the HPC login nodes. These differ in terms
of user and system interaction and security levels, and they depend on the policies set by the HPC
system provider. Most of the possible solutions are based on SSH connections, as they are widely
used and another option is a Representational State Transfer (REST) APL

SSH: Password-based authentication

The first option is the common password authentication. The user has to provide the password to
establish an SSH connection. This could be either an additional input field in the GUI or a file
stored on the OMERO server. If the authentication succeeds, it remains active until it is closed,
for example when the user closes the connection, an idle timeout occurs, or a network-related
failure happens. During this connection period, the OMERO system would have full access to
the HPC user account. Password-based authentication is the least secure of the SSH connection
methods [50].
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SSH: Cryptographic key-based authentication

With cryptographic key-based authentication, a public/private key pair is created on the OMERO
server. The public key must be stored in the user space of the HPC account or with the HPC
provider’s authentication service to authenticate the OMERO user’s identity. Similar to the
password-based authentication method, the connection allows full access to the HPC user account,
but the user doesn’t have to provide the authentication key as input for each connection [50].

SSH: Certificate key-based authentication

The certificate-based authentication also works with public/private key pairs. Additionally, it
provides a Certificate Authority (CA) service that signs the user’s public key to create a certificate.
The certificate is saved on the OMERO server together with the public/private key pair. During
authentication, the CA’s public key is used to verify the user’s certificate and grant or deny access
to the HPC system. The certificate contains information about the user’s identity, the public key,
the certificate type (user or host), allowed principal names, start and end timestamps, and SSH
client-specific options. The timestamps act as a revocation mechanism for SSH certificates. This
authentication method does not require the user’s public key to be stored in the user space of the
HPC account or with the HPC provider’s authentication service, because only a valid certificate is
needed and a configured CA identity provider. Similar to the password-based and key-based
authentication, it grants full HPC user acces [50].

SSH: Forced commands

SSH forced commands are not a specific authentication method. They work as an authorization
or SSH session restriction mechanism. The authentication occurs using public/private keys or
certificates. The SSH command can invoke remote commands that are executed on the HPC system.
The command is chosen by the owner of the keys. Forced commands change this behaviour by
retaining control of the commands on the HPC system. By setting a forced command, every
successful SSH connection to the HPC system executes the specified command on the HPC node
without granting full user-space permissions. The forced command is limited to one command
per key. It can be set by the user or enforced by the SSH system administrator. When a forced
command is used with certificates, it must be passed to the CA when creating the certificate [50].

REST API connection

In addition to the SSH methods, there are a few approaches that aim to replace the SSH connection
with HTTP calls, like HPCSerA [51] and Superfacility API [52]]. There the user is authenticated
via a client that provides tokens for specific tasks. These tokens are used in REST calls to an API
server to request these tasks. The task is then executed on the HPC system by an application that
retrieves available tasks from the API server. This method does not grant access to the HPC user
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account but requires the necessary system setup.

Table shows a comparison of the different remote access options. The SSH password

Option Limited Access Transferability Complexity/Setup
SSH Password No Low/Medium Low

SSH Key-Pair No High Low

SSH Certificate No Low /Medium High

SSH Forced Com- | Yes High Medium

mands Key-Pair

SSH Forced Com- | Yes Low/Medium High

mands Certificate

REST API Yes Low/Medium High

Table 4.3: Comparison of remote connection options

option is not viable. Passwords are the least secure option because they are prone to poor user
practices, such as short character length, password reuse, and lack of randomness. Furthermore,
they are not always allowed on HPC systems. In contrast, SSH key pairs are used by many HPC
systems. They are more secure because they eliminate poor user practices. They must be stored on
the system that will connect to the HPC system. SSH certificates are the most secure of the three
SSH authentication methods. They can have a validity period to grant or deny access. The limiting
factor of this method is the required system infrastructure, including a CA. None of these three
methods are viable for the OMERO-to-HPC pipeline because they grant the accessing system full
access to the connected HPC user account. If an attacker captures the authentication credentials,
they could directly harm the HPC system. SSH forced commands help address this problem by
authorising only a single command per key for an SSH connection. While forced commands used
with certificates are more secure, they require a CA setup. This limits their transferability. The
REST API approaches do not require an SSH connection. Depending on their implementation, they
can be more secure than the SSH options but require more complex system setups. The limitations
on the access of HPC user accounts, the transferability and the setup complexity make the SSH
forced commands option with public/private key pairs the most promising option for the scope of
this thesis.

By choosing the forced commands method with key pairs, HPC user keys must be acces-
sible to the pipeline systems. This means that if the system managing the user keys has a
vulnerability, an attacker could gain long-lived authentication credentials. Using forced commands
with these keys helps diminish the potential harm. Another option is to prevent the OMERO
server from handling the key management and instead use a separate server. This server would
run a queue system and register the calls from the OMERO GUL. It could verify the calls and place
them in a queue. The queue server would then perform the SSH calls to the HPC system. This
would reduce the risk if the OMERO server has a vulnerability and separate their responsibilities.
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An example of such a system could be HyperQueue [53], a lightweight system with a built-in
queue that can execute commands through its worker nodes. Figure [4.3|illustrates how such a
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i —3 OMERO-System

User

Figure 4.3: Queue-Server

process could look like.

In the CellDetector workflow, the OMERO.server must manage the SSH key pairs because the
initial number of users is small and it would need another server that is not considered in the
current setup. Instead, an additional application manages the SSH keys. It must be able to create
and delete users, manage SSH keys (create, delete, and update), and establish a connection
between the keys and the OMERO users.

44 OMERO Access and Code Optimisations

Once a connection to the HPC system is established, the workflow can be processed. The
CellDetector workflow requires image data from the OMERO.server and reports the (partial)
results back to the OMERO.server. BIOMERO retrieves image data by exporting it on the OMERO
server and transferring it to the HPC system using Secure Copy (SCP) over a full SSH connection.
This approach is incompatible with SSH forced commands. Allowing direct data transfer under
forced commands would weaken the restriction, for example, the forced-command file itself
could be overwritten, resulting in full access to the user space. This means that, when SSH forced
commands are used, the request to retrieve the image data must be initiated from within the HPC
system. To initiate this request, the OMERO API is used to connect to the server via one of its
language bindings (Python, Java, MATLAB, or C++) using the OMERO server address and the
corresponding port. The OMERO API is used within the job scripts. The jobs are executed on the
HPC compute nodes, which are usually protected by stricter firewall settings than the HPC login
nodes to enhance system security. The compute nodes need to be able to retrieve the image data
from a job call. There are multiple options for this, depending on the security restrictions of the
HPC system. The following describes three possible options and examines their potential uses.
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Direct access

The simplest approach is to connect to the OMERO.server directly over the internet via the given
port, using only the OMERO API. This approach is feasible if the HPC security policy permits
internet access from compute nodes for all users, or if certain user accounts are authorised to
connect to external addresses. This method is not viable if the HPC security policy is more
restrictive. It also requires the OMERO.server to have accessible ports. The data transfer
encryption depends on the OMERO settings and the chosen port.

SSH port forwarding

Creating an encrypted tunnel and connecting a local port to a remote port is called SSH port
forwarding [50]. The SSH client monitors the local port and forwards all activity through the SSH
tunnel to the remote server’s ports, see Figure With this method, the HPC compute node can
connect to the OMERO.server’s port, and all data transfers would be encrypted over SSH. With
this setup, the OMERO.server’s ports do not need to be accessible from the internet. SSH port
forwarding relies on regular SSH authentication. For public/private key authentication, a key
pair must be set up on the HPC system, with the corresponding key authorized on the OMERO
server. This SSH connection would give the HPC user access to the OMERO server, which would
introduce a security risk. Like the direct access, this method requires a direct internet connection
from the HPC compute nodes to the OMERO server. Because of security concerns, this method is

suitable only for development or testing environments.

+ 55H Tunnel
127.0.0.1:4064 Compute_Node
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OMERO.server Login-Nodes 127.0.0.1:4064

Figure 4.4: SSH port forwarding

SSH reverse port forwarding

Reverse port forwarding works similarly to port forwarding. Instead of listening on the client’s
port, it listens on the remote port and redirects activity to the client’s port [50]. In many HPC
systems, it is possible to use SSH to connect from the login node to a compute node allocated to
the HPC user. This connection can be used to create interactive sessions, run custom software such
as Jupyter, and monitor system resources while a job is running. This SSH connection can be used
for reverse SSH port forwarding without creating new keys for authentication. The login node can
initiate the reverse port forwarding. This means that the compute node listens on a specified port,
and the activity on this port is sent over SSH to the login node. The login node, which is used to

prepare and stage jobs and their data, has less restrictive firewall settings. By connecting to the
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OMERQO server via the login node and forwarding the data to the compute nodes, a connection
from the compute nodes to the OMERO server can be established, as shown in Figure

rCDnrlect To Open Pl:lrt—l

OMERO.server

S5H-Reverse-Tunnel
Compute-Node
127.0.0.1:4064

Login-Nodes

Initiate Reverse Tunnel

Figure 4.5: SSH reverse port forwarding

Table |4.4|gives a comparison of the three main options.

Aspect Direct Access SSH Port Forward- | SSH Reverse Port
ing Forwarding

SSH Tunnel Initia- | None HPC compute node | HPC login node

tor

Encrypted Data | Depending on the | SSH-Tunnel Depending on the

Transfer OMERO.server OMERO.server
configuration configuration

Setup Complexity | Low Low/Medium Medium

Table 4.4: Comparison of OMERO data transfer connection options

Besides the three options introduced, there is also the option to run an application on the login
nodes in the user space. This application must be written in a programming language supported
by one of the OMERO API language bindings and must have an appropriate runtime environment.
It needs to listen for incoming calls from the remote OMERO connection and request the image
data from the OMERO.server. To process the image data later, it would need to convert the pixel
data and metadata and store them on the storage nodes. While this option is flexible, it also
requires the login nodes to run an application and maintain the runtime environment at all times,
while potentially processing large amounts of image data simultaneously.

The easiest method to implement is the direct access from the compute node. If this is not possible
due to the security policies of the HPC provider, the SSH reverse port forwarding option is the
most viable method. With both of these options, the OMERO.server is responsible for the secure
transfer of image data and metadata to the HPC system.

Code optimisations

The CellDetector workflow uses the image data and metadata in multiple steps. During
preprocessing, they are used for Zarr file conversion, Cellpose image analysis, and eCDF image
analysis. While the eCDF analysis already uses the Zarr files, the Cellpose analysis loads the pixel

data from the OMERO.server for its computation. This adds an additional data transfer from the
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external server, which is constrained by the connection’s transfer speed. This transfer increases the
computation time on the HPC compute node. To reduce this performance bottleneck, the Cellpose
step and all subsequent steps should use the Zarr files wherever possible. This concept is described
as data locality. Data locality indicates the distance between the data location and the processing
location [54]. A shorter distance means better data locality, which results in improved performance
and more efficient use of resources [55]. For this, the existing scripts need to be adapted. While
the data can be processed on the HPC system, the (partial) results must be made visible to the
OMERO user. This requires a connection to the OMERO.server when the results are uploaded.

The most time-intensive computing step is the identification of nuclei in the WSI using
Cellpose. The script is written to run on hardware with lower parallelism. While the script benefits
from stronger single-core performance on the HPC compute nodes, it doesn’t utilize all the
resources on such a node. Therefore, the goal is to compute image tiles in parallel with Cellpose

using task parallelism, and then combine the partial results.

4.5 General Architecture Proposal

The design decisions from the previous sections form a general architecture for the OMERO-to-HPC
pipeline, which is illustrated in Figure 4.6 This pipeline can be used as a guide for implementing
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. S —
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HPC Interface - direct connection
S5H forced - §58H reverse port
command forwarding
HPC .
system Login-Nodes
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Figure 4.6: Proposed architecture of the OMERO-to-HPC pipeline
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workflows similar to the Cellpose workflow. The architecture is scalable and transferable because
it uses components commonly found in traditional HPC systems like SSH authentication. The
communication interface is created with SSH forced commands, which restrict the actions the
owner of the SSH private key can perform. This makes it more secure if an attacker gains access
to the key, but it also means that another connection must be formed for data transfer from the
OMERO:.server. The connection from the HPC system to the OMERO server can be one of two
options: a direct connection from the compute node to the OMERO server’s open port, or SSH
reverse port forwarding with a connection request from the compute node to the login node, and
then to the OMERO.server’s open port. The option depends on the security policies set by the
HPC provider and whether port exceptions are possible for users. The user interface is realised
using OMERO'’s own developer interface options, including OMERO.scripts and OMERO.web
applications. This combines the scientific user workflow using OMERO with the options of HPC
workflows into one user interface. Each user interface option represents different workflow steps.
OMERO.scripts generates a less customizable interface for simple interactions with the stored
images, while OMERO.web applications are highly customizable but less integrated and more
complex. The HPC computing steps should be able to utilise the parallel hardware and inform the
OMERO user of the results from within the OMERO interface.



Chapter 5

Implementation

With the results of the requirement analysis and the design decisions for the proposed pipeline,
the Cellpose workflow is optimised. This chapter describes the implementation process and
the decisions associated with it. Section 5.1 provides an overview of the key management
on the OMERO.server needed for the HPC remote connection. Multiple GUIs are created
and discussed in Section 5.2, along with the information they transmit for the next steps. The
connection interface and workload distribution are depicted in Section 5.3. Section 5.4 concludes
the chapter with the improvements and decisions regarding the existing code and HPC resource
usage.

The proposed pipeline in Chapter 4 should guide the implementation of OMERO bioimaging
analysis workflows in connection with HPC systems. The CellDetector workflow is constrained to
use the existing OMERO.server, OMERO.web, and data repository. This does not limit the current
setup, however, scalability must be considered in the future. The implementation consists of two
phases: the development phase, in which the changes are developed and tested in an environment
similar to the existing system, and the testing phase, in which the changes are applied to the
running system to test and evaluate them with live data and users. The existing OMERO.server
and OMERO.web run on two separate virtual servers (VMware ESX) with Linux Ubuntu as
the operating system (OS). For the development environment, a cloud VM is provided. The
specifications are listed in Table The OMERO.server, database, repository, and OMERO.web

Type Cloud VM / Openstack Nova
CPU 4 vCores
AMD EPYC Processor x86-64
2.9 GHz base frequency
Memory 16 GB
Storage 80 GB VDisk / vHDD
(O 1] Ubuntu 22.04.4 LTS x86-64

Table 5.1: Development environment specification

40
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are set up on the cloud VM. The general implementation steps are structured into four sections,
which are outlined hereafter.

51 Key Management

The remote HPC access is managed with SSH forced commands, as described in Section 4.3. This
means that SSH key pairs must be created and managed to access the HPC login nodes. These
keys can be stored on the OMERO.server or on a separate server, which can enhance security
in the event of vulnerabilities on the OMERO.server. For this project, the keys are stored on the
OMERQO.server, which is more fitting for the scope of this thesis.

To manage the keys for the users and connect the OMERO accounts to the HPC accounts, a tool is
implemented on the OMERO server. The omero-manager is an administration tool written in Bash.
Bash is used because it has wide compatibility on Linux and Unix systems, is lightweight, and
interacts with popular system tools. The administrative actions are illustrated in Figure The

omero-mgr.sh e
~~ Create Directory .

~Delete Directory

- Stucture -
Manage Application —
_-’Create Environment \
\ Variable
_-’Delete Environment \
i \ Variable J
OMERO administrator — Createuser

—— UpdateUser

Manage Users g —:::. Delete User

— Create SSH Key-Pair )

L Delete SSH Key Pair )

Figure 5.1: Use Case diagram: omero-manager tool

tool is used to create a user space for each OMERO user in the form of directories. Each OMERO
user has an SSH key pair that can be recreated (e.g. to adjust its validity period) or deleted. A
configuration folder is created for log files. Furthermore, a JSON file is created that links the
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OMERO username with the HPC username and the SSH key pair, and adds a timestamp. To access
the SSH keys and usernames from the OMERO user interfaces, an environment variable is set that
includes the path to the directory created. To assist with administration, a help page is added. The
goal of this tool is for it to be quick to learn and use, as user management can be a repetitive task.
The access permissions of the files and directories are set automatically. While the path of the set
directory is up to the administrator, attention should be paid to ensure that it is not accessible to
other users or from the outside. After a new user is created, the public key is used on the HPC
system for the SSH forced command setup.

5.2 User Interface

The primary GUI for the preprocessing steps of the CellDetector workflow is the OMERO.scripts
interface. The scripts can be written in Python, Jython, and MATLAB and must be uploaded from
the OMERO administrator account. The 'CellClassification Preprocessing’ script is written in

Bl ¥ 4 Ses

custom_scripts 4
omero »

Run CellClassification Preprocessing — Mozilla Firefox - 0O x
oD localhost ™ =

CellClassification Preprocessing

Select a Preprocessing Script. 'zarr' creates a zarr-file of the WSI and saves it on the
HPC-storage. This step is necessary for the 'cellpose’ and 'cdf steps. ‘cellpose’
performs the nuclei detection with the cellpose algorithm. 'cdf’ calculates the
Cumulative Density Function within the tissue ROI (e.g. "tissue_0") for classification
purposes.

Data Type: | Image v |

Zar’.
cellpose: [
car:E

IDs: *@ 108,109,110,111,112,113,11

HPC-Login-Server: “l glogin-p2.hpc.owdg.de v |

View Script Cancel |Run Scriptl

Figure 5.2: OMERO.scripts preprocessing user interface

Python. The documentation for OMERO.scripts in Python is the most complete, and Python is

popular in scientific workflows, which helps with maintainability if the administrators are already
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familiar with the programming language. The scripts use the Python virtual environment of
the OMERO.server because they are executed from a server process. If a script needs additional
Python libraries, they must be installed in that virtual environment. For the implemented
scripts, the Python library Fabric [56] is installed. Similar to Paramiko [57], Fabric enables SSH
functionality in Python. Fabric is more high-level than Paramiko and provides the necessary
functionalities. The script is written in standard Python, except for an entry point where the
GUI elements are defined and the user inputs are read for further actions. The preprocessing
script takes the data type, preprocessing step, image IDs, and two dye channels as user input, as
necessary information for the analysis steps, see Figure Furthermore, it requires the user to
choose a login address for the HPC system.

The last input the user must provide is the OMERO login credentials. These credentials are
necessary for the connection from the HPC system back to the OMERO.server. Two options are
available for authentication: transmitting the OMERO username and password to establish a new
connection, or creating a session with the OMERO.script and transmitting the session key. A

Aspect Username/Password Session Key
Credentials OMERO username, password Generated character
Long-lived string

Short-lived

Security: Credential | Low/Medium Medium/High

Complexity

Security: Session Expiry | Logout, timeout Logout, adjustable time-
out

Security: Vulnerabilities | Brute force Session hijacking/session
replay attack

Flexibility High Medium

Table 5.2: Comparison of OMERO authentication options

comparison of the two options is shown in Table Session keys are generally more secure due
to their length and complexity. They are also shorter-lived, as passwords are seldom changed.
The duration of the session key can be specified as an argument when creating the key, and the
general length of the OMERO sessions can be adjusted in the server options. A limitation of the
session keys is that the session starts when the user interface sends the connection request. If the
job cannot start in time, the session may expire. Another limitation is the flexibility of the session
keys compared to password authentication. Each OMERO session, regardless of the authentication
method, is mapped to an OMERO group, and each image is also mapped to an OMERO group.
Every OMERO user can be in multiple groups. When a user logs into OMERO, they are assigned
to a default group. To access image data, the user must change the group. With password
authentication, each login creates a new session, and each session is mapped to the correct group.
If only one session key is sent for multiple jobs, the jobs conflict with each other over the correct

group, and a race condition occurs. To achieve the same result as password authentication, the
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OMERO.script must send as many session keys as jobs are created to avoid race conditions. This
approach has the advantage that sessions can be closed within the jobs, whereas with a single
session key the session would have to be left open. Because of its security advantages, session
keys are used in the implementation of the OMERO.scripts. The scripts calculate the number
of jobs needed and create the same number of session keys. The OMERO API function, which
creates detached sessions, requires the OMERO username and password. The user must input the
credentials, which are then used in the script on the OMERO.server. These credentials are not
transmitted. The input data and session keys create a command string needed for the SSH forced
command script. The Fabric library establishes an SSH connection and sends the command string
to the HPC login node. The connection port must be specified. By default, the standard SSH port
is 22. The preprocessing user interface allows users to select multiple preprocessing steps, images,
and dye channels at once, and the images can belong to different groups as long as the user has the
correct permissions.

Another implementation of a CellDetector workflow step using OMERO.scripts is the prediction
step, depicted in Section 2.2. This script scans the results of the Cellpose step that are uploaded to
OMERO as file annotations. It determines how many nuclei candidates were found and calculates
how many jobs should be created to parallelise the processing. This information is sent as a
command string to the SSH forced command on the HPC system. This interface also allows for

multiple images to be selected at once.

As an alternative to OMERO.scripts, the OMERO.web applications are another way to
implement workflow steps. OMERO.web and these applications are Django-based web apps.
They can be accessed through their own URL paths in the OMERO.web application. In the web

*OMERO Daa Hilory Help  Model Training 5, et Y Testuser.

TestGroup Test User

| Model Training- | | Generat

Explore | Tags | Shares Thumbnails

LR s Imports
X Test user
i TestProject You are running the code on linux
B Test_Dataset
{8 Orphaned Images

Model Training

Set Parameters

Please select the path of your configuration file (*.config.py)
change

Click Me!

User.
Password:
ImagelD:

N Classes ..
[ Create local training data (saving of images)

While this box is checked, you will create/load an image dataset for live trai

"1 1 0ad existina labeled dataser

Figure 5.3: OMERO.web application integration
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interface, they can either be linked from the menu or integrated as web client plugins. As a web
client plugin, they can replace or add to existing panels of OMERO.web.

For the CellDetector workflow, the annotation of the cells is integrated using the OMERO.web app
feature. As described in Section 2.2, the existing workflow uses Jupyter Voila as a web application
to connect to OMERO and prepare the data for cell annotation. It uses the OMERO Python API to
authenticate the user, preselect cells from the results of previous workflow steps, and load the
image data. For the integration with OMERO.web, there is the option to recreate the existing
functionality with a Django app or to integrate the existing web application. The Django app can
be more tightly integrated with OMERO, which uses the Python API to load data and render it
into HTML pages using Django templates. The functionality would remain the same, but the
OMERO administrator would no longer be able to maintain the application as easily as the Jupyter
notebook. For this reason, the integration of the existing web application is the most viable option.
The web application is integrated in two ways, see Figure The external address is linked in
the top-left menu of OMERO.web and opens in a new browser window. This option does not
provide further integration with OMERO. The other integration is a Django web application that
uses the web client plugin functionality. The Django application is added to the center panel
of OMERO.web and can be accessed via a dropdown menu. The Django application itself uses
an iframe to access the existing external address. This enables tighter integration with OMERO
functionality because the session of the OMERO.web user can be used. Information from the
running session can be used in the external Jupyter Voila application via the postMessage API. The
postMessage APl is a browser API that enables message exchange between different windows,
tabs, iframes, and workers. The custom Django application reads the OMERO session details
and sends them with the postMessage function to the iframe of the external Jupyter Voila web
application. The Jupyter notebook adds a JavaScript event listener that accepts messages from the
specified origin address. The message includes the session key of the existing OMERO.web session.
For the cell annotation application, this skips the authentication with an OMERO username and
password. The postMessage APl is supported by nearly all current browsers, including Chrome,
Edge, Firefox, Opera, Safari, and more [58]. By default, the Jupyter Voila application may block
embedding in iframes. To allow the OMERO.web application to access the web application, the
content security policy of the underlying Tornado web server must be adjusted, as shown in
Listing This example command starts the web application and allows it to be embedded from
any domain. For a safer configuration, the frame ancestor should be set to the domain of the
OMERO.web server. This setup allows for tighter integration while keeping the external web
application maintainable and largely separate.

voila --Voila.tornado_settings=’ {"headers":{"Content-Security-Policy":"frame-ancestors

self " }}’ cell_annotation.ipynb

Listing 5.1: Content security policy setting for Voila
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5.3 Remote HPC Access and Task Distribution

The OMERO.script user interfaces create a connection to the chosen HPC login node using the
Python library Fabric. On the HPC system, the HPC user or an HPC administrator must add
the SSH forced command and the generated SSH public key. By default, this is done in the user
space of the HPC user under ~/.ssh/authorized_keys or the sshd_config file. The file
authorized_keys is used for public key authentication. For normal SSH key authentication,
it is sufficient to specify the key encryption type, the public key, and an optional comment that
labels the key for readability. For SSH forced commands, the command is written before the key
specifications, as shown in Listing

command="nohup script_selector.sh </dev/null >script_selector.log 2>&1 &" ssh-ed25519

AAAA.... user@example

Listing 5.2: SSH forced command setup

The nohup command is used to detach the execution of the application from the SSH con-
nection. Without nohup, the OMERO user can accidentally terminate the application by log-
ging out of OMERO.web, which ends the SSH connection and the entire execution. The
script_selector. sh script is the application that the forced command allows to be executed
over the SSH connection and it is illustrated in Figure[5.4, No other commands can be executed.

55H Authentication

Y

Config —— script_selector.sh —{ start_tunnel.sh

Preprocessing Prediction

Submit Job-
Template

Scheduler

Figure 5.4: Overview forced command

The forced command applications do not work with traditional input arguments, instead, an
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environment variable called SSH_ORIGINAL_COMMAND is set for the active session. The size that
the environment variable can reserve for the session is also the limit of the command string. On a
Linux system, this size is controlled by ARG_MAX, which limits the total size of arguments and
environment variables combined. The script_selector checks the SSH_ORIGINAIL_COMMAND
for inputs, selects the chosen workflow, and prepares the data. An additional configuration file
is used for directory paths, variables, and to declare the connection type from the HPC system
back to the OMERO.server. The script_selector reads the connection type, submits the job
to the scheduler, and, if needed, starts the application for the backward connection. The SSH
forced command mechanism is used to limit the attack vector if the SSH key pair is compromised.
Therefore, it is important that the forced command application does not allow user inputs to be
evaluated or expanded, as this could result in code injection and unwanted command execution.

If the compute nodes are behind a firewall that blocks outgoing connections, the alterna-
tive is to initiate SSH reverse port forwarding from the login nodes to the scheduled compute
nodes. This option must be supported in the sshd_config configuration, with options like
AuthorizedKeysFile, which sets the directory for the authorized_keys files in the user
space, and AllowTcpForwarding. The script_selector has two approaches that function
similarly: communicate the node name from the running job and initiate the reverse tunnel, as
illustrated in Figure The difference is how they communicate. One approach uses two setup

L

o initiate _ )
SSHCDI'I'II'I'IﬂI'IdStI'iI'IQ '_----_-_--_-_----_-_----_-_)‘ :joh_scrlpl

P
'
—

Message{node name)

”

<+
Message(S5SH reverse tunnel started)

close{job finished)

tunnel closed

L

Figure 5.5: Sequence diagram: SSH reverse tunnel

files, and each process must use the £1ock command to acquire the lock on the file in order to
gain the right to edit it. Otherwise, race conditions occur when multiple jobs are running in
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parallel and performing write operations on the files. The other approach creates new files for each
communication step. This prevents race conditions but may potentially create many temporary
files. On HPC systems that have user limits on inodes, that behaviour may be undesirable.

Therefore, the locking approach is the most viable option. SSH reverse

5.4 Code Optimisations

To improve the general performance of the CellDetector workflow, the existing codebase must be
adapted for better use of the HPC system’s resources. The biggest bottleneck of the existing code is
the execution of the nuclei detection algorithm Cellpose. Two potential bottlenecks are identified:
the transfer of pixel data from the OMERO.server to the compute node, and the processing of
Cellpose without efficiently utilising the compute node.

For the first bottleneck, the existing code is adapted to decouple the OMERO connectiv-
ity as much as possible. The only connection is made when the results are stored on the HPC
storage and simultaneously uploaded to the OMERO.server as a file attachment to the analysed
image file. With these changes, the Zarr file created in the first step of preprocessing can be used
for the pixel data, and the metadata of the images is stored separately in a JSON file. This improves
data locality by moving the image data closer to the processing nodes, thereby potentially enabling
better performance.

The next bottleneck concerns the more efficient utilisation of HPC resources. A main
goal of the existing code is general-purpose deployment on a variety of systems, including
workstations, laptops, and HPC systems. In its current state, it can potentially use multiple cores
by default on workstations and laptops, depending on the system environment. On HPC systems,
the usage of resources often has to be implicitly declared and integrated into the code. For many
image analysis steps, including Cellpose, data parallelism is the most appropriate parallelism
paradigm. The image data is split into separate tiles, and the Cellpose nuclei detection algorithm
can be applied to them in parallel. The existing code is written in Python. Python is widely used in
scientific workflows and is the most well-documented language regarding the OMERO APL. For
the Cellpose step, Python multiprocessing is used with its shared-memory parallelisation model.
The application itself uses the fork-join model for the parallelisation, see Figure The Cellpose
step is compute bound in the execution of the nuclei detection.

Another change to the codebase is the implementation of Zarr v3, as the existing code
uses Zarr v2. Zarr, as a file format, uses multidimensional arrays that are divided into chunks.
These chunks are stored as separate files. Depending on the chunk size specified by the developer
and the image size, a single image in the Zarr format can consist of thousands of files or even more.
While this structure contributes to the advantages of the Zarr file format, it can also be detrimental
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Figure 5.6: Fork-Join parallelisation Cellpose

in HPC environments. On HPC systems that impose user limits on inodes, this restricts the
number of Zarr files that can be generated and stored, because every file, directory, and symbolic
link is counted as one inode.

Another characteristic of HPC systems is that the performance of processing steps can suffer when
there are too many 1/0O calls, especially in combination with metadata servers. For Zarr files with
very small chunk sizes, this could pose an issue.

By using Zarr v3, these issues are addressed through its sharding functionality. Sharding groups
chunks and combines them into a single unit, called a shard. The chunks within a shard are still
accessible individually, as in previous Zarr versions, but the number of files can now be reduced.
The chunks within the files can be read individually, but write operations are performed on
the entire shard [16]. Through this functionality, both inode usage and performance issues are
improved.



Chapter 6

Evaluation

Based on the changes to the CellDetector workflow that follow the design choices made for
the general OMERO-to-HPC pipeline, this chapter provides an evaluation. By connecting
OMERO to an HPC system and identifying performance bottlenecks, Section 6.1 evaluates the
results of the changes. The usability of the new interfaces is the focus of Section 6.2. Section 6.3
illustrates the security aspects of the pipeline and the associated risks to the systems. Section
6.4 discusses the aspects of scalability and transferability of the system.

The general pipeline design from Chapter 4 and the groups of requirements identified in Section 2.3
form the basis for evaluating the implemented system. The KPIs defined in Section 2.3 determine
whether the system’s objectives are fulfilled and which shortcomings still exist. The following
sections evaluate the functional and non-functional objectives.

6.1 Performance

To fulfill the performance KPI defined in Section 2.3, the runtime of compute-intensive workloads
must be improved. The biggest performance bottleneck in the processing steps of the CellDetector
workflow is the nuclei detection with Cellpose. Section 5.4 describes the changes that were made.
To measure the impact of these changes, tests are conducted. From the provided set of research
data, three representative images are chosen. They are chosen based on their file size, as this most
strongly influences the workload. The image information is shown in Table[6.1} The smallest image,
the median-sized image, and the largest image in the data set are chosen. The tests are conducted

Name small image | median image | large image
Resolution | 4753 x 5167 7336 x 7468 | 19284 x 27437
Storage size 100 MB 221 MB 2157 MB

Table 6.1: Image information for the performance test

50
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on the GWDG HPC system, on the Emmy P2 CPU partition standard96, with 2 x Sapphire
Rapids 8468 processors, 96 cores, and 514,000 MB of memory. All tests are repeated at least 10 times.

Data locality

To assess performance improvements from the changes to data locality, both the existing
codebase and the updated version were tested. Since the existing codebase runs using only
one core, both versions are tested under the same scenario. The results are illustrated in Figure
The results show an improvement for all images. The improvements in percentages are
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Figure 6.1: Performance tests: Data locality

3.491% (small image), 5.51% (median image) and 5.495% (large image). Since the file sizes of
the two smaller images are only 100 MB and 221 MB, the time needed for connection setup
and transmission is relatively small. For batches of larger images, the improvements are significant.

Parallelisation

The next set of tests measures the changes to parallelisation with Python using multiprocessing.
For each set of tests, the number of cores was increased (1, 2, 4, 8, 16, 32, 64, 128, 192) until
the maximum of 192 cores on the specified HPC compute node partition. The results of these
tests are shown in Figure[6.2] The graphs show a constant line for one to two cores. To prevent
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Figure 6.2: Performance tests: Total time parallelisation
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slowing down the application when all cores are in use, one core is always reserved. All workload
sizes show a significant improvement in performance times. While the large image shows
improvements even with over 64 cores, the performance of the two smaller images worsens with
more than 64 cores. This is due to the reduced performance gains from increased parallelisation

and the added overhead, such as process creation and synchronisation.

Based on the test results, the speedup from the parallelisation changes can be calculated.
The results are shown in Figure The large image shows the most significant speedup in
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Figure 6.3: Performance tests: Speedup

performance, while the smaller images have a speedup of around 4.2 to 4.5 before losing efficiency
with more cores. This is, once again, the result of system overhead. Even for the larger image
workload, the speedup levels off at around 14.46 for 64 cores. Adding more cores results in

minimal to non-existent improvements.

To show the effect of adding more cores in relation to the speedup, the efficiency decay is
calculated. The results are presented in Figure The efficiency decay shows that performance
gains decrease, and after a certain point, adding more cores no longer improves performance.

The performance testing results show that both performance-related issues with the Cell-
pose processing step are improved by the changes detailed in Section 5.4. In particular,
parallelization improves the performance of all workloads, with larger images gaining the most
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Figure 6.4: Performance tests: Efficiency decay

performance. If the number of cores is not chosen dynamically, it should be based either on the
larger workloads, as most processing time is spent on them, or on the most frequently used

workloads.

6.2 Usability

A main goal of the OMERO-to-HPC pipeline is to enable more researchers to use workflows
that require HPC systems for more efficient research, in combination with OMERO as an RDM
platform. One of the challenges of the existing system environment is the potential barrier to entry
of HPC systems for new users. That is why, in Section 2.3, one group of identified requirements
and the following KPI are about the usability of the workflow. To assess if the designed pipeline in
Chapter 4 and the implemented interfaces in Section 5.2 address these issues, the usability of the
system must be examined.

Usability can be defined as the "extent to which a system, product or service can be used by
specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use" [59].

The term usability is a latent construct. This means that there is no direct way to measure a value
that implies the usability of a system. It is possible to derive, indirectly from other observations,
how the latent construct usability is affected. In the literature, there are different usability models
that try to identify the dimensions that affect usability. The International Organization for
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Standardization (ISO) 9241-11 [59] standard defines the dimensions, as shown in Table 5. While

Dimension | Description

Effectiveness | Measured through metrics that focus on the
accuracy and completion of tasks.

Efficiency | Efficiency refers to the resources required to
achieve a specified goal. These resources are
typically measured in terms of time and effort.
Satisfaction | Satisfaction is described through the attributes
of comfort and acceptability. They refer to the
complexity, ease of use, and learnability of the
system.

Table 6.2: ISO 9241-11 Usability dimensions

ISO defines three dimensions, effectiveness, efficiency, and satisfaction, there are other usability
models with slightly different dimensions. Another approach is proposed by Jakob Nielsen [60],
who defines five attributes in his usability model: learnability, efficiency, memorability, errors, and
satisfaction. While learnability, efficiency, and satisfaction overlap in parts with the ISO model,
memorability and errors are new. Memorability describes how easy the system is to remember,
allowing a casual user to always return to it without relearning everything. The error attribute
adds to ISO’s effectiveness and accuracy the ability to recover from errors. For the usability testing
of the pipeline, the ISO dimensions are used and adapted.

To capture the dimensions of effectiveness, efficiency, and satisfaction, user stories are
created that describe the functionalities of the implemented software from the perspective of its
users. Additionally, acceptance criteria are defined that are tied to the attributes that determine if a
user story is complete. The completion serves as an indicator of whether the attribute is satisfied
and the usability is improved.

The user stories are listed in Table They aim to map each usability dimension to a few metrics
that can be measured in simple user tests. The focus of the usability tests is the OMERO.scripts
interface because it provides the HPC connectivity implemented in this thesis. For the research
members, the time improvements to user actions are especially important. With the existing
system, every image ID had to be written to an external list.

The tests of the user stories were completed successfully. The biggest time investment is the initial
setup for new users on an HPC account. A usability concern is the lack of feedback for the HPC
jobs once they are started, as the current setup has no functionality for querying the HPC job
status. The successful testing of the acceptance criteria for the user stories indicates a usability
improvement over the existing system. Where the existing system has a larger entry barrier, the

new system is more accessible.
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Name | User Story Acceptance Criteria
Story-1 | As a researcher, I want to learn how to launch | - Time needed for introduction <
the CellDetector preprocessing steps after a | 15 min
short introduction, so that I can quickly start | - Number of failed attemps < 5
processing my data with minimal errors. - Time to first successful HPC job
creation after introduction < 10
min
Dimension: Satisfaction
Story-2 | As a researcher, I want to quickly process | - Number of clicks needed to se-
large numbers of images using the CellDetec- | lect all images and start the HPC
tor workflow, so that I can analyze them ina | jobs <25
shorter time. - Time needed for HPC job cre-
ation < 3 min
Dimension: Efficiency
Story-3 | As a researcher, I want to access the results of | - Successful completion rate of
the image preprocessing steps, so that I can | HPC jobs > 95%
review and analyze the associated data. - (uploaded file annotation) / (ex-
pected file annotations) > 95%
Dimension: Effectiveness

Table 6.3: Usability: User Stories

6.3 Security

The proposed and implemented pipeline connects two different system environments: the
OMERO system and an HPC system. Both systems have different user management and access
control mechanisms and store sensitive and confidential data related to patient health and/or
research. Furthermore, it is possible that the OMERO system and the HPC system are managed by
different providers with different security policies. For these reasons, it is essential to provide a
secure approach to bridge the systems and connect their functionalities. For the OMERO system,
this mostly concerns the security of data transfer, including encryption, as well as access to the
OMERO.server with its primarily password-based authentication. On the HPC system side, this
also concerns the authentication of its users, as well as malicious access and misuse of its resources.
In the proposed pipeline, both sides must use the authentication mechanism of the other side
to run the intended workflow. Based on the security requirements identified in Section 2.3 and
the design and implementation from Chapters 4 and 5, this section discusses possible security

concerns of the pipeline.

Remote HPC Access

The HPC system authentication in the pipeline is based on SSH key pairs for authenticating the
HPC user. The required SSH key pair is stored on the OMERO.server. This means that the HPC
user grants the OMERO server the authority to connect to the HPC system and the personal
user space. If a malicious attacker gains access to the OMERO.server, for example, through a
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software or system vulnerability, this would give them attack options for the HPC system and
its data. To limit this attack vector, the proposed pipeline uses SSH forced commands. The HPC
user limits the access rights of the SSH key by allowing only a single command or application
to be callable. The accessible application must never trust the inputs coming from the SSH
connection, as it is possible to inject code through them. With code injection, it is possible to
run commands or even overwrite the authorized_keys file, gaining full access to the HPC

user space. By never evaluating or expanding the inputs, the risk of such an attack can be mitigated.

OMERO.server Access

The pipeline design proposes a connection from the HPC system to the OMERO.server to access its
data and transmit it for further processing. OMERO uses passwords as its primary authentication
mechanism. This means that the potentially long-lived password would have to be sent to the
HPC system. To avoid this, a short-lived authentication mechanism would be more secure. Bearer
tokens would be such a mechanism. They are short-lived, stateless tokens that can be sent in
the authorization header of an HTTP request. OMERO currently does not support such token
functionality. Instead, it uses sessions for all user activities. The corresponding session keys are
stateful but are also shorter-lived than passwords. Therefore, it is important not to risk session
hijacking by exposing the session keys. The session keys are possibly transmitted during three
actions: the SSH connection from the OMERO.server to the SSH forced command application
on the HPC system, the connection from the HPC system back to the OMERO server, and with
the custom OMERO web application, where the session key is transmitted with the webpage
data. The first connection uses the encrypted SSH tunnel, the second uses Secure Sockets Layer
(SSL) for authentication by default, and the third is transmitted via HTTPS. This means that every
transmission of the session keys is encrypted.

In addition to secure authentication, the security of the image data transfer is also important.
OMERO uses TCP ports 4063 and 4064 to connect to the OMERO.server. Port 4063 is unsecured,
while port 4064 uses SSL. The default OMERO configuration is to use SSL only for authentication
and allow all other communication to be unencrypted in order to speed up image loading. By
changing the OMERO server configuration or setting secure=True in the Python API call, it is
possible to always encrypt the communication. This prevents malicious users on the network from
spying on the OMERO network traffic.

User Operating Errors

The user must correctly set up the SSH connection and the scripts folder for the pipeline to work.
The correct implementation of the SSH forced command is especially important. The scripts
include a bash script that takes the public key as input and writes the SSH forced command to
authorized_keys to minimise small mistakes. The rest of the directory and applications are
preconfigured but allow users to change paths and job scripts.
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Taking these security concerns into consideration and minimising the risks strengthens

the security of the entire pipeline, and with it, both connecting systems.

6.4 Scalability and Transferability

By making the existing workflow more accessible to more users, the pipeline must be scalable
to support more users and data. The pipeline also needs to be transferable to other workflows
and similar systems. Based on the requirements identified in Section 2.3, the general pipeline
architecture was designed in Chapter 4. This design is the foundation for a scalable deployment.
By virtualising or containerising the OMERO components, it becomes easier to scale parts in
response to increasing numbers of users and data. Offloading the computational steps to the HPC
keeps the OMERO server responsive and improves the workflow. The constraint requirements

mean that no changes are made to the underlying system, and only new functionalities are added.

To make the pipeline transferable, Bash is chosen for all non-computing step applications.
Bash is widely used in Linux and Unix system environments and supports many additional tools.
A similar decision was made to use SSH forced commands with key pairs. SSH key authentication
remains a popular authentication mechanism for HPC systems. The script-selector
application allows for the integration and support of new processing steps and workflows. The
design decision to choose OMERO.scripts allows for the quick development of new user interfaces
for additional HPC computing steps.

The OMERO-to-HPC pipeline is a scalable and transferable approach to connect the OMERO RDM

with HPC system resources.



Chapter 7

Conclusion and Future Work

The goal of this thesis is to design a pipeline that connects the workflows of researchers performing
microscopy image analysis using the RDM system OMERO with an HPC system and its compute
resources. Alongside the pipeline proposal, the CellDetector workflow is adapted, and the
OMERO-to-HPC pipeline is implemented to demonstrate and test the design decisions.

To do that, Chapter 2 explains the use case and illustrates the existing workflow and its
architecture. Afterwards, a requirements analysis is conducted to identify the requirements and
KPIs. In addition to the constraint requirements, five groups of requirements are identified:
performance, usability, security, scalability, and transferability. These groups create the basis for
the KPIs. From there, Chapter 3 gives an overview of OMERO and HPC systems, and the related
works are identified and analysed. The analysis identifies a lack of research in this specific area,
and the few existing approaches have, among other things, issues regarding a secure connection
to an HPC system. The following chapters design, implement, and evaluate the proposed

components of the pipeline.

To achieve the stated goal, several research questions were outlined in Section 1.1 to ad-

dress the identified challenges. Each question represents a part of the proposed pipeline.

Q1: What are the options for improving the performance of analysing and processing microscope
images by utilising HPC resources?

Q1 represents the HPC computing component of the workflow. In Section 4.4, two workflow-
specific performance bottlenecks are identified: data transfer of the images and insufficient paral-
lelisation of the analysis steps. Section 5.4 illustrates a solution to these issues with the CellDetector
workflow, and Section 6.1 presents the performance impact of these changes. The results are
better utilisation of the compute nodes and a significant performance gain in the time-intensive

processing steps.
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Q2: How can the operation of the HPC resources in this workflow be made more user-friendly?

Q2 includes the usability of the system and the ability to connect to the HPC system. The user
interface options are evaluated in Section 4.2, where the decision is made to utilise OMERO.scripts
and OMERO.web applications, as they serve different use cases. Section 5.2 illustrates their
integration, and Section 6.2 analyses how the usability can be evaluated.

Q3: What potential security issues could arise, and how could they be addressed or minimised?

Q3 combines all security-related issues of the presented pipeline approach. These include the HPC
remote access, OMERO.server access, and potential user operating errors. A key component of the
pipeline is the use of SSH forced commands to limit the HPC access of the OMERO system. This
creates a secure connection interface between both environments. The potential security issues are
evaluated in Section 6.3.

Q4: What aspects need to be considered as the amount of data, number of users, and future
workflows grow?

The pipeline design in Chapter 4 addresses the scalability and transferability goals by suggesting
a scalable deployment of OMERO with VMs and containers and introducing the SSH forced
command script, which can be extended to include other workflows. The choice of the tools used
makes the pipeline transferable to other similar environments.

These contributions create a pipeline design that can be implemented to enable OMERO
users to create HPC-supported workflows without having to learn the traditional utilisation
paradigm of HPC systems.

Future Work

For future work, the functionality of the system could be extended to provide OMERO users with
more feedback about the running jobs on the HPC. This would require another user interface and
could be implemented using OMERO.web applications. It would provide the user with more
information about whether the job requests are handled correctly, or if a job was canceled and
needs to be restarted. It could also provide additional information about the HPC storage space
used by the workflow.

To improve the security of the SSH key pairs, a separate server could be implemented that
stores the keys securely and handles all HPC connection requests with a queue system. The
OMERO.server would then only send commands to the separate server.
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