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Abstract
Kernel methods aim for the detection of stable patterns robustly and efficiently from
a finite data sample by embedding data items into a space of higher dimensionality
where data points have linear relations. Strings kernels apply this methodology to find
relationships between string objects by checking for the number of shared substrings and
using this measure as a similarity score. Due to the low number of studies conducted in
the area of code comparison and Input/Output (I/O) access pattern recognition using
string kernels, the goal of this thesis is to propose a suitable, general representation,
as well as the corresponding strategies of comparison based on kernel methods, such
that they can be used successfully to determine a reliable similarity measure among
a collection of programs. Therefore, we propose different conversion strategies from
these original sources to a weighted string representation; the defined representation is
a collection of tokens whose weights allow the modulation of the contribution of each
token in the calculation of the overall similarity.
The resulting strings are compared with a new family of kernel functions, which

correspond to the major contribution of this thesis: the kastx spectrum kernel family. In
order to create a similarity measure among two strings, these kernels are based on the
longest common substrings; the idea behind this approach is to give more relevance to
the largest common pieces of code rather than to small and disperse code instructions.
The size of the valid matching substrings is controlled by the cut weight, a parameter
given by the user, that specifies the minimum weight that those substrings should have.

We tested our methodology in two scenarios: i) pattern recognition in I/O traces, and
ii) comparison of intermediate representations of a compiler. In the first scenario, the
clustering analysis showed that the proposed kernels managed to conform clusters that
reflected the similarity of patterns taken from two popular I/O benchmarks. For the
second scenario, a set of C functions was organized in four different classes, according to
their purpose; clustering analysis here also showed a cluster organization that reflected
the affinity among functions of the same class. These new kernels obtained similar, and
in some cases, better results when compared to the blended spectrum kernel [SC04], a
string kernel with widespread use in cheminformatics problems. The provided kernels
will enrich the spectra of available string kernel functions on the literature and might be
used in the future in similarity studies, not only in the field of computer science, but
also in other areas like cheminformatics, bioinformatics or natural language processing.



Zusammenfassung
Kernel-Methoden zielen auf die robuste und effiziente Erkennung stabiler Muster aus
einem endlichen Datenmuster, durch Einbettung der Datenelemente in einen höherdi-
mensionalen Raum, in den dir Datenelemente lineare Beziehungen haben. String-Kernels
wenden diese Methode an, um Beziehungen zwischen String-Objekten zu finden, indem
sie die Anzahl der geteilten Teilstrings prüfen und dieses Maß als Ähnlichkeits-Score ver-
wenden. Aufgrund der geringen Anzahl von Studien, die im Bereich des Code-Vergleichs
und der Eingabe/Ausgabe(E/A)-Mustererkennung unter Verwendung von String-Kernels
durchgeführt wurden, ist das Ziel dieser Arbeit eine geeignete, allgemeine Darstellung
sowie entsprechende Vergleichsstrategien basierend auf Kernel-Methoden vorzuschla-
gen, so dass diese erfolgreich zur Bestimmung einer zuverlässigen Vergleichsmetrik
zwischen einer Sammlung von Programmen genutzt werden können. Daher schlagen
wir verschiedene Umwandlungsstrategien ausgehend von diesen Ursprungsquellen zu
einer gewichteten String-Darstellung vor. Die definierte Darstellung ist eine Sammlung
gewichteter Tokens, bei der die Gewichtungen die Modulation des Beitrags jedes Tokens
in der Berechnung der Ãhnlichkeit ermöglichen.

Die resultierenden Strings werden mit Hilfe einer neuen Familie von Kernel-Funktionen
verglichen, welche den Hauptbeitrag dieser Thesis darstellt: Die kastx spectrum kernel-
Familie. Um eine Ähnlichkeitsmetrik zwischen zwei Strings zu berechnen, werden
Kernel-Funktionen, die auf den längsten gemeinsamen Substrings basieren, verwendet,
mit der Intention, dass die längsten gemeinsamen Codestücke mehr Relevanz erhalten
als kleine und verstreute Teile des Codes. Die Größe der gültigen übereinstimmenden
Teile zwischen zwei Strings wird begrenzt durch das Schnittgewicht, ein durch den
Nutzer vorgegebener Parameter, das die minimale erwünschte Gewichtung der Substrings
festlegt.

Wir testen die Methode in zwei Szenarien: i) Mustererkennung in E/A-Spuren und ii)
Vergleich von intermediären Darstellungen eines Compilers. Im ersten Szenario zeigte
die Clusteranalyse, dass die vorgeschlagenen Kernels Cluster finden konnten, die in
zwei beliebten E/A-Benchmarks eine große Ähnlichkeit der Muster zeigten. Im zweiten
Szenario wurde eine Menge von C Funktionen in vier unterschiedliche Klassen eingeteilt,
basierend auf ihrem Zweck. Eine Clusteranalyse zeigte, dass die Funktionen der einzelnen
Cluster untereinander Ähnlichkeit aufwiesen. Die neuen Kernels erzielten ähnliche und
in manchen Fällen bessere Ergebnisse im Vergleich mit dem textitblended spectrum
kernel [SC04], einem String Kernel der im Feld der Chemieinformatik große Verbreitung
findet. Die bereitgestellten Kernel erweitern das Spektrum der in der Fachliteratur veröf-
fentlichen String-Kernel und können in der Zukunft für Ähnlichkeitsstudien verwendet
werden, nicht ausschließlich in der reinen Informatik, sondern auch in verwandten Feldern
wie der Chemieinformatik, der Bioinformatik und der Verarbeitung natürlicher Sprache.
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1 Introduction
In this first chapter, we present to the reader the problem of program similarity as
the main theme that motivates this work. Among the variety of available forms of
assessing a similarity score, the comparison of programs can be based on the code itself,
the intermediate representations inside a compiler, or the traces left in storage access
monitoring. In that sense, we start, in Section 1.1, with the review of the basic background
on the topics of code similarity and the intermediate representations. We also explore the
relationship of Input/Output (I/O) access patterns and kernel methods with the research
problem. Kernel methods are able to detect patterns from a finite data sample by embedding
data items into a space of higher dimensionality where data points have linear relations.
Throughout this chapter we show how comparing programs brings benefits to a variety of
tasks like performance evaluation, code sharing and plagiarism detection. The reader is
progressively introduced into the use of string kernel functions for comparing programs,
a relatively new area in which this thesis contributes with three novel implementations.
Strings kernels are functions well suited to find relationships between string objects.
Section 1.2 contains an overview of the contributions of this work, while Section 1.3
presents the general structure of the document.

1.1 Motivation
Numerous studies have been conducted in the problems of code similarity and I/O
pattern recognition. However, the usage of string kernels in these domains is an area not
widely explored. This section introduces the reader into the research problem and the
suitability of the application of kernel methods as a solution for it.

1.1.1 Code Similarity
Computer programs exhibit similarities that can be detected before, during and after
execution time. Being similar means sharing syntactical or semantical structure in a
significant proportion. Programs that are similar tend to behave in a similar manner
too, a fact that can be harnessed, for example, for the analysis and improvement of the
overall performance of a set of programs by focusing on finding patterns that behave
similar but have a different performance. The detection of program similarities has been
identified as an emerging topic in software engineering areas [CX12].

From the perspective of code sharing, finding similar code can, for example, assist the
programmer in finding code that is already implemented in a library and hinting users to
utilize the library instead of recoding. Developers might be even able to find syntactically
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dissimilar, yet more efficient, versions of their algorithms with similar semantics. The
optimizations implemented in an algorithm might benefit similar programs, once the
similarity relation has been established.

Furthermore, the search could be specialized on finding common mistakes at designing
or writing programs, the so-called code smells [MVL03]. A possible way to do this could
be by comparing our own code against a collection of code excerpts already recognized
as containers of code smells, and subsequently applying machine learning to extract
knowledge from the similarity scores.
On the counter direction of code sharing, we have code plagiarism, a phenomena

that has increasingly motivated research in program similarity [MKZ06]. Starting
from computer science lectures where teachers need to verify the originality of their
students’ work, till the protection of copyrighted code that might have been illegally
used, plagiarism detection is a very active research field.

Code Clones and Detection Approaches

In the work of Beth [Bet14], the general strategies used to obscure plagiarism are
listed. They range from simple changes like comment alteration, whitespace padding and
identifier renaming, to more complex procedures like code reordering and modification of
algebraic expressions. These modifications provoke the occurrence of code clones, which
are defined by Dang et al. [DW15] as portions of code with high similarity in syntax
or semantics. The occurrence of code clones are normally used to measure the level of
plagiarism in a program and are believed to difficult the maintenance of software [KKI02].

The severity of the alterations determines the type of the clone. To illustrate this point,
let us consider a code sample written in C, like in Listing 1.1; the function performs the
simple calculation of the expression: b × c + d ÷ e, and stores it into a variable. The
following is a list of possible clones that can be obtained by modifying the given code:

• A Type-1 clone would present simple changes in code layout, spacing and comments,
like in Listing 1.2; in the given example, the major change corresponds to the
absence of comments.

• A Type-2 clone would also include identifier renaming and alteration in data types,
like in Listing 1.3; the example shows how float and int data types are changed
to double and long respectively.

• A Type-3 clone would additionally contain insertion, deletion or modification of
instructions, like in Listing 1.4; the main instruction in the example makes use of
brackets to explicitly express the operation precedence.

• A Type-4 clone would have a different implementation to the original piece of code
but serve the same purpose, like in Listing 1.5; in the given example, the main
instruction is broken down into three parts.

9



1 void example ( )
2 {
3 // v a r i a b l e d e c l a r a t i o n
4 f loat a = 0 .0 ;
5 int b = 1 ;
6 int c = 2 ;
7 int d = 3 ;
8 int e = 4 ;
9

10 // c a l c u l a t i o n
11 a = b ∗ c + d / e ;
12 }

Listing 1.1: C code segment enclosing the instruction a = b× c+ d÷ e.

1 void example ( ) {
2 f loat a =0.0 ;
3 int b=1;
4 int c =2;
5 int d=3;
6 int e =4;
7 a=b∗c+d/e ;
8 }

Listing 1.2: Type-1 Clone.

1 void f u n c t i o n ( )
2 {
3 double v = 0 ;
4 long w = 1 ;
5 long x = 2 ;
6 long y = 3 ;
7 long z = 4 ;
8 v = w ∗ x + y / z ;
9 }

Listing 1.3: Type-2 Clone.

1 void f u n c t i o n ( )
2 {
3 long w, x , y , z ;
4 w = 1 ;
5 x = w + 1 ;
6 y = w + 1 ;
7 z = y + 1 ;
8 double v = (w ∗ x ) + ( y / z ) ;
9 }

Listing 1.4: Type-3 Clone.

1 void f u n c t i o n ( )
2 {
3 long y = 3 ;
4 long z = 4 ;
5 long w = 1 ;
6 long x = 2 ;
7 double l = y / z ;
8 double m = w ∗ x ;
9 double v = l + m;

10 }

Listing 1.5: Type-4 Clone.

We believe that not all code clones can be taken as evidence of plagiarism, especially
Type-4 clones, whose implementation would differ radically from a presumed original
version; this belief is not new. For example, Al-Ekram et al. [AlE+05] described how
clones can be created by accident, due to the precise protocols that a piece of code must
follow, when using a particular API from a library. Other works [God09] have instead
approached to code clones as an effect of software evolution.

In our research, we aim for contributing with methods suitable for complex comparison
tasks. Hence, we have discarded approaching to code as mere text or lexemes, which
would additionally bind the proposed solution to a particular language. Instead, we
have targeted two intermediate representations delivered by the popular LLVM compiler
infrastructure [LA04], which placed our contribution into the category of the syntactical
approaches, which are ideal for detecting Type-1, Type-2 and Type-3 clones, and automat-
ically promoted the application of our methods to the extensive variety of programming
languages that LLVM can compile.
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Compilers’ Intermediate Representations

Before compilation, code comparison can be performed upon the typed code itself or on
source code metrics. Upon compilation, however, the already mentioned intermediate
representations (IRs) come to the picture and bring deeper information about the
program’s characteristics, as they are meant to facilitate the analysis and optimization
tasks of a compiler. Researchers have also utilized them to track the evolution of software
projects [NFH05]. The additional knowledge they implicitly carry make them a better
option in comparison to raw code when it comes to the selection of a source of information
for a similarity study.

Complex compiler infrastructures like LLVM [LA04], GCC [Gri02] and Open64 [Dev01],
might work with different types of interconnected IRs, some of them closer to the source
code, others closer to the machine instruction level. Due to its wide spread in the
compiler infrastructures, we were interested mainly in two of them: Abstract Syntax
Trees (ASTs) and Three-address Codes.

• Abstract Syntax Trees (ASTs): Graphical intermediate representations store
the program’s information in a graph-like data structure. Among them, abstract
syntax trees (ASTs) are widely used in compiler infrastructures. ASTs are defined
as contractions of parse trees where most non-terminal symbols are ignored while
the precedence and the meaning of the expressions are preserved, thus saving space.
Their level of abstraction is not far from the original source code.
It is exactly the abstraction level the feature that makes researchers focus on ASTs
as a source of information for code comparison tools, e.g. DECKARD [Jia+07].
ASTs provide high level information that is not evident at simple view in source
code. One simple example is the scenario where one looks up into an AST node
that represents a variable and ask for the data type instead of its name, which
delivers more meaningful insights of the program than the arbitrary selection
of variable names made by the programmer. A more complex scenario is the
possibility to connect a node that represents a function call with the parent node
of its implementation.
To illustrate how ASTs can be used to find similarities, let us consider the ASTs of
both the original code (Figure 1.1a) and its Type-3 clone (Figure 1.1b) from the
previous section. Both trees are structurally the same; only the identifiers differ. A
typical normalization step would replace all individual identifiers with a common
keyword, which would result in the same AST for both examples (Figure 1.1c).

• Three-address Codes: Linear IRs are simple sequences of operations, similar to
machine code. Among the popular linear IR models, there exists the three-address
code model. In this model, most operations have at most an operator and three
addresses: two addresses for the operands and one for the result. Three-address
codes exhibit compactness without forcing destructive operations, which gives
room for further code optimization. Plus, many modern processor architectures
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are already based on three-address operations, which makes the translation more
intuitive.
One of the advantages of this representation in comparison with the ASTs, is that
it is obtained once the compiler has performed the optimization passes, hence
eliminating redundant or dead portions of code.
Let us again consider both the original code and its Type-3 clone, but this time
using their three-address codes (Listings 1.6 and 1.7 respectively). Here also, a
normalization step would replace all individual identifiers with a common keyword
and produce the same three-address code for both examples (Listing 1.8). An
additional compression step would collapse repeated consecutive line occurrences
into a single one (Listing 1.9).

=

a +

×

b c

÷

d e
(a) a = b×c+d÷e

=

v +

×

w x

÷

y z
(b) v = (w × x) +

(y ÷ z)

=

id +

×

id id

÷

id id
(c) id = id× id+ id÷ id

Figure 1.1: Abstract Syntax Trees for a) Original and b) Type-3 Clone c) Normalized
version.

1 v1← d
2 v2← e
3 v3← v1÷ v2
4 v4← b
5 v5← c
6 v6← v4× v5
7 v7← v3 + v6

Listing 1.6: Three-Address Code for
Original Code.

1 v1← y
2 v2← z
3 v3← v1÷ v2
4 v4← w
5 v5← x
6 v6← v4× v5
7 v7← v3 + v6

Listing 1.7: Three-Address Code for
Type-3 Clone.

1 id← id
2 id← id
3 id← id÷ id
4 id← id
5 id← id
6 id← id× id
7 id← id + id

Listing 1.8: Normalized Three-Address
Code.

1 [id← id]2
2 [id← id÷ id]1
3 [id← id]2
4 [id← id× id]1
5 [id← id + id]1

Listing 1.9: Compacted Three-Address
Code.
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The Intermediate Representations of the LLVM Compiler

LLVM [LA04] is a complete compiler framework that uses different IRs to perform program
analysis, transformation and code generation. Among the variety of tools available
under this infrastructure, there exists Clang [Inf17], a frontend for C/C++/Objective
C programs. Upon compilation, Clang first captures the syntactical structure of the
program in an acyclic graph-like structure, called the Clang AST. It has to be clarified
that the Clang AST is in practice not meant to be a tree, but it can be traversed as such,
once we have access to the particular dependencies of the internal nodes.

Afterwards, the Clang AST is traversed to generate a linear IR, the place where most
of the transformations and optimizations are performed, before the final stage of specific
machine code generation. The LLVM Linear IR is the backbone that connects the
frontends and backends of the whole compiler infrastructure [LA14]. LLVM provides a
library that allows to handle this linear representation as a low level AST, which is very
useful when it comes to do program analysis.
Consider the abbreviated versions of the Clang AST (Figure 1.2) and the LLVM IR

(Listing 1.10) for the instruction: a = b×c+d÷e, and its Type-3 clone: v = (w×x)+(y÷z).
As identifiers and operation names in the AST are replaced by generic names, both
instructions have the same tree. In the case of the LLVM IR, variable names are replaced
automatically by the compiler with incremental register names, resulting in the same
code for both examples.

BinaryOperator

DeclRefExpr BinaryOperator

BinaryOperator

ImplicitCastExpr

DeclRefExpr

ImplicitCastExpr

DeclRefExpr

BinaryOperator

ImplicitCastExpr

DeclRefExpr

ImplicitCastExpr

DeclRefExpr

Figure 1.2: Abbreviated Clang AST for both Original (a = b × c + d ÷ e) and Type-3
Clone (v = (w × x) + (y ÷ z)).
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1 %5 = load %1
2 %6 = load %2
3 %7 = mul %5 %6
4 %8 = load %3
5 %9 = load %4
6 %10 = sd iv %8 %9
7 %11 = add %7 %10

Listing 1.10: Simplified LLVM Linear IR code segment for both Original (a = b×c+d÷e)
and Type-3 Clone (v = (w × x) + (y ÷ z)).

The configuration is more than ideal: a high level representation closer to the source
code, and a low level representation closer to the machine code. In addition to that, the
versatility of both, the Clang AST and the linear representation of LLVM, made this
compiler platform the best candidate to perform our study. Previous efforts where done
during this research with other program analysis infrastructures like the Rose Compiler
Project [J Q00] and the ANTLR Parser [Par15]. However, the difficulty to handle their
ASTs and the relatively reduced community giving support in large scale projects, made
us decline on them.
As it has been seen, comparing the code of a set of programs before their execution

has a clear application in plagiarism detection and code sharing. In the exact case of
code sharing, a program can benefit from optimizations already present in a similar
piece of code. However, before execution, any improvements on the performance are only
theoretical.

1.1.2 Similarity of Input/Output Access Patterns
Computer programs can also be characterized upon and after execution time, which
provides an experimental proof of the performance of a program. This characterization can
be done in a variety of ways. One could use real time monitoring of hardware performance
counters, like in the PAPI project [Bro+00] or the LIKWID tool suite [THW10]. Another
approach is to focus on the communication and synchronization bottlenecks, like the
Scalasca tool-set does [Gei+08].
Projects like the SIOX architecture [Kun+14] focus instead on the analysis of I/O

operations. The organization of I/O operations is a critical factor that impacts directly
the performance of a real world application. This performance can be studied after
execution by looking at access patterns, which can be seen as the fingerprints of a
program. The identification and analysis of these patterns is important in performance
evaluation, because it helps, not only to understand the impact factors of the underlying
file system, but also to design better ways of organizing I/O operations.
Performance analysis and optimization becomes more complex when it comes to

parallel applications; this need is more evident in high performance computing (HPC)
applications, which usually relay on parallel file systems. Parallel file systems are minded
for accessing files in a simultaneous, concurrent and efficient way [Kun13]. The contents
of a file in a system like this are usually scattered among different I/O subsystems, in
order to take advantage of the locality. These systems should provide, among other
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capabilities, persistence, consistence, performance, and manageability. Other desired
features might include: scalability, fault-tolerance and availability. However, a bad design
in the I/O operations of a program might cause a suboptimal utilization of the parallel
design.

I/O Traces

By looking at the I/O traces of a parallel program one can seek for bottlenecks in I/O
operations; these traces may contain timestamps, operation names and information
about the number of bytes involved, which constitute patterns that depict the behavior
of storage access over a period of time. Each pattern can be characterized by the
following properties: access granularity, randomness, concurrency, load balance, access
type and predictability. Liu et al. [Liu+14] mentioned three additional features seen
on supercomputing I/O patterns: burstiness, periodicity and repeatability. Traces
sharing similar patterns are more likely to manifest the same weaknesses or strengths in
their I/O design, an indication of great utility for the performance analysis of parallel
programs. A straightforward application of a comparison study could be, for example, the
determination of the efficiency of a program by comparing its traces against a database
of patterns previously labeled as suboptimal.

Let us consider two apparently different I/O traces (Listings 1.11 and 1.12). Normal-
ization in this case can be done by ordering the operations according to the file handle,
and by replacing the byte number with a generic identifier, which results into the same
pattern for both traces (Listing 1.13). Compression would generate a more succinct
version of the pattern (1.14).
1 read f i l e 1 bytes 8
2 wr i t e f i l e 2 bytes 8
3 read f i l e 1 bytes 8
4 wr i t e f i l e 2 bytes 8

Listing 1.11: I/O pattern with
interlaced operations.

1 read f i l e 3 bytes 16
2 read f i l e 3 bytes 16
3 wr i t e f i l e 4 bytes 16
4 wr i t e f i l e 4 bytes 16

Listing 1.12: I/O pattern with ordered
operations.

1 read f i l e x bytes n
2 read f i l e x bytes n
3 wr i t e f i l e y bytes n
4 wr i t e f i l e y bytes n

Listing 1.13: Normalized I/O pattern.

1 [ read f i l e x bytes n ] 2
2 [ wr i t e f i l e y bytes n ] 2

Listing 1.14: Compacted I/O pattern.

1.1.3 String Kernel Functions for Similarity Search
We have described how intermediate representations and I/O traces of similar programs
present common patterns in their internal structure that can be used as a measure of
similarity. The natural question that arises after it is related on what to use to compare
those data structures. The amount of metrics or algorithms for performing this task is
large.
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Graph-based program characterization has been proved to be an effective approach
when it comes to find similarities among computer programs [PCA12]. They have been
successfully adopted for compiler optimization, like in the work of Nobre et al. [NMC16].
Cesare et al. [CX12] stated that kernel methods have been scarcely used in software

similarity problems, which represents a great opportunity for new research efforts.
Following this hint, it called our attention the fact that there were not so many available
works related to the use of string kernel functions to compare data structures coming
from the particular domain of compilers or I/O access patterns; the available studies
worked mostly with tree kernel functions.

Kernel Methods

There is a group of algorithms that have been successfully applied in problems involving
structured data like trees and strings [BHS07]: they are called kernel methods. Kernel
methods make part of the large constellation of machine learning techniques and are
well documented in the book of Shawe-Taylor and Cristianini [SC04]. This group of
algorithms are claimed to be strong enough for detecting stable patterns robustly and
efficiently from a finite data sample, based on the idea that original data items can be
embedded into a space where linear relations manifest as patterns. Kernel methods
follow the modular design that characterizes a modern machine learning system:

• Feature Extraction Subsytem: The stage where data is transformed to a
meaningful representation which can be mined.

• Clustering/Classification Subsystem: This stage corresponds to the applica-
tion of a learning algorithms.

Usually, in machine learning, data is delivered as a collection of attribute-value tuples,
but, as we have seen, ASTs, linear representations and I/O traces do not comply with
this model, and any comparison strategies based of the attribute-value model cannot be
adopted straight away. The need for an appropriate mapping of these data structures
motivated our contribution, and placed our work in the category of the first stage of the
kernel methods strategy: the feature extraction subsystem.

String Kernels

Kernels designed for dealing with strings are denominated string kernels. Strings kernels
are explained in a comprehensive way in [VS03]. They check for the number of shared
substrings among a collection of strings. One of the advantages of string kernels is that
they can easily deal with the comparison of strings of variable size. To illustrate the
notion of string kernels, let us consider the strings aabcc and abccc:

• The bag-of-characters kernel, only takes into account single-character matching. In
this case, the similarity score is given in Table 1.1. The summation of all the scores
in the table is 9, and corresponds to the kernel value among the example strings.
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• On its turn, the k-spectrum kernel searches for shared substrings of size k. For
k = 2, the similarity score is given in Table 1.2. The kernel value in this case is 4.

• The k-blended spectrum kernel sums up all the scores of all the spectrum’s evaluation
below and including k. For k = 2, the kernel value corresponds to the summation
of the previous scores, in other words, 13.

Unfortunately, there are not so many applications of string kernels in the field of
program comparison. Motivated on this lack, we found out there was room for some new
string kernel functions that might give more relevance to the largest common substrings
than to the smaller ones. This is one of the contributions of this thesis: it was important
for our study to follow the modular design of kernel methods, hence, we have designed
these new kernel functions in such way they can be further utilized for comparing anything
that might be represented as a string or a tree. Proof of that is that we could successfully
use the same kernel functions for performing three different comparison tasks whose data
was coming from distinct origins: ASTs, linear IRs and I/O traces.

a a b c c
a 1 1 0 0 0
b 0 0 1 0 0
c 0 0 0 1 1
c 0 0 0 1 1
c 0 0 0 1 1

Table 1.1: bag-of-characters (1-spectrum) kernel score for aabcc and abccc.

aa ab bc cc
ab 0 1 0 0
bc 0 0 1 0
cc 0 0 0 1
cc 0 0 0 1

Table 1.2: 2-spectrum kernel score for aabcc and abccc.

1.2 Goals
As it was seen, in order to identify common patterns inside a collection of computer
programs, they should be represented in a form that is capable to abstract their relevant
features; additionally, an appropriate strategy has to be used to find similarities or
dissimilarities using the new representation as input. Following this scheme, we have
aimed for proposing a modular design, based on kernel methods, which corresponds to
the main contribution of this thesis:
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1. As the name suggest, string kernels work upon strings. Therefore, taking into
account the origin of our data (ASTs, IRs and I/O traces), we have designed a
particular string representation compound by weighted tokens. At the same time,
we have aimed for a design with an acceptable level of generality that allows that
data coming from other domains could also be easily expressed. The token literal
part, for example, can be built with the relevant pieces of information taken from
the original data, like data type names, keywords or function names. The use of
weights gives room for further compression, because the weight can be used to
express the number of repetitions of a token.

2. Original data must be converted into the proposed string representation. In our
contribution, we have focused on the conversion of the following data sources:

• Data available before execution: Clang ASTs as a high level representation
on the syntactical level, and LLVM linear representations as a low level
representation closer to the machine code.

• Data available after execution: I/O traces as an evidence of the performance
of an application.

We describe in detail these conversion procedures in Chapter 3. They are intended
to be a guide on how to translate data coming from other domains.

3. The use of string kernels in the comparison of computer programs is relatively new.
Therefore, we have not limited this research only to the study of the comparison
performance of some string kernels from the literature. Instead, from the study
of the particularities of the compiler’s intermediate representations and the I/O
traces we have discovered that some novel strategies of comparison could be created
inspired on them. These are three new string kernel functions that are focused
on finding the largest common substrings, inspired on the Greedy String Tiling
algorithm of Wise [Wis93] and the Blended Spectrum Kernel [SC04].
The rule of thumb for them is that the matching substrings must be at least
independent in one of the original strings. Being independent means not being
a substring of a previous segment occupied by another matching substring. This
way, starting from the largest matching substring, the search for more matches
narrows down progressively. The idea is to give more importance to the big code
portions that are shared and minimize the effects of isolated repetitive tokens or
instructions.
Consider the example strings on Figure 1.3. Both strings share 3 substrings, which
correspond to the largest common substrings, and are, at least, independent in one
of the original strings.

Figure 1.3: Two Strings and their Longest Matching Substrings.
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Our kernels will enrich the spectra of available string kernel functions on the
literature and might be used in the future in similarity studies, not only in the field
of Computer Science, but also in Cheminformatics, Bioinformatics and Natural
Language Processing (NLP).

4. To provide an experimental proof of our ideas, we have designed an evaluation
methodology that used one string kernel from the literature as a baseline algorithm
for comparison, the blended spectrum kernel [SC04].

1.3 Structure of the Thesis
This thesis is organized as follows: in Chapter 2, in addition to a more in-depth revision
of the foundations of Compiler’s Intermediate Representations, I/O Access Patterns and
Kernel Methods, the related work and the state of the art are presented. Chapter 3 is
dedicated to describe the contributions of this research, firstly, by unveiling the rational
behind the process of converting Intermediate Representations and I/O traces into the
proposed string representation, and secondly, by detailedly explaining the proposed
kernel functions that will compare such strings. In Chapter 4 we present a proof of
concept of the string kernels with a synthetic example, which would help to understand
better the reach of our research. The experimental evaluation of our approach to find
patterns in I/O Traces is conducted in Chapter 5, whereas Chapter 6 does the same with
the Intermediate Representations of a popular compiler. Finally, Chapter 7 summarizes
the results and details possible future paths for the current research efforts.

Summary
This introductory chapter has collected the basic problematic present in Program Similar-
ity. When programs are represented as linear strings, it is possible to find patterns using
string comparison algorithms. The need for novel comparison methods has motivated us
to propose three new string kernel functions able to work with the Intermediate Represen-
tations of a well known compiler as well with I/O traces. However, they could also be
used for any other problems involving data delivered in the form of trees or strings. The
following chapters depict in detail the impact of our contribution.
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2 Background
The similarity among a set of programs can be determined in many different ways.
Among other sources of information for performing this comparison, a program’s code,
its intermediate representations or its patterns in storage access can be used. In order
to understand better how program similarity works, we have made a survey on its
fundamental topics. We start by reviewing in Section 2.1 the definition of code similarity
and code clones, and continue with the intrinsics of the intermediate representations
of a compiler in Section 2.2. Same is done with the Input/Output (I/O) aspects of
applications, covered in Section 2.3, which gives the reader a basic understanding on
how I/O is important for parallel evaluation. Next, in Section 2.4, Kernel Methods are
introduced to the reader as one of the possible and unexplored approaches to perform the
comparison task. Finally, the compendiums of related work, corresponding to Section 2.5,
and the state of the art in code similarity, in Section 2.6, are reviewed, in order to depict
what is the current state of this fascinating area.

2.1 Code Similarity
When a set of code pieces share syntactical or semantical structure in a significant
proportion, they are said to be similar. The detection of this similarity is important, as
programs that are similar tend to behave in similar manner. For example, similar code
pieces are created as part of cloning process; plagiarism can be detected by finding the
similar structures that two programs share.
When a source code snippet is copied, it requires some changes in order to make

it work on the new location. The severity of these modifications are commonly an
indication of the purpose of the copy. According to this, we can distinguish between
three basic categories of code changes: boiler-plate code, pervasive modifications and code
obfuscation.

2.1.1 Boiler-Plate Code
These modifications of a program are minimal and they are usually contained in the
scope of a function definition. They are commonly generated when developers need to
adapt a code template for a determined task or to adjust an existing code portion for a
similar purpose. They are not cataloged as plagiarism acts.
A classical example of boiler-plate code are the get and set methods in Java classes

(see Listing 2.1), which are necessary, as direct access to the private members of a class
is not permitted. Manual creation of these methods is usually performed by copying
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and pasting already implemented code, which is an error-prone process, as programmers
might, for example, forget to update the identifier names (see Line 16 of Listing 2.1).

1 . . .
2 p u b l i c S t r i n g getName ( )
3 {
4 return name ;
5 }
6 p u b l i c S t r i n g getAddress ( )
7 {
8 return address ;
9 }

10 p u b l i c void setName ( S t r i n g newName)
11 {
12 name = newName ;
13 }
14 p u b l i c void setAddress ( S t r i n g newAddress )
15 {
16 name = newAddress ; // Semantical error : programmer did not update the i d e n t i f i e r
17 }
18 . . .

Listing 2.1: Boiler-Plate Get and Set Methods in Java.

2.1.2 Pervasive Modifications
On the contrary, pervasive modifications are not restrained to a single function block.
Instead, they are spread along a whole file. The modifications might be a combination
of lexical, syntactical or semantical alterations, which are indicators of an effort to hide
plagiarism. However, it might also be related with code adaptation, for example, when
several functions with boiler-plate code are stored under the same file.

Common Code Modifications

Beth presented on a research note [Bet14], some of the most common program modifica-
tions:

Comment Alteration: It consists in the modification of the comments of the source
code, which are usually ignored by the compiler but might contain useful information for
understanding the structure of a program. Because the edition of comments has no effect
on the program’s flow and output, it is the easiest way to manipulate the aesthetics of
the program.

Whitespace Padding: Compilers are commonly insensitive to the number of white
spaces that can separate one token from another. This also includes the layout of the line
breaks. A plagiarist might alter this to make his program look different to the original.

Identifier Renaming: Variable names are scoped conventions that help program-
mers and compilers to keep track of values that need to transcend on their programs.
Though they must follow a minimal set of naming rules, which are defined by the
language, they are not fixed inside the parsing structure of it. Hence, renaming variables
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offers a great opportunity for plagiarism, as a simple comparison tool will determine that
two programs are different if their identifiers are changed.

Code Reordering: In the majority of programming languages, the order in which
functions are defined is not important, as long as the function declaration (the function’s
“signature”) is known before the function is called. Functional units in source code might
be rearranged by the plagiarist to decrease the possibility of detection.

Modification of Algebraic Expressions: Programming languages can express
mathematical operations and its properties in a straightforward way. The commutative
and associative properties of an operation can be used by the attacker to achieve the
same result by i) modifying the order of the operands, ii) adding redundant operations
or iii) taking advantage of operation precedence.

Code Clones

The mentioned alterations lead to the occurrence of code clones. As stated by Dang et
al. [DW15], code clones are portions of code with high similarity in syntax or semantics.
They make the maintenance of software a difficult task [KKI02] by spreading bugs
contained in weakly-tested code portions that are copied from one location to another in
the same project. It is also common that the developers forget to document the copy
operation, which at least would have given a hint of where else bug fixes should be
applied. Generally, the level of plagiarism in a program can be estimated by the amount
of code clones it possesses.

A straightforward classification of clone detection approaches can be found in the work
of Vislavski et al. [VBR16], where we can learn that the class of an approach is highly
determined by the type of clones it can detect:

Type-1 clones: They are the easiest to detect, due to the simplicity of the differences
they present: changes in the code layout, the number of spaces or line breaks and/or the
comments content (see Listing 1.2). Textual approaches are said to treat code merely as
text, omitting the syntactical and semantical structures of a particular language; they
are ideal for finding these clones.

Type-2 clones: They include, in addition to the alterations of Type-1 clones, lexical
changes manifested as differences on data types or variable names (see Listing 1.3). Being
the tokens of a language the unit of comparison for Lexical approaches, they are more
suited to detect the differences in lexemes introduced by Type-2 clones.

Type-3 clones: Difficulty increases when it comes to detect these clones, due to the
fact that they include also syntactical alterations in the form of instruction modification,
deletion and insertion, which obscure even more the plagiarism act (see Listing 1.4).
Syntactical approaches are characterized by the usage of more complex data structures,
like compilers’ intermediate representations (IRs) or source code metrics, which are able
to characterize a program beyond the lexical level. In fact, intermediate representations
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are the central data structure of compilers where almost all the transformations and
analysis are done [TC11], and hence, provide more useful information before execution
time than plain text code does.

Type-4 clones: Detecting these clones is even more difficult, because the code
here was practically rewritten as a new implementation, keeping only a few syntactical
similarities with the original code (see Listing 1.5). Semantic approaches must use more
advanced tools in order to detect them (e.g. control and data flow analysis) and are not
as efficient as syntactical approaches.

2.1.3 Code Obfuscation
Code obfuscation is defined in [BS05] as the intentional practice of making code as
much unintelligible as possible. It can be performed automatically in the compiler
side by applying transformations that drastically change the structure of the code but
preserve the program semantics. One motivation of obfuscating code is related to
copyright protection. Another one is the concealment of malicious software: malware
and viruses, for example, make use of obfuscation techniques to bypass detection from
their counterpart applications. For a taxonomy of these techniques, the work of Collberg
et al. [CTL97] can be consulted.

For example, Listing 2.2 shows a code segment in JavaScript, while Listing 2.3 shows the
same code with some basic obfuscation techniques: lack of indentation, string encoding,
creation of an array of strings, and identifier renaming. 1

The comparison of obfuscated code pieces might be useful to test the robustness of a
particular obfuscation technique. However, in this research, we were mainly interested in
the detection of program similarity in a broader way. For this reason, we considered that
the detection of strong obfuscated code pieces was out of the scope of the present work.

1 f u n c t i o n NewObject ( p r e f i x )
2 {
3 var count =0;
4 t h i s . SayHel lo=f u n c t i o n (msg)
5 {
6 count++;
7 a l e r t ( p r e f i x+msg) ;
8 }
9 t h i s . GetCount=f u n c t i o n ( )

10 {
11 return count ;
12 }
13 }
14 var obj=new NewObject ( " Message : " ) ;
15 obj . SayHel lo ( "You are welcome . " ) ;

Listing 2.2: JavaScript Original Code.

1Code samples where taken from https://javascriptobfuscator.com.

23



1 var _0x58a2=[ " \x53\x61\x79\x48\x65\x6C\x6C\x6F " ,
2 " \x47\x65\x74\x43\x6F\x75\x6E\x74 " ,
3 " \x4D\x65\x73\x73\x61\x67\x65\x20\x3A\x20 " ,
4 " \x59\x6F\x75\x20\x61\x72\x65\x20\x77\x65\x6C\x63\x6F\x6D\x65\x2E " ] ;
5 f u n c t i o n NewObject ( _0x34c6x2 )
6 {
7 var _0x34c6x3=0;
8 t h i s [ _0x58a2 [ 0 ] ] = f u n c t i o n ( _0x34c6x4 )
9 {

10 _0x34c6x3++; a l e r t ( _0x34c6x2+ _0x34c6x4 )
11 }
12 ; t h i s [ _0x58a2 [ 1 ] ] = f u n c t i o n ( )
13 {
14 return _0x34c6x3
15 }
16 }
17 var obj= new NewObject ( _0x58a2 [ 2 ] ) ;
18 obj . SayHel lo ( _0x58a2 [ 3 ] )

Listing 2.3: JavaScript Obfuscated Code.

2.2 Compiler’s Intermediate Representations (IRs)
IRs are interesting for the problem of program comparison, due to the fact that they can
deliver new and useful information about a program that might not be easily accessed
by looking only at the raw code. The intermediate representation of a program is for the
compiler the central data structure where most of the optimizations and analysis are
made [TC11]. It acts as the middle man between the compiler’s frontend and backend
in the process of target code generation (see Figure 2.1). Once a program is converted
to this representation, the compiler does not depend anymore on the written code to
perform its passes. The passes of a compiler are progressive processes that act over the
intermediate representation and transform it at each pass, in order to generate correct
and optimized code according to the target language.

Figure 2.1: Typical Compiler Infrastructure.

For this reason, IRs need to represent the information of a program in a detailed way
that is simply not possible with raw code. The level of detail is highly determined by the
target language. High level IRs are closer to the source code and are preferred for source-
to-source translation tasks, while lower level IRs are the indicated choice to generate
machine code. In practice, compiler infrastructures rely on several interconnected IRs,
which can be graphical or linear. For a deeper insight, refer to the book of Torczon and
Cooper [TC11], from which we have summarize the following classification.
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2.2.1 Graphical Intermediate Representations
Graphical intermediate representations store the program’s information in a graph-like
data structure. Their abstraction level is usually not far from the source code. In some
cases, the original code can be recreated with minor modifications. The following data
structures are among the most relevant graphical IRs:

Parse Trees

They are built up following the derivation rules of the language grammar. Hence, they
are large, as each derived symbol receives a node on the tree. For example, Figure 2.2
shows a parse tree for the expression a = b× c+ d÷ e.

Assignment

Factor

a

= Expr

Expr

Term

Factor

b

× Factor

c

+ Expr

Term

Factor

d

÷ Factor

e

Figure 2.2: Parse Tree for a = b× c+ d÷ e.

Abstract Syntax Trees (ASTs)

ASTs are defined as contractions of parse trees where most non-terminal symbols are
ignored while the precedence and the meaning of the expressions are preserved, thus
saving space. Usually, their level of abstraction is still not far from the original source
code. For example, Figure 2.3 shows the AST for the same expression (a = b× c+ d÷ e).

=

a +

×

b c

÷

d e

Figure 2.3: Abstract Syntax Tree for a = b× c+ d÷ e.
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They offer a balanced trade-off between size and abstraction. That is why it is one
of the most common representations used inside compiler infrastructures. However, in
practice, ASTs can be enriched with more detailed information that adds more nodes and
attributes, hence increasing the complexity of the data structure, but with the ultimate
purpose of reducing the number of passes needed to generate the target code.

Directed Acyclic Graphs (DAGs)

DAG are used in compilers as compact versions of ASTs, where there is only one subtree
for an expression, no matter how many times it is repeated on the program. The
tree structure is broken, as a node can be a child of multiple parent nodes. Special
considerations have to be taken when the involved values in the expression are subjects
to modifying operations, considerations that are not necessary when working with ASTs.
DAGs are mainly used to reduce the overhead in systems with memory restrictions or to
perform analysis that intend to expose redundancies in the source code.

Control Flow Graphs (CFGs)

CFGs are high level IRs used to represent the relationships between the basic blocks of a
program. A basic block is defined as a set of instructions that are executed on its totality
once the first instruction is reached. Control structures introduce disruptions in the
program flow, as some instructions might not be reached depending on the conditional
information. This creates new basic blocks that need to be interconnected. In a CFG,
nodes represent basic blocks, while the edges represent the flow from one block to another.
To be able to represent loops in a concise way, edges are allowed to point back to its
originator node, which converts the graph into a cyclic data structure.

Program Dependence Graphs

They are auxiliary data structures used to associate a variable definition with each use
of it. They can be very effective to help to detect the paths that have no dependency
among each other, information of great utility for performing optimizations, like loop
parallelization or reordering. The traditional PDGs are directed attributed graphs whose
vertices represent the assignment statements and control predicates that occur in a
program. Some of the vertices have an attribute that marks them as entry vertices,
which represent the entry of procedures. The edges represent the dependences between
the components of the program.

Call Graphs

These are also auxiliary data structures which keep track of the interprocedural interac-
tions. Call graphs facilitate optimization passes that take into account the instructions
of a linked function.
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2.2.2 Linear Intermediate Representations
Linear IRs are low level intermediate representations consisting in compact sequences
of instructions similar to assembly code. They are designed in this way to ease the
generation of machine code. At this level of detail, it is more difficult to regenerate the
original code without the help of other high level data structures. The following models
are among the most relevant linear IRs: stack-machine code and three-address code.

Stack-Machine Code

As the name suggests it, they are based on a simple mechanism, where operands are
push into the top of a stack, operations pull them up from it, and finally push the result
back into the top. They belong to the category of one-address codes, characterized by
instructions with one operation and an optional operand. The order of the instructions
reflects the dependency of the operands and the operations. Data that is not transfered
to memory will be lost, as the stack size is usually limited. This creates an implicit name
space that reduces the size of the program considerably. For example, the corresponding
stack-machine segment for the instruction a = b× c+ d÷ e, would look like in Listing
2.4:
1 push d
2 push e
3 divide
4 push c
5 push b
6 multiply
7 add

Listing 2.4: Stack-Machine Code for a = b× c+ d÷ e.

Three-Address Code

Among the popular linear IR models, there exist the three-address code. In this model,
operations have at most an operator and three addresses: two operands and a result.
Three-address codes exhibit compactness without forcing destructive operations, which
gives room for further code optimization. Plus, many modern processor architectures are
already based on three-address operations, which makes the translation more intuitive.
For example, for the same instruction (a = b× c+ d÷ e), the three-address code segment
would look like in Listing 2.5:
1 v1← d
2 v2← e
3 v3← v1÷ v2
4 v4← b
5 v5← c
6 v6← v4× v5
7 v7← v3 + v6

Listing 2.5: Three-Address Code for a = b× c+ d÷ e.

Three-address codes often use static single-assignment (SSA) as a naming convention.
In SSA, each name definition corresponds to an operation and it is never rewritten or
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deleted. When control flow requires the selection between different variables, SSA uses φ
functions to decide which value to select.

2.2.3 Hybrid Intermediate Representations
Hybrid IRs take advantage of the features of graph and linear representations. A typical
configuration inside a compiler is to use a CFG to represent the basic block structure
of the program, while, inside the basic blocks, the instructions are represented by their
syntactical structure with and AST or a linear IR. Complex compiler infrastructures like
LLVM [LA04], GCC [Gri02] and Open64 [Dev01] are examples of the usage of a design
based on interconnected intermediate representations.

2.2.4 The LLVM Compiler Infrastructure
LLVM [LA04] is a complete compiler framework that uses different IRs to perform
program analysis, transformation and code generation [LA14]:

• Abstract syntax trees (ASTs) are used as the first instance to represent C or C++
code parsed by Clang, a frontend for these languages.

• A linear representation, known as the LLVM IR, is the central data structure of
the compiler.

• Direct acyclic graphs (DAGs) are used as auxiliary structures when translating to
a machine-specific assembly language.

• Another data structure is used to implement assemblers and linkers.

LLVM is maintained as a collection of libraries, a design that facilitates its reuse.

The Clang Abstract Syntax Tree

Among the variety of tools available under this infrastructure, there exist Clang [Inf17],
a frontend for C/C++/Objective C programs. Upon compilation, Clang first captures
the syntactical structure of the program in an AST. Afterwards, the AST is traversed to
generate the linear IR that is used by LLVM to perform transformation and optimization
passes, and finally generate machine specific code. There are three core classes of AST
nodes that represent the respective language constructs in C/C++ directly: Declarations,
Statements and Types. All the class structure derives directly or indirectly from them.

Using the previous example (a = b× c + d÷ e), the abbreviated Clang AST would
look similar to the one in Figure 2.4.
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Figure 2.4: Abbreviated Clang AST for a = b× c+ d÷ e.

The Linear Intermediate Representation of LLVM

According to Lopes and Auler [LA14], the LLVM Intermediate Representation is the
backbone that connects the frontends and backends of LLVM, as well as its other IRs. It
is designed as a three-address code and it uses the SSA naming convention. As a variable
is never rewritten, the IR offers an unlimited number of virtual registers. The LLVM
IR can be delivered in three equivalent forms: a) in-memory representation, b) on-disk
bitcode representation or c) on-disk human-readable representation.
To illustrate some characteristics of this IR, we have placed the same instruction

(a = b × c + d ÷ e) inside a simple C function (see Listing 2.6), and generated its
respective LLVM IR. Listing 2.7 shows how the same instruction (a = b × c + d ÷ e)
would look in human-readable LLVM IR. Notice that:

• Data types in the example are specified with the keywords i32 and float.

• Local variables start with ’%’, while global variables and functions start with ’@’.
The use of these special characters helps to avoid conflicts with reserved words.

• The contents of a function are enclosed by brackets.

• The alloca operation reserves space for a variable in the stack.

• Their addresses are later referenced with C style pointers using the character ’*’
after the data type keyword.

• The store operation saves a given value into an address of the stack.

• The load operation pulls a value from a memory location and puts it into a virtual
register.
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• The align keyword specifies the size of the address, which must be a multiple of 2.

• The ret keyword serves as the exit point for the function.

• Arithmetic operations mul, sdiv and add use a maximum number of operands of
three, complying with the three-address code model.

1 f loat a = 0 ;
2 void example ( )
3 {
4 int b = 1 ;
5 int c = 2 ;
6 int d = 3 ;
7 int e = 4 ;
8 a = b ∗ c + d / e ;
9 }

Listing 2.6: C code segment enclosing the instruction a = b× c+ d÷ e.

1 ; g l o b a l v a r i a b l e
2 @a = g l o b a l f loat 0.000000 e +00, a l i g n 4
3
4 ; g l o b a l f u n c t i o n
5 d e f i n e void @example ( ) #0
6 {
7 ; s tack a l l o c a t i o n o f l o c a l v a r i a b l e s
8 %1 = a l l o c a i32 , a l i g n 4
9 %2 = a l l o c a i32 , a l i g n 4

10 %3 = a l l o c a i32 , a l i g n 4
11 %4 = a l l o c a i32 , a l i g n 4
12
13 ; l o c a l v a r i a b l e va lue i n i t i a l i z a t i o n
14 s t o r e i 32 1 , i 32 ∗ %1, a l i g n 4
15 s t o r e i 32 2 , i 32 ∗ %2, a l i g n 4
16 s t o r e i 32 3 , i 32 ∗ %3, a l i g n 4
17 s t o r e i 32 4 , i 32 ∗ %4, a l i g n 4
18
19 ; a = b ∗ c + d / e
20 %5 = load i32 , i 32 ∗ %1, a l i g n 4
21 %6 = load i32 , i 32 ∗ %2, a l i g n 4
22 %7 = mul nsw i32 %5, %6
23 %8 = load i32 , i 32 ∗ %3, a l i g n 4
24 %9 = load i32 , i 32 ∗ %4, a l i g n 4
25 %10 = sd iv i32 %8, %9
26 %11 = add nsw i32 %7, %10
27 %12 = s i t o f p i 32 %11 to f loat
28 s t o r e f loat %12, f loat ∗ @a, a l i g n 4
29
30 ; return
31 r e t void
32 }

Listing 2.7: LLVM Linear IR code segment for a = b× c+ d÷ e.

2.3 Parallel I/O
Parallel File Systems are minded for accessing files in a simultaneous, concurrent and effi-
cient way. A comprehensive description can be found on the Ph.D thesis of Kunkel [Kun13].
The contents of a file are usually scattered among different I/O subsystems in order to
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take advantage of the highest local performance. These systems should provide, among
other capabilities:

• Persistence: meaning data should be available for access any time later.

• Consistence: which means that accessed data should correspond to the original
stored data.

• Performance: related to the efficient use of the underlying subsystems.

• Manageability: or the availability of tools to mount, check or repair the file system.

• Scalability: defined as the capability to work with an increasing numbers of clients.

• Fault-tolerance: the systems must be able to tolerate errors without compromising
the correctness of the data.

• Availability: is the ability to continue operation (maybe with degraded performance)
in the presence of those errors.

2.3.1 Performance
Several factors influence I/O performance in a parallel environment. Kunkel [Kun13]
made a survey of the ones with the most impact:

• Caching: Improvement in the performance is gained when data is efficiently
buffered from a slow access storage into main memory. Common strategies are the
combination of separate write operations into a single write block, and the load of
data ahead of its use.

• Replication: In a distributed environment, the creation of local copies of a single
file can improve the performance, due to the reduction of network traffic.

• High Availability: Replication can also provide High Availability; if a network node
is down, there still a copy of the needed file in another node. A trade-off in the
number of replicas has to be found to avoid affecting the performance of the system.

• I/O Forwarding: In certain networks, requests from client nodes are not taken
directly by server nodes. Instead, intermediate nodes analyze and forward those
request appropriately, to avoid bottlenecks. However, a bad design can decrease
performance by adding unnecessary network traffic.

• Aggregation: Independent operations coming from different nodes can be collected
in a buffer before being written in the physical I/O, thus improving performance.

• Scheduling: A good scheduling algorithm is necessary to manage the queue pro-
cessing. Without it, the system is susceptible of load imbalance and bottlenecks.
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• Parallel Design and Resource Consumption: A good design should be able to use
all the components (network, severs, and I/O subsystems) at its most efficient
extent.

• Software Implementation: Computation affects I/O indirectly. Software components
should be design taking into account the characteristics of I/O. Data structures
like trees and hashes are optimal for this task.

Different approaches can be used to analyze the performance of a parallel file system.
Investigating the mere performance, however, is not sufficient as optimal performance
is a function of the exhibited access pattern. This makes it difficult for an observer
to assess any measured performance. A typical strategy is to relate performance of an
application with a similarly behaving application for which we know how well it behaves
– like benchmarks, for example. Likewise, we may be interested to identify well-behaving
or ill-behaving applications. Therefore, finding patterns via fingerprints inside I/O traces
is an important use case.

2.3.2 I/O Access Patterns
I/O traces collected during the monitoring of data-intensive applications may contain
timestamps, operation names and information about the number of bytes involved, which
constitute access patterns that depict the behavior of storage usage over a period of
time. These patterns can be used to determine the overall performance of an I/O system,
e.g. one can seek for bottlenecks in I/O operations. They can be characterized with the
following properties:

• Access Granularity: In other words, it is the amount of data accessed per I/O call
or request. To avoid latency, this amount should be as big as possible.

• Randomness: Refering to the closeness among the accessed bytes. Physical devices
perform better if the accessed data is contiguous.

• Concurrency: It is related to the number of concurrently issued I/O requests. The
I/O scheduler should interleave requests in an efficient way.

• Load Balance: It makes reference to the distribution of the workload among the
servers/devices. A good parallel access pattern would distribute data among all
servers accordingly to their capabilities.

• Access Type: They can essentially be read or write.

• Predictability: It refers to the presence of a more or less regular pattern over time.
Repetitive patterns are easier to optimize. Liu et al. [Liu+14] mentioned three
predictable features seen on supercomputing I/O patterns:
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– Burstiness: I/O in scientific applications presents different phases with a
different intensity on the number of performed operations. The intensity of
the access to the media on each phase is the so-called burstiness.

– Periodicity: Usually the I/O bursts do not show randomly. Instead they
present a periodic behavior. For example, checkpointing is made periodically.

– Repeatability: Large scale applications tend to generate similar I/O traces
with different data, which makes possible to think on I/O access patterns as
a signature of the application.

2.4 Kernel Methods for Similarity Search
Shawe-Taylor and Cristianini have documented on their book [SC04] all the relevant
aspects of Kernel Methods2. These methods are strong enough to detect stable patterns
robustly and efficiently from a finite data sample by embedding it into a space of higher
dimensionality where data points have linear relations (see Figure 2.5). Robustness is
related to the capacity of a system to cope with erroneous data.

Figure 2.5: Mapping from a 2D input space with non-linear patterns into a 3D feature
space with linear relations.

However, the explicit calculation of the new points is not necessary, if there is a
function that can infer those linear relationships using only the original data. That
function is called the kernel function.

2.4.1 Generalities
The construction of a kernel function is governed by the following premises:

2Some of the following paragraphs are based on the Master’s thesis of Torres [Tor11].
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1. Original data items should be embedded into a vector space called the feature
space.

2. The images of the data in this new space present linear relations.

3. The learning algorithm does not need to know the coordinates of the data in the
feature space; the pairwise inner products are enough.

4. These inner products can be calculated in an efficient way using a kernel function.
This is the kernel trick.

To illustrate how this works, consider an embedding mapping such:

φ : x ∈ Rn 7−→ φ(x) ∈ F ⊆ RN .

This mapping will recode the original dataset S as:

S ′ = (φ(x1), y1), ..., (φ(xl), yl).
The kernel matrix G = XX ′ is conformed by the inner products between data points
〈φ(x), φ(z)〉 in the feature space. However, a direct calculation of these points may be
infeasible because the induced space might have several or infinite dimensions. Instead,
a kernel function calculates those inner products efficiently using only the original data:

k(x, z) = 〈φ(x), φ(z)〉where φ : x 7−→ φ(x) ∈ F.

2.4.2 Kernel Methods as Machine Learning Systems
A typical machine learning system consists of two subsystems [Kun14]: the Feature
Extraction Subsystem and the Learning Subsystem. Kernel methods follow this design in
a modular way:

Feature Extraction Subsystem

In the case of Kernel Methods, the kernel function builds the kernel matrix, which is
the only information needed for the next subsystem. The kernel matrix can be seen as
a similarity score among the original examples. The design of this function depends
highly on the nature of the original data. Attribute-value tuples can be easily handled
with polynomial or Gaussian kernels [Gen01]. Instead of using the original attribute to
characterize a data item, polynomial kernels use a polynomial function that intuitively
captures the interactions between those features. Gaussian kernel does the same but
using instead a radial basis function that emits a similarity value between 0 and 1. String
and tree objects require string and tree kernels respectively [VS03].
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Learning Subsystem

The learning subsystem requires only the kernel matrix as the source of information.
Examples are no longer characterized with a set of attributes related to some properties
inherent to it. Instead, the new attributes correspond to the similarity score among
examples. Learning algorithms are agnostic to that, so in theory, any of them able to
deal with matrices might work. In practice, some algorithms are specially designed to
deal with data coming from a kernelized space, like kernel principal component analysis
(Kernel PCA) [SSM97] or support vector machines (SVM) [Gun+98].

Kernel Functions for Structured Data

Structured data like trees and strings present a more difficult challenge at designing an
appropriate kernel function that can efficiently work with them.

Convolution Kernels: These kernels are detailed by Gaertner, in [GLF04], and
Haussler, in [Hau99]. They are claimed to be the best approach for representing
spaces that are not mere attribute-value tuples. These kernels exploit the composition
relationship between objects.
Suppose x, y ∈ X, and ~x = x1, x2, x3, ..., xD are parts of x, and ~y = y1, y2, y3, ..., yD

are parts of y, where 1 ≤ d ≤ D. A kernel between the corresponding parts of both
objects is Kd(xd, yd), and gives a similarity measure between those parts. Therefore, the
kernel evaluation between the objects is:

Kconv(x, y) =
∑
~x,~y

D∏
d=1

Kd(xd, yd).

String Kernels

Strings kernels [VS03] are a convolution kernel subset that checks for the number of
shared substrings among a collection of strings. Consider the following:

• A is a finite set of characters conforming the alphabet.

• A string is any x ∈ Ak for k=0,1,2,...

• A∗ are all the non-empty strings.

• s, s′, x, y ∈ A∗ are strings.

• nums(x) corresponds to the number of occurrences of s in x as a substring.

• δs,s′ corresponds to the Kronecker delta, emitting 1 as a value when s and s′ are
equal, or zero otherwise.

• ws is a weighting factor that modulates the contributions of certain substrings.
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A generic string kernel is defined as follows:

k(x, y) =
∑

s⊆x,s′⊆y

wsδs,s′ =
∑

s∈A∗
nums(x) · nums(y) · ws.

As mentioned, the weighting factor can modulate which substrings have an effect on
the calculation. By changing the weighting factor, different kernels can be obtained:

k-spectrum kernel [LEN02]: The k-spectrum kernel only counts sub-strings of
length k:

ws = 0 ∀ |s| 6= k.

Tables 2.1, 2.2 and 2.3 show examples of this kernel for different values of k.
It was originated from the protein classification problem. In the specific problem of

remote homology detection and in combination with an support vector machine, they
were able to achieve comparable performance to some state-of-the-art methods for the
same problem.

k-blended spectrum kernel [SC04]: The k-blended spectrum kernel is an improved
version of the previous kernel. It only counts sub-strings whose length is smaller or equal
to a given number k:

ws = 0 ∀ |s| > k.

The summation of all scores (15) from Tables 2.1, 2.2 and 2.3 corresponds to the
3-blended spectrum kernel for the given strings.

bag-of-characters kernel: The bag-of-characters kernel only takes into account
single-character matching:

ws = 0 ∀ |s| > 1.
It corresponds to the 1-spectrum kernel (See Table 2.1).

bag-of-words kernel: The bag-of-words kernel searches for shared words among
strings. Words are separated by a delimiter, usually a white space (see Table 2.4).

a a b c c
a 1 1 0 0 0
b 0 0 1 0 0
c 0 0 0 1 1
c 0 0 0 1 1
c 0 0 0 1 1

Table 2.1: bag-of-characters (1-spectrum) kernel score for aabcc and abccc.
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aa ab bc cc
ab 0 1 0 0
bc 0 0 1 0
cc 0 0 0 1
cc 0 0 0 1

Table 2.2: 2-spectrum kernel score for aabcc and abccc.

aab abc bcc
abc 0 1 0
bcc 0 0 1
ccc 0 0 0

Table 2.3: 3-spectrum kernel score for aabcc and abccc

this is not a house
a 0 0 0 1 0
house 0 0 0 0 1
this 1 0 0 0 0
might 0 0 0 0 0
be 0 0 0 0 0

Table 2.4: bag-of-words kernel score for “this is not a house” and “a house this might be
”.

The Learning Algorithm

For this study we selected two algorithms with a wide spread on the scientific community,
due to fact that they facilitate data visualization:

Hierarchical Clustering (HC): Hierarchical Clustering is an unsupervised learning
algorithm for visualization of relationship between observations. Observations are fed to
the algorithm in the form of a similarity or dissimilarity matrix [HTF03]. The algorithm
builds up high-level clusters by merging low-level clusters. Visualization is made through
dendrograms, a highly human-interpretable image, one of the reasons of its popularity.
On the one hand, HC can start from the top assuming a unique cluster, and then

it continues separating into smaller groups. On the other hand, it can start from the
bottom, taking each observation as as cluster and pairing clusters with less dissimilarity;
at the end one cluster gathers all the sub-clusters [JMF99].
The distance between two clusters A and B, can be calculated as follows:

• Single link: It corresponds to the minimum distance between any observation in A
and any observation in B.

• Complete link: This one, on the contrary, is the maximum distance between any
observation in A and any observation in B.
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• Average link: It calculates the average of the distance of all the examples in different
clusters.

Kernel Principal Component Analysis (Kernel PCA): Kernel principal com-
ponents analysis [SSM97] reduces the dimensionality of data for the sake of visualization.
Kernel PCA performs principal components analysis (PCA) in a kernel-defined feature
space [SC04] represented by a kernel matrix. Normally, PCA precises the eigenvectors
and eigenvalues of the covariance matrix of the observations to project new data into the
principal components. For the feature space X = φ(x1), ..., φ(xl), the covariance matrix
is given by:

lC = XX ′

This information is unknown. But notice that the kernel matrix is given by a similar
operation:

K = X ′X

There is a clear relationship between both matrices; a u eigenvector of lC is derived
from the corresponding eigenvector v and eigenvalue λ of K:

u = λ−1/2X ′v

For a specific uc, c = 1, ..., l:

uc = λ−1/2
c

l∑
i=1

(vc)iφ(xi) =
l∑

i=1
αc

iφ(xi)

At this point it is not possible to calculate uc due to the fact that it depends on the
explicit calculation of φ(xi). However, the projections of new points onto the direction
of uc can be calculated using the kernel matrix values:

Puc(φ(x)) = u′cφ(x) =
〈

l∑
i=1

αc
iφ(xi), φ(x)

〉
=

l∑
i=1

αc
i 〈φ(xi), φ(x)〉

Puc(φ(x)) =
l∑

i=1
αc

ik(xi, x)

These projections in a reduced number of dimensions (first, second and third compo-
nent) facilitate data visualization.

2.5 Related Work
This section explores the related work in three important areas: I/O patterns and
program similarity are the target fields of this research. However, we also explored the
application of kernel methods in other fields like protein analysis and natural language
processing (NLP).
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2.5.1 Program Similarity and Plagiarism
The work of Fu et al. [Fu+16] proposed a weighted kernel method for source code
plagiarism detection based on ASTs. The weights of each AST node are here determined
by a technique called TF-IDF (Term Frequency-Inverse Document Frequency). The
authors claimed that their method resulted on improved detection in comparison with
two other plagiarism detection tools, namely JPlag [JPl17] and Sim [GT99].

A tree kernel-based approach for clone detection can be found in the work of Corazza et
al. [Cor+10]. They proposed a kernel based method to detect code clones using syntactic
and lexical information. In the method, the nodes of the AST are characterized with a
set of four attributes: Instruction class, Instruction, Context and Lexemes. The similarity
score of two nodes is discretized into six values that are chosen by the authors after an
adjustment process, and depends on the matching of the above mentioned attributes.

Bandara et al. [BW13] used an unsupervised technique called sparse auto-encoder to
extract the features from a piece of code. Logistic regression was used to predict the
author of a code segment.

In the direction of code smells detection, Danphitsanuphan et al. [DS12] proposed an
approach to find a relationship between code smells and software structure bugs. Code
smells are pieces of software that create difficulty to understand and improve programs.
The authors focused on the following code smells, which can be easily measured via
software metrics: large class, large method, long parameter and lazy class. Software
structure bugs are defects originated on wrong commands at writing code. The authors
focused on the following ones, which are frequent in Java programs: bad field, ignored
exceptions, field not initialized in constructor, dead local store, general exception catching
and integer value casting.

We can read in the paper of Park at al. [HP14] that they studied a combined approach
of parse trees and function-call graphs. They created a composite kernel, with the parse
tree kernel and the graph kernel. It is interesting how they modulated the weight of
the kernels according to the cyclomatic complexity of the code. They used ANTLR to
generate the parse tree. In their experiment, they used a set of programs already labeled
as plagiarized. Compared against CCFinder, JPlag, and the standalone kernels they
merged, they achieved the highest F1-score.

The motivation of the work of Sharma et al. [SPP07] was intrusion detection. They
attempted not only to achieve high accuracy but also minimize the false positive rate in
the detection. They used a bag-of-words approach to characterize intrusion; the words
corresponded to the system calls that the program performed. In this way, a process
can be characterized as a set of unordered system calls. They made an experiment to
compare the performance of several scores based on a binary cosine similarity measure
proposed in the paper of Liao et al. [LV02], and a radial basis function kernel (RBF).
Though all the distances achieved 100% detection rate, the RBF kernel based techniques
achieved the lowest false positive rate.

39



Automatic file type identification is also a field where similarity plays an important role.
In the work of Gopal et al. [Gop+11], the authors tried to identify file types using machine
learning. They used a feature-based approach based on “N-gram” bytes, which has a
high relationship with the k-spectrum kernel. The value of “N” was empirically selected
using cross validation. Support vector machines and multi-class k-nearest neighbors were
employed as classification algorithms. Labels were taken from the file extension when
the files were intact, and from a commercial tool when they were damaged.

In the work of Wang et al. [Wan+15], a new methodology was developed to detect
platform-specific code smells (PSCSs) in HPC applications using abstract syntax trees
and XML. A code smell is a code associated with a design problem which makes the
application code hard to evolve and maintain. The detection method proposed by the
authors takes the source code and parses it into AST with a clear hierarchy. After this
the AST is converted to an XML document and finally XPath is used for identifying
PSCSs patterns, showing this data to the user before the application execution. For
example, working with the OpenACC programming language for GPUs, the principal
types of PSCSs are : triangular loop, live-out scalars, once-used array data, computed
index, variable length loop, common subexpression and loop invariant. This class of codes
have a regular structure that can be identify into an XML file that represent the general
AST. The pattern matching process is made using Xpath, a W3C standard language for
expressing traversal and navigation in XML trees. This standard allows the detection of
PSCS patterns in a systematic way and is broadly descriptive.
The major difference of the solution proposed in this work with respect to the listed

works is the flattening of the intermediate representation into a weighted string and the
usage of string kernels as the comparison method.

2.5.2 I/O Patterns for Parallel Evaluation
Kluge [Klu11] proposed an intermediate representation of I/O events from HPC appli-
cations as a directed acyclic graph (DAG). In this DAG vertices are used to represent
events, while edges are used to depict the chronological order of the events: the event
represented by the vertex, where the edge has been originated, happened before the one
where the edge points to. Two types of vertices are recognized:

• I/O event vertex: It represents an operation happening in a single process. It has
only one incoming vertex and one outgoing vertex.

• Synchronization vertex: It involves several processes. It has as many incoming
edges as the number of synchronized processes and as many outgoing edges as the
number of spawned processes.

Kluge also proposed a redundancy elimination step where adjacent synchronization
vertices can be merged into a single one.
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Madhyastha et al. [MR02] applied two supervised learning algorithms to classify parallel
I/O access patterns: a feed forward artificial neural network (ANN) and a hidden Markov
model (HMM). Both strategies required training with previously labeled examples.
The artificial neuronal network was configured with 13 input and 10 output nodes

with a hidden layer of 12 units. The number of units in the hidden layer was subject
of a reduction to the smallest number that could offer the best precision. Standard
back-propagation was used as the training algorithm. A hidden Markov model was
fed with I/O access patterns and used to calculate the probability of accessing a given
portion of a file in the future. HMMs were ideal to learn the hidden behavior of the
application.

Behzad et al. [Beh+15] proposed an I/O auto-tuning framework that extracts the
patterns from an application and searches for a match on a database of previously known
pattern models. If there was a match, the associated model was adopted on the fly
during the execution of the application. In order to perform the matching, the patterns
must be abstracted using an array distribution notation based on High Performance
Fortran syntax.

A different abstraction approach was made by Liu et al. [Liu+14]. They used the
I/O bursts registered on noisy server-side logs of an application as a signature to find
similarities between I/O samples. These logs were processed, their granularity was refined
and the noise was reduced. The final signature was a 2D grid called CLIQUE [Agr+98]
that related a coefficient with time. A CLIQUE performs multidimensional data clustering
by identifying high density grids. Because the signature extraction was made over log
files there was zero overhead in the application performance. Their experimentation
showed that this signature can be effectively extracted regardless the significant noise in
the server logs.

Koller and Rangaswami [KR10] used disk static similarity and workload static similarity
at the block level to analyze the performance of concurrent applications of the same file
system.

In the work of Luo et al. [Luo+15], an I/O tracing framework with elastics traces was
developed. Their method is compound by four steps:

1. Gathering of a set of lossless and scalable I/O trace files.

2. Analysis of the set of trace files and extrapolation into large trace files.

3. Calculation of extrapolated data and creation of a single trace file.

4. I/O replay and verification.

To make full analysis over I/O processes, three tools were developed for Single Program
Multiple Data (SPMD) programs:
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• ScalaIOTrace: It allows lossless tracking and recording of the delta time between
events and I/O calls with all parameters. For doing this, MPI-IO is intercepted
at the MPI profiling layer. POSIX I/O is captured at link time interposed with
domain-specific parameter compression.

• ScalaIOExtrap: It has the goal of obtaining I/O behavior by exploiting different
methods: high-level extrapolation, elastic string extrapolation, elastics data element
extrapolation and handless and time extrapolation.

• ScalaIOReplay: It provides a parallel trace replay of all events across tasks, pre-
serving order of events.

Their experiments demonstrated that structural trace comparison, I/O size and
execution time remains sufficiently accurate. The method also preserved event ordering
and time accuracy in these large traces.

In another work, Feng et al. [Fen+15] studied the I/O performance of Hadoop. Hadoop
is a MapReduce framework highly used for data-intensive work. The overall performance
of Hadoop applications is greatly affected by their I/O performance. To study it, they
injected byte codes into Hadoop systems and got related I/O traces. However, acquiring
the I/O behaviors without an API interface is difficult. To solve this, they built a
Java-based program that automatically collected Hadoop traces: the IOSIG+ Java
tool. This tool has the capacity of tracing with low overhead on a Hadoop system. Its
architecture consists of four major components:

• KVTracer: Used for tracing intermediate key-value pairs in map-reduce tasks.

• Stream-Traces: Used to watch inside of each data node.

• CollectionsServer: It saves all I/O signatures in ramdisc and transfers compact
trace files.

• TraceAnalyzer: Offline tool to extract and analyze I/O behaviors.

IOSIG+ is claimed by the authors to be capable of capturing comprehensive details of
I/O behaviors of Hadoop applications with a low overhead.

Byna et al. [Byn+08] used parallel I/O prefetching to study I/O systems. I/O
prefetching is a technique used to improve file access for future consults based in regular
patterns process of access to data. Their method detects the pattern of I/O accesses of
an application, stores the pattern information as a signature representation, and reuses
this signature for future consults to the data.
Their method functions as follows: Traces of a running application are collected and

analyzed in order to find a I/O pattern, which is stored as an I/O signature. That
signature contains information like repetitions of data access and size of data. After
that, all signatures of an application are read, verified and used to prefetch data when a
pattern is found.
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The authors identified two major classes of patterns: global patterns, show how multiple
process access a file, while local patterns depict a file access which is controlled by only one
process. Local patterns can be organized in I/O signature of five dimensions: spatiality,
request size, representative behavior, temporal intervals and type of I/O operation.

As it has been shown, none of the mentioned works have made use of string kernels to
perform a similarity study on the access patterns, which corresponds to the major line of
investigation of our work.

2.5.3 Kernels in Other Fields
In the work of Zhang et al. [Zha+08], we can see the use of an improved version of the
convolution kernel for semantic role labeling. Semantic role labeling attempts to assign
labels to the elements that compound a parse tree of a natural language sentence. They
attempted to incorporate linguistic knowledge on the convolution kernel.

Tikk [Tik+10] evaluated several kernels for the protein-to-protein interaction (PPI)
problem and conclude that the shallow linguistic kernel outperformed the others. Addi-
tionally, they found out that Dependency trees are better than Syntax trees to extract
features for PPI.

2.6 State of the Art
This section covers two important topics: On the one hand, the common algorithms
used for detecting similarity in code. On the other hand, the most effective code clone
detectors at the moment.

2.6.1 Algorithms for Similarity Detection
Beth [Bet14] and Cesare [CX12] made separated surveys on the strategies to find
similarities among code pieces:

Levenshtein Distance [Lev66]

This algorithm is also known as the edit distance. The distance between two strings
is defined as the minimum number of single character editions (deletions, insertions or
replacements) that have to be made to convert one string into the other. As strings are
usually of different sizes, a normalized version was proposed in [YB07].

Tree Edit Distance [Bil05]

The tree edit distance is a problem where a cost function is defined on each edit operation
of a tree. An edit script S between two trees, namely T1 and T2 is a sequence of edit
operations that turn T1 into T2. The total cost is the sum of the cost of each operation in
S. The minimum possible cost for this operation is the tree edit distance γ(T1, T2). The
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general edit distance problem is difficult to solve, then different authors have introduced
restricted versions for the problem.
To compute an ordered edit distance, two algorithms can be used.

Klein algorithm: Let F1 and F2 be ordered forest and γ be a metric cost function
defined on labels. Let ν and ω be the rightmost root of the trees in F1 and F2 respectively.
We have:

δ(θ, θ) = 0
δ(F1, θ) = δ(F1 − ν, θ) + γ(ν → λ)
δ(θ, F2) = δ(θ, F2 − ω) + γ(λ→ ω)

δ(F1, F2) =min


δ(F1 − ν, F2) + γ(ν → λ)
δ(F1, F2 − ω) + γ(λ→ ω)
δ(F1(ν), F2(ω)) + δ(F1 − T1(ν), F2 − T2(ω)) + γ(ν → ω)

Where F −ν denote the forest by deleting ν from F . F −T (ν) is the forest obtained by
deleting ν and all descendants of ν. This equation suggests a dynamic program because
the value δ(F1, F2) depends on a constant number of subproblems of smaller size.

Zhang and Shasha’s algorithm: This algorithm defines the keyroots of a rooted,
ordered tree T as follow:

keyroots(T ) =
{
root(T )

}
∪

{
ν ∈ V (T ) | ν has a left sibling

}
(2.1)

The relevant subproblems of T with respect to the keyroots are the prefixes of all
special subforest F (ν).

The graph edit distance [SF83] is an specialization of the tree edit distance, where the
edition operations are related not only to nodes but also to branches.

Winnowing [SWA03]

This algorithm is an efficient method to obtain fingerprints, useful to detect partial copies
in documents. The detection of partial copies implies the partition of the document into
small units called “k-grams”. A “k-gram” is defined as a contiguous substring of a given
size. Afterwards, a hash function is applied over the “k-grams”, thus generating a subset
of hashes that become the fingerprints of the document. When two documents share the
same fingerprint, it is very probably that they share some “k-grams”. It is recommended
to select a large window size, in order to detect large enough matches. The algorithm
warranties that at least one “k-gram” is shared in every match. The algorithm is also
insensitive to white spaces, letter case, or punctuation. For the correct performance of
the algorithm two limits have to be established: the upper limit controls the desired
extension of the match, while the lower limit helps to avoid noise.
A key factor of this algorithm is that the selection of the hash depends only in the

window content (the position of the window in the outside context is irrelevant). The
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authors found out that for a better performance of the algorithm, it is better to work
with 64 bits to avoid accidental collisions.

Greedy String Tiling [Wis93]

Greedy string tiling (GST) is a method to determinate the degree similarity between
two strings based on one-to-one matching.
GST aims to make comparisons of tiles (associations of a substring from P with a

matching substring from T ) assuming there is a current maximum match length which
is the length of the largest maximal matches remaining obtainable from P and T (see
listing 2.8).

1 length_of_tokens_ti l ed :=0
2 Repeat
3 maxmatch := minimum−match−l ength
4 s t a r t i n g at the f i r s t unmarked token o f P , f o r each Pp do
5 s t a r t i n g ath teh f i r s t unmarked token o f T , f o r each Tt do
6 j := 0
7 whi le Pp+j = Tt+j AND unmarked (Pp+j ) AND unmarked (Tt+j ) do
8 j := j + 1
9 i f j=maxmatch then add match (p , t , j ) to l i s t o f matches o f l ength j

10 e l s e i f j > maxmatch then s t a r t new l i s t with match (p , t , j ) and maxmatch := j
11 f o r each match (p , t , maxmatch) in l i s t
12 i f not occ luded then
13 f o r j :=0 to maxmatch − 1 do
14 mark_token (Pp+j )
15 mark_token (Tt+j )
16 length_of_tokens_ti l ed := length_of_tokens_t i led + maxmatch ;
17 Unt i l maxmatch = minimum−match−l ength

Listing 2.8: Greedy String Algorithm.

GST initially assumes that maxmatch is minimum−match− length. If a maximal
match of that length is found, it is added to the list. Otherwise if a longer maximal
match is found a new list is started. During the second phase, with each iteration the
value of maxmatch will decrease monotonically until it becomes the global minimum−
match− length. The algorithm above is optimal, in terms of maximizing the coverage of
the strings, and computes a metric, provided that strings down to length 1 are allowed.
Moreover it has worst-case complexity of O(n3).

To reduce this complexity, standard techniques are applied: the Karp-Rabin algorithm
is based on the notion that if a hash value exists for a string of length s starting at t,
the hash-value for a string of length s starting at t+ 1 can be calculated using a simple
recurrence relation. If two hash values are identical, the pattern and text substrings are
compared item-by-item. The resulting technique has an average complexity that is close
to linear, becoming a very good option in plagiarism detection and in computational
biology to study genetic sequences.

Radcliff/Obershelp algorithm [Rat88]

Ratcliff and Obershelp developed an algorithm capable of deciding how similar two
unidimensional patterns are; the output is given in the form of a confidence factor or
percentage.
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Initially, the algorithm examines two strings and locates the largest common substring.
This match is used as an anchor among the strings. The algorithm keeps searching to
the left and to the right of this anchor and repeats the procedure until all substrings are
analyzed.

Consider two strings S and T . |c| corresponds to the amount of characters in common
found by the algorithm. The confidence factor is calculated as follows:

P (S, T ) = 2× |c|
|S|+ |T | .

The worse-case scenario happens when there are no character coincidences, as |S|× |T |
comparisons should be made. To reduce this number, the algorithm keeps track of the
largest substring size: in case that the rest of the string is smaller than this size, the
comparison skips this part.

The Normalized Compression Distance [CV05]

In order to understand the normalized compression distance, let us review its fundamental
background.

Metric: It is a function (D) on a non-empty set mapped in R+ satisfying:

1. D(x, y) = 0 if x = y.

2. D(x, y) = D(y, x) .

3. D(x, y) ≤ D(x, z) +D(z, y).

Metrics can be seen as measures of similarity between two objects. For example, if
D(x, y) ' 0 then y and y are considered very similar.

Compressor: A compressor C is a function that reduces the size of data without
losing information. C is normal if it satisfies the following:

• C(xx) = C(x), and C(λ) = 0, where λ is the empty string.

• C(xy) = C(yx).

• C(xy) + C(z) ≤ C(xz) + C(yz).

Normalized Information Distance: It is based on the Kolmogorov complexity,
which is the length of the shortest binary program, for the reference universal prefix
Turing machine, that on input of a string y, it converts it into x; it is denoted as K(x|y).
Essentially, the Kolmogorov complexity of a file is the length of the ultimate compressed
version of the file. Thus the Normalized Information Distance is defined as:
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NID(x, y) =
max

{
K(x|y), K(y|x)

}
max

{
K(x), K(y)

} .

Compression Distance: It is defined based on a normal compressor and shows it is
an admissible distance. A compressor C approximates the information distance E(x, y),
based on Kolmogorov complexity, by the compression distance EC(x, y) defined as:

Ec(x, y) = C(xy)−min
{
C(x), C(y)

}
,

where C(xy) denote the compressed size of the concatenation of x and y, C(x) and
C(y) denotes the compressed size of x and y respectively.

Normalized Compression Distance: It is the normalized version of the admissible
distance EC(x, y):

NCD(x, y) =
C(xy)−min

{
C(x), C(y)

}
max

{
C(x), C(y)

} .

In practice, the NCD is a non-negative number 0 ≤ r ≤ 1 + ε representing how
different the two files are. Smaller numbers represent more similar files.

2.6.2 Clone Detection Tools
Several surveys about the latest clone detection techniques have been performed in recent
years. Ragkhitwetsagul et al. have recently published a comparison study of 30 code
similarity detection techniques [RKC17]. Another recent study from Svajlenko et al.
analyzed other tools [SR14]. Former studies include the work of Hage [HRV10], Roy et
al. [RCK09] and Bellon et al. [Bel+07].

CCFinder [KKI02]

CCFinder is clone detection technique, which consist of the transformation of input source
text and a token-by-token comparison. The token representation enables to detect clones
with different line structure, which cannot be detected by using a line-by-line algorithm.
They used the suffix-tree matching algorithm [Wei73]. CCFinder automatically identifies
and separates each function definition, while initialization of values is removed. Identifiers
are also normalized in order to treat each complex name as an equivalent simple name.
The clone detection process consists of four steps:

Lexical Analysis: Each code line is divided into tokens, all tokens are concatenated,
and the white spaces are removed.

Transformation: The token sequence is transformed using rules aiming at normal-
ization of identifiers and identification of structures. For example, std::ios_base::hex
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→ hex would be normalized as (Name"::")+Name2 → Name2. Each identifier related
to types, variables and constants is replaced with a special token.

Match Detection: All equivalent pairs of tokens are detected as clone pairs, each
clone pair is represented as a quadruplet (LeftBegin, LeftEnd,RightBegin,RightEnd)
where LeftBegin and LeftEnd are the beginning and termination position for a token,
and RightBegin and RightEnd belongs to cloned token.

Formating: Each location of a clone pair is connected to the line numbers on the
original source files.

After this process, a matrix dxy is created, where x represents a position of token in
code 1 (tx) and y represent a position of token in code 2 (ty), thus dxy = 1 if tx ≡ ty
otherwise dxy = 0. Since it always holds that dxy = dyx and dxx ≡ 1, a clone pair found
as a line segment of “1”s is parallel to the main diagonal of the matrix.

CCFinder provides some metrics to evaluate the clones founded. Length captures the
apparent size of clones in the source code. Population by clone class is the number of
elements of a given clone class (a clone class is a maximal set of code portions in which
any pair of elements are a clone). Deflation by clone class gives an estimation of the
amount of code which would be replaced by a shared code. Coverage of clone code is
the percentage of code that include any portion of a clone. Radius measures the extent
of influence of a clone class (if a clone class has a large radius, the code portions are
widely spread over a software system)

JPlag [PMP02]

JPlag is web service that finds pairs of similar programs written in Java, Scheme, C or
C++. It operates in two phases:

Converting the programs into token strings: The selected tokens should char-
acterize the essence of a program’s structure. Hence, whitespaces, comments and names
of identifiers are ignored. JPlag puts semantic information into tokens to reduce false
matches that can occur by pure chance. An example of code conversion in token strings
is presented in Listing 2.9.

1 // JAVA SOURCE CODE GENERATED TOKENS
2 public class Count { //BEGIN_CLASS
3 public stat ic void main ( S t r i n g [ ] a rgs ) //VAR_DEF, BEGIN_METHOD
4 throws java . i o . IOException { //
5 int count = 0 ; //VAR_DEF, ASSIGN
6 //
7 while ( System . in . read ( ) != 1) //APPLY, BEGIN_WHILE
8 count++; //ASSIGN, END_WHILE
9 System . out . p r i n t I n ( count+" chars . " ) ; //APPLY

10 } //END_METHOD
11 } //END_CLASS

Listing 2.9: JPlag token conversion example.

The conversion of code pieces into tokens is an approach that we used in this present
work.
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Comparison two token strings: The algorithm used is essentially the greedy
string tiling [Wis93], where the goal is to find a maximal set of contiguous substrings
that are as long as possible. For optimize the comparison process JPlag implement
Karp-Rabin algorithm [KR87] where a hash function is used to verify a match. If the
match is verified, then the algorithm tries to extend the match as far as possible.

DECKARD [Jia+07]

DECKARD converts the AST of a program into a feature vector, with the purpose of
detecting cloned code fragments with syntactic similarity. At first, the feature vectors
from the subtrees are generated by summing up the vectors of the children with their
corresponding parent node. Next, the vectors of adjacent subtrees are generated by
fusioning the vectors of the independent subtrees; this step allows the detection of larger
clones. Due to the large amount of vectors generated in this step, it is necessary to group
them with a hashing technique called Locality Sensitive Hashing (LSH). When the a
group only has a vector, this is an indication of the absence of clones in the vicinity
of this fragment. Hence, the fragment is discarded, as no clones associated were found.
Finally, groups and subgroups are built from the obtained clones, in order to improve
the scalability of the algorithm.

NiCad [RC08]

The strategy used by NiCad is based on three principles:

1. The format is standardized and the code is divided into blocks in which the changes
can be easily detected.

2. Island grammars (isolated yet functional parts of a general grammar) are used as
an efficient way to find potential clones.

3. Transformation rules (normalization) filter out uninteresting parts of the code.

NiCad uses the TXL parsing infrastructure [Dea+03] premises of: parse, transform
and unparse. The parse phase loads the code according to the grammar rules. The
transform phase applies normalization rules in the code, like as anonymizing of if blocks
or normalizing of identifiers. The unparse phase transforms again the blocks into code
with a spacing standard. An example is given in Listings 2.10 and 2.11.

1 d e f i n e i f_stament
2 ' i f ( [ expr ] ) [ IN ] [NL]
3 [ statement ] [EX]
4 [ opt e l s e _ s t a t e m e n t ]
5 end d e f i n e
6
7 d e f i n e e l s e _ s t a t e m e n t
8 ' e l s e [ IN ] [NL]
9 [ statement ] [EX]

10 end d e f i n e

Listing 2.10: TXL Parsing Rules.

1 r e d e f i n e i f _ s t a t e m e n t
2 ' i f ( [ expr ] ) [ statement ] [ opt

↪→ e l s e _ s t a t e m e n t ]
3 end r e d e f i n e
4
5 r e d e f i n e e l s e _ s t a t e m e n t
6 ' e l s e [ statement ]
7 end r e d e f i n e

Listing 2.11: Transformation Rules.
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The removal of format and layout between codes allows the formation of lines, which
are used as the unit of measure for finding clones. Edited differences between state-
ments of code can be normalized to achieve generalization; for example, the expression
if(x<(n+y)) can be normalized either as if(id<(id+id)) or as if(x<(id+id)), de-
pending on the desired level of generalization. Uninteresting code segments can also be
filtered by using TXL rules; for example, declaration and initialization statements can
be removed because they do not affect the logic of a code piece.
The detection of potential clones is done using longest common subsequence (LCS)

algorithm to compare the text lines after applying the mentioned pretty-printing and
normalization techniques. When comparing two pieces of code, a score, called the unique
percentage of items (UPI) is calculated as follows:

UPI = No_of_Unique_Items× 100
Total_No_of_Items .

If the UPI for both pieces of code are under a certain threshold (e.g. 30%), they are
assumed to be clones.

In oder to reduce the number of comparisons, only potential clones of exact or similar
size are compared to each other.

SimCad [Udd+11]

SimCad employs a data clustering algorithm with a multi-level index-based searching
that enables fast detection of clones. In a pre-processing phase comparison units are
extracted and normalized in a per-block basis (e.g. function blocks), and a hash value
with a SimHash function [Cha02] is calculated for the sake of indexing; The index is the
key information piece for clone detection.
SimCad takes two parameters: the folder where the source code resides, and the

programming language name. The language parameter is required by SimCad to use
appropriate TXL [Dea+03] scripts for extraction and normalization of code fragments
from the original source. Currently it supports four popular programming languages
namely: C, Java, Python and C#.

SimCad can be used as a source code search engine: A third optional parameter takes
a file or a folder that contains source code to be searched in a target project. This opens
up a number of interesting possibilities in code and clone search. For example, a user
might want to see if some arbitrary code exists in a target project. In such case, user
needs to provide the arbitrary code location as input to the parameter item to search.
One of the potential aspects of SimCad is that its clone detection function is made

more portable by packaging it into a library called SimLib. Thus, SimLib now can
be used as an off-the-shelf clone detection library that can be easily integrated into
other applications that are designed to work based on detected clones. The modular
architecture makes SimLib a highly configurable and extensible API that can be tailored
with minimal effort to build a fully customized clone detection tool for target data, or
can be integrated to IDE of third party source code analysis system.
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Krinke [Kri01]

The authors presented an approach to identify similar code in programs, based on finding
similar subgraphs in attributed directed graphs. This approach is based on fine-grained
program dependence graphs (PDGs). The idea is to identify similar subgraph structures
which are stemming from duplicated code. Identified similar subgraphs can be directly
mapped back onto the program code and presented to the user.

The PDG of Krinke is a specialization of the traditional PDG and is similar to an AST
as well. On the level of statements and expressions, the AST vertices are almost mapped
one-to-one onto PDG vertices. The definitions of variables and procedures have special
vertices. The vertices may be attributed with a class, an operator and a value. The
class specifies the kind of vertex: statement, expression, procedure call etc. The operator
further specifies the kind, e.g. binary expression, constant, etc. The value carries the
exact operator, like "+" or "-", constant values or identifier names.
The PDG has also specialized edges. Between the components of an expression, the

PDG has a special control dependence which the authors call: the immediate control
dependence, whose targets are evaluated before the source is evaluated. The data flow
between the expression components is represented by another specialized edge: the value
dependence edge, which is like a data dependence edge between expression components.
Another specialized edge represents the assignments of values to variables: the reference
dependence edges, which are similar to the value dependence edges, except that they
show that a computed value is stored into a variable.
Graph isomorphism was the method used by the authors to find similarities among

graphs. Two graphs are isomorphic if every edge is bijectively matched to an edge in
the other graph and the attributes of the edges and the incident vertices are the same.
The question whether two given graphs are isomorphic is NP-complete in general. But if
only a subset of the vertices are be considered as “starting” vertices, the complexity can
be reduced.

Summary
In this chapter the reader was introduced into the fundamental topics that supported our
research. Kernel Methods arose as a plausible option for performing program comparison.
The modular approach that characterize them, makes them appropriate to target the
comparison of structured data, like is the case of I/O traces or the intermediate represen-
tations of a compiler. In the following chapter, we detail the comparison strategies we
propose, which are based on string kernels, and correspond to the main contribution of
this thesis.
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3 Design
We have seen in the previous chapter how program similarity has motivated the scientific
community to propose different methods of comparison. However, the utilization of string
kernel functions for solving this problem is still an unexplored area. Due to the fact that
data coming from I/O tracing activities or from a compiler, can be expressed as a set of
strings, we have found there is an opportunity to contribute with new research in this area.
We have developed novel strategies for converting trees, Clang abstract syntax trees, LLVM
Intermediate Representations and I/O traces into weighted strings. Additionally, three
novel kernel functions to find similarities between the resulting strings are introduced,
which correspond to the main contribution of this work. The string representation acts as
the middle man between the domain and the similarity functions, a design that preserves
the modular approach that characterizes kernel methods. As long as a data structure,
coming from any domain, can be expressed as a series of weighted tokens, the kernel
functions will give a similarity score. In Section 3.1, we present a general description of
the used methodology. Section 3.2 is dedicated to the explanation of the proposed string
conversion process. Finally, in Section 3.3, we find the development of the mentioned
string kernels.

3.1 Methodology
In the previous chapter, we saw that there are some syntactical approaches in the
literature that resolve the problem of comparing programs, by i) reducing the data
structures of a compiler into a sequence of tokens, and ii) using afterwards regular
string comparison algorithms to emit a similarity measure among them. The approaches
are syntactical because they are based not on the code itself but on an intermediate
representation of a program. In this chapter we will see that, although I/O traces are
data structures completely different to those intermediate representations of a compiler,
they have some hierarchical structure in common with them; this fact motivated us to
apply the same strategy on the domain of I/O access pattern identification.

3.1.1 In Search of a Representation for Diverse Domains
Resembling the idea of intermediate representations, we aimed for the creation of a
representation that could be used as a common ground for all the domains of our interest.
In order to achieve this, that representation should not depend on the domain. It happens
that strings comply with such requirements, and have been widely and successfully used
in different disciplines. It is important though, that the strings reflect the inherent
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structure present on the domain; for this reason, we thought it was better to work at
first with tree-like data structures. In the case of abstract syntax trees, the problem
was already solved. However, I/O traces had to be converted first to a tree hierarchy.
In this sense, the proposed string representation arose as a flattened version of a tree.
The utilization of strings as a common ground achieved also the language independence
capability for the program comparison process.
When we were analyzing data from I/O traces and intermediate representations,

we realized that some tokens occurred in a repetitive way. This repetitions could be
expressed in a concise way if we added a weighting attribute to each token. The proposed
string representation was then implemented with this additional numeric attribute that
can be used to modulate the contributions of each token of the string. As it was said,
the punctual application of this weighting feature in this study was the capability of
abstracting repetitive tokens and hence compressing the string. However, such value can
be used for other purposes: for example, certain nodes (for loops or if sentences) in an
AST could be considered to have more weight than others (variable declarations or cast
operations), as their impact in the overall code structure is higher.

3.1.2 Finding a Proper Comparison Strategy
In the literature, the comparison of strings has been made with different algorithms, like
the greedy string tiling. However, there is not so much work in the application of string
kernel functions in the problem of code similarity. But string kernels have been applied
successfully in the comparison of data coming from domains like bioinformatics; this
fact motivated us to contribute with a study of the application of these functions in the
mentioned domains. Studies like ours can generate more interest in the utilization of
string kernels on the program similarity problem, and hence help to bring progress in
this unexplored area.

3.1.3 Proposed Infrastructure
In this thesis we propose a feature extraction system that, at the first stage, aims for the
conversion of source code and I/O traces into weighted strings, and in a second stage,
uses three novel string kernels to obtain a similarity score among the analyzed examples.
Figure 3.1 shows how the flow of information works. The highlighted parts, essentially
the conversion procedures and the novel string kernels, represent the contributions of
this work, while the parts with a dotted line suggest possibilities of extension, like new
kernels or new conversion methods.
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Figure 3.1: Diagram of the Proposed Modular Design for the Comparison of Intermediate
Representation and I/O Traces.

The top of the figure represents possible domains from which data can be originated.
Notice that, usually, data from the domain is not delivered in its original form; for
example, source code can be delivered as an AST trough a compiling step, while the
I/O behavior of a program can be obtained via a tracing library. Ideally, they should be
tree-like data structures.
In the middle of the figure we find the feature extraction subsystem, the place

where our contributions have focused. Our first contribution corresponds to the string
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converters for Clang ASTs, I/O traces and LLVM linear IRs. After the conversion, the
resulting strings are available for the proposed kernel functions, which correspond to the
second and main contribution of this work. The output of these kernels are a collection
of matrices whose values can be interpreted as similarity score among the analyzed
examples. The feature extraction subsystem can be extended by adding more comparison
strategies (string kernels); an example of this is the addition of the blended spectrum
kernel, which was selected from the literature as the baseline kernel for the evaluation
section.

Finally, the learning algorithms are represented at the bottom of the information flow;
any algorithm based on similarity scores can be used (E.g. hierarchical clustering, kernel
principal component analysis).
In the following sections of this chapter, we depict in depth the particularities of the

weighted string representation and the novel kernels.

3.2 The String Representation
In this work, we have developed a string representation for tree-like data structures that
deals with them as sets of consecutive weighted tokens. The strategy is not new: as seen
on the previous chapter, other authors have used tokens as unit of comparison as well. In
the case of ASTs, the data structures are already in tree form, but LLVM intermediate
representations and I/O traces are not. These ones have to be converted first into trees.

3.2.1 Definitions
Let us at first delimit the notion of tokens and strings for this study. A weighted token t
is a consecutive set of symbols of variable size enclosed by the special characters [ and ],
with an associated attribute weight(t) that corresponds to an integer value greater than
zero. E.g.: [token_literal]1. A weighted string S is a set of n consecutive weighted tokens
t (from here on referred simply as strings and tokens):

S = t1t2t3...tn. (3.1)

Let T be a non-empty string, and let A and B be non-empty or empty strings. T is a
substring of S, if it is fully contained in S:

S = ATB (3.2)

The weight of a string corresponds to the summation of the weights of its tokens:

weight(S) = weight(t1) + weight(t2) + weight(t3) + ... + weight(tn). (3.3)

3.2.2 Conversion of Trees into Strings
Let us start considering first the simple conversion of a generic tree into a succession of weighted
strings. To generate a string, a tree is traversed in a pre-order fashion. Each node of the tree is
translated into a token of the string. Nodes usually possess some attributes that represent a
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specific property; the literal part of a token can be constructed from any of those attributes.
In the case of I/O traces, for example, the token literal might be paired with the operation
name. For ASTs, it might be paired with the class node name. For IRs, it might correspond to
the instruction name. The default weight for these tokens is 1. In a further compression step,
this value is used to express the number of consecutive repetitions of a token.

The [LEVEL_UP] Token
A few token literals correspond to abstract nodes added during the tree conversion process. For
example, the special token [LEVEL_UP] is used to represent the distance between two tree nodes
that in the pre-order dump happen to be consecutive. The weight of this token corresponds
to the number of levels that the pre-order algorithm had to climb up to reach the next node.
This distance is zero when jumping from a parent node to its first child, hence, in this case,
there is no need for a token that indicates going to a lower level. As an example, consider the
case of a code segment with an instruction inside a loop and an immediate instruction after it.
Without the [LEVEL_UP] token, both instructions will be written one after the other in the
string conversion, and there will not be a difference between this segment and another one that
has no loop involved.

Figure 3.2 shows an example of a simple tree and its corresponding string representation,
according to the previous conversion steps. The weights of the tokens and the weight of the
resulting string are written as subscripts.

root

node1

node2 node3

node4

↓
S9 = [root]1[node1]1[node2]1[LEVEL_UP]1[node3]1[LEVEL_UP]2[node4]1[LEVEL_UP]1

Figure 3.2: Conversion of a Tree into a String.

3.2.3 Conversion of I/O Access Patterns into Strings
The contents of an I/O access pattern file correspond to a sequence of operations. In our
approach, a few operations are considered negligible, as they don’t make part of the effective
I/O workload of the analyzed programs, and are hence ignored (e.g. fileno, nmap and fscanf).

Among the relevant operations, there are some of them that keep information about the
number of bytes involved (e.g. read and write); this information can be used or ignored,
which leads to the possibility to produce two different types of strings from a single I/O access
pattern:

• Strings with associated byte information

• Strings without byte information

Looking into the I/O trace files, it is noticeable that operations are registered chronologically;
with several file handles being traced at the same time, it is not always possible that all the
operations belonging to the same file handle could have been written contiguously. Therefore,
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it is necessary to group each handle’s actions without losing information. For that reason the
traces are first converted into trees. Trees are ideal data structures for representing containment
relationships among objects.

From I/O Access Patterns to Trees
The trees that represent I/O traces have at most four levels: The ROOT level, the HANDLE level,
the BLOCK level and the operation level. These levels reflect the intuitive relationships of the
operations. Figure 3.3 shows how I/O traces are converted into strings following the next steps:

• At the highest level, an abstract root node groups all the operations of a single I/O
access pattern file. Such node is represented as ROOT.

• At the second level, abstract nodes group all the operations belonging to the same file
handle. Such nodes are represented as HANDLE.

• At the third level, abstract nodes group all the operations found between an open
operation and its corresponding close operation. Such nodes are represented as BLOCK.

• At the deepest level, operations are given nodes, except for open and close, because the
BLOCK node already plays the role of a delimiter.

Compression of the Tree
In order to save space, a set of consecutive operation nodes on the same block can be expressed
as a single node when they present a repetitive pattern. A similar approach was applied
by Kluge [Klu11]. The resulting node will have an additional field that stores the number
of repetitions. This compression step is based on the following transformations, which are
performed in the given order:

• Consecutive operations with the same name and number of bytes are simplified to a single
operation with the same information (see Figure 3.4). For example, a read operation
inside a loop reading a file n bytes per iteration. Compressing these nodes into a single
one simplifies the representation, which has later a positive effect in the performance of
the comparison process.

• Consecutive operations with the same name but different number of bytes are simplified
to a single operation with the same name (see Figure 3.5). The new byte value is a
combination of both previous byte numbers. For example, initializing in a loop an array
of C structures compound of a 2-bytes integer and a 4-bytes integer will need a read
operation extracting two bytes first and another read extracting four bytes afterwards.

• Consecutive operations with different names but same number of bytes are simplified to a
single operation with the same number of bytes (see Figure 3.6). The new operation name
is a combination of both previous names. For example, a series of interlaced read and
write operations with the same number of bytes might indicate a tacit copy operation
from one file to another.
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(a) Access pattern. (b) Resulting tree.

Figure 3.3: Conversion of an I/O Access Pattern into a Tree.

• Consecutive operations with different names and different number of bytes but with
one operation having 0 as number of bytes are simplified to a single operation with the
non-zero value as the number of bytes (see Figure 3.7). The new operation name is a
combination of both previous names. For example. inside a loop, an lseek operation
(which has no relationship with the bytes that have to be written or read) moves the
pointer in the file descriptor; after that, a write operation stores some bytes there. In
this case, the resulting operation name will be write-lseek.

The previous steps are repeated a second time to capture higher level patterns. It has to be
mentioned that some operations (e.g. read, write) have memory addresses associated to them.
If these addresses would be taken into account, the algorithm would be more precise to detect
related operations, e.g, a copy operation compound by interlaced reads and writes. However,
the degree of compression would be reduced. We have ignored these memory addresses, because
the main focus of this research is the usage of kernels for determining, in an efficient way, how
similar the patterns of a collection are. Hence, it is not in the scope the understanding of the
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underlying details of the pattern found. However, this task stands as one of the possibilities of
extension for future work.

(a) Original
pattern.

(b) Compact
pattern.

Figure 3.4: Compression of nodes with
the same name and the same
number of bytes.

(a) Original
pattern.

(b) Intermediate
pattern.

(c) Compact pat-
tern.

Figure 3.5: Compression of nodes with
the same name but different
number of bytes.

(a) Original
pattern.

(b) Intermediate
pattern.

(c) Compact pat-
tern.

Figure 3.6: Compression of nodes with
different name but same
number of bytes.

(a) Original
pattern.

(b) Intermediate
pattern.

(c) Compact pat-
tern.

Figure 3.7: Compression of nodes with
different name and one of
them with zero as number
of bytes.

From Trees to Strings
Once the tree is compacted, the string representation can be built (see Figure 3.8):

• The tree is traversed in a pre-order fashion; each node of the tree corresponds to a token.
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• For leaf nodes, the literal part of a token is conformed by the name of the operation and
the number of bytes enclosed by [], while their weight corresponds to the number of
repetitions.

• ROOT, HANDLE and BLOCK nodes are translated as [ROOT], [HANDLE] and [BLOCK] respec-
tively; their weights are initialized with 1.

• The [LEVEL_UP] token represents the change to an upper level when doing the pre-order
traversal.

Figure 3.8: Creation of a string of tokens from a tree.

(a) Compacted tree. (b) Extracted tokens.

(c) Final string.

3.2.4 Conversion of Clang Abstract Syntax Trees into Strings
Clearly, Clang ASTs are already in a tree form. Hence, there is no need for a pre-processing
step. These trees are complex in-memory data structures that store, not only the relationships

60



between programming constructs, but also additional properties of these constructs, for example,
the location of source code, which is useful for debugging purposes [PS15]. For the proposed
conversion method, only the construct name and the hierarchy are important. All ASTs start
with the root node TranslationUnitDecl, which represents a whole compilation unit (see
Figure 3.9). Starting from it, all the tree hierarchy comes off, from functions till basic operators
(see Figure 3.10).

Figure 3.9: Simplified Clang AST example.

From Trees to Strings
The conversion rules are similar to the ones for I/O traces:

• ASTs are traversed in pre-order (see Figure 3.10). Each node of the tree corresponds to
a token in the string, except for comment nodes and their children, which are ignored.

• The literal part of a token is the class name of its corresponding node, while the weight
is the number of consecutive occurrences of the token, which is initialized with 1.

• In order to achieve generality, nodes representing loop statements, like ForStmt and
WhileStmt, are represented with the new token [LoopedStmt]:

ForStmt → [LoopedStmt]1
WhileStmt → [LoopedStmt]1

• The [LEVEL_UP] token represents the change to an upper level when doing the pre-order
traversal.

Compression of the String
In the case of ASTs, the compression step is performed on the strings. Space can be saved
when a set of consecutive tokens follows a pattern that can be expressed as a single token. The
weight of this new token corresponds to the summation of weights of all involved tokens, in
order to preserve the original weight of the string. The following transformations are performed
on the string when processing it from left to right:
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(a) Abstract Syntax Tree. (b) Extracted tokens.

(c) Final string.

Figure 3.10: Creation of a string of tokens from an Abstract Syntax Tree.

1. Consecutive tokens with the same literal part are represented as a single token and their
weights are summed up. For example:

[BinaryOperator]1[BinaryOperator]1[BinaryOperator]1[BinaryOperator]1
↓

[BinaryOperator]4

Rationale: The motivation here is merely space saving.

2. Tokens representing cast expressions, parent expressions and function calls are deleted
but their weights are added up to the weight of the next subsequent token. For example:

[CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1 [DeclRefExpr]1
↓

[DeclRefExpr]4

Rationale: Cast expressions are used to assist the compiler in the conversion of values
between similar data types; although this is important at compilation time, it was proved
to be cumbersome in the similarity study, because it introduces different tokens in two
strings that otherwise would be semantically identical, which obstructs the achievement
of a suitable abstraction level, necessary to establish a similarity measure among code
examples. Likewise, parent expressions are internal constructions of the Clang AST,
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whose omission improves abstraction. The same is the case for function calls; keeping a
token for a function call also breaks the structure of string segment, which in its case
affects the similarity score among strings. The idea behind these omissions is to obtain
the largest possible matching substrings. Experimentation showed that ignoring these
tokens helped to increase the identification of Type-2 clones.

3. All tokens between a Declaration Statement token ([DeclStmt]) and a [LEVEL_UP]
token are deleted but their weights are summed up to the weight of the former. For
example:

[DeclStmt]1 [VarDecl]1[DeclRefExpr]1[LEVEL_UP]4
↓

[DeclStmt]3 [LEVEL_UP]4

Rationale: Similar to cast expressions, the tokens of a declaration statement introduce a
level of detail that make the abstraction difficult. Omitting them facilitates the detection
of similar declaration blocks.

4. If two pairs of tokens have the same literal part, they are collapsed as one pair and their
weights are added up to the corresponding token. For example:

[IntegerLiteral]1[LEVEL_UP]5[IntegerLiteral]1[LEVEL_UP]2
↓

[IntegerLiteral]2[LEVEL_UP]7

Rationale: The motivation here is also space saving.

The resulting compressed string will still comply with the original design.

3.2.5 Conversion of LLVM Intermediate Representations into
Strings

In order to understand the organization of an LLVM IR, let us consider the human-readable
version of the IR of Listing 3.1. The first line of the code makes reference to the module, which
is the denomination for the top-level compilation unit. A module encloses all the functions,
variables and other entries belonging to a compilation unit. For the purposes of this project,
only the function blocks and their contents are taken into account. All constructions outside a
function block are ignored.

From LLVM IRs to Trees
LLVM IRs are converted into trees following the usual rules. These trees have the following
levels: The Module level, the Function level, the BasicBlock level, the instruction level and
the operand level (see Figure 3.11):

• At the highest level, a root node groups all the constructions belonging to a module.
Such node is represented as Module.

• The second level is compound by nodes that group all the instructions belonging to
the same function. Such nodes are represented as Function. The function names are
ignored.
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• The third level corresponds to the nodes that group all the instructions belonging to the
same basic block. A basic block is defined as a set of instructions where all of them are
executed once the first instruction has been reached; these blocks are usually created by
introducing conditional instructions, (e.g. if statements) that break the normal flow of a
program. Such nodes are represented as BasicBlock.

• The fourth level belongs to the nodes grouping all the operands that shape an instruction.
In this case, the nodes are represented by the name of the instruction.

• At the deepest level, operands are assigned nodes. Such nodes are represented as
NamedOperand or PointerOperand, depending of the nature of the operand.

It can be seen that most of the construction names are replaced by a generic descriptor,
except from the instruction names. This helps to focus on the similarities in the instruction
patterns rather than in personalized identifier names that would make the abstraction less
effective.

1 ; ModuleID = ' group02_funct ion03_vers ion00 . c '
2
3 ; Function Attrs : nounwind uwtable
4 d e f i n e void @group02_function03_version00 ( i 32 %n , i 8 ∗∗ %s t r i n g V a l u e s ) #0 {
5 %1 = a l l o c a i32 , a l i g n 4
6 %2 = a l l o c a i 8 ∗∗ , a l i g n 8
7 br l a b e l %8
8
9 ; <l a b e l >:8

10 %9 = load i32 , i 32 ∗ %i , a l i g n 4
11 br i 1 %11, l a b e l %12, l a b e l %25
12
13 ; <l a b e l >:12
14 %13 = load i32 , i 32 ∗ %i , a l i g n 4
15 br l a b e l %22
16
17 ; <l a b e l >:93
18 r e t void
19 }

Listing 3.1: LLVM Linear IR snippet.

From Trees to Strings
The process is the same like for previous representations (see Figure 3.11):

• The tree is traversed in pre-order and each node properties are extracted; each node of
the tree corresponds to a token in the string.

• The literal part corresponds to the name of node enclosed by [ ] while the weight
corresponds to the number of repetitions.

• The [LEVEL_UP] token represents the change to an upper level when doing the pre-order
traversal.
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(a) Abstract Syntax Tree. (b) Extracted tokens.

(c) Final string.

Figure 3.11: From Trees to Strings.

3.3 A New Family of String Kernel Functions
Once data structures are converted into weighted strings, they can be easily compared using a
string kernel function. In this study, three novel string kernel functions are proposed, all of
them sharing the same strategy for string matching, but with differences in the way weights are
summarized. For a better reference, we have named this family of kernels, the kastx kernel
family.

In theory, the number of different tokens that can compound a string is infinite. In practice,
this number is limited to the namespace of a particular domain. For the case of I/O traces,
for example, it is limited by the I/O operations names and the number of bytes related to
each operation. For the case of ASTs, the namespace is limited by the class node names. For
LLVM IRs, the limitation comes from the available instruction list. Still, the number of tokens
can be very high. In an hypothetical feature space, where every string is characterized by the
presence or absence of each possible token with each possible weight, the number of features is
still infinite. However, in practice, for a single string, most of the features of this hypothetical
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space are zero-valued. This is a fact that eases the creation of a feasible kernel function. This
way, the new embedding space has a finite and small number of features, that corresponds to
the actual tokens that exist in a set of samples.

Our approach is similar to the greedy string tiling algorithm of Wise [Wis93], whose goal
is to find the longest common subsequence. However, our solution is focused on finding the
longest common substrings, even if they do not conform the longest common subsequence.
The idea behind is that we want to give more relevance to the longest pieces of code without
considering gaps.

3.3.1 Definitions
Recall from Equation 3.1, that a weighted string S is a set of n consecutive weighted tokens t.
For two weighted strings A and B, the kernels here proposed must follow the conditions given
below:

1. The user must specify a minimum weight value as parameter (from here on referred
simply as cut weight).

2. The aim is to find the longest matching substrings of A and B, whose weights are greater
than or equal to the cut weight. They are called valid matching substrings. Invalid
matching substrings have a weight value that is smaller than the cut weight, and are
hence ignored.

3. A valid matching substring can appear more than once in each string.

4. A valid matching substring must not be a substring of another valid matching substring
in at least one of the original strings.

In order to find the longest valid matching substrings efficiently, the algorithm starts searching
for matches of maximum size. The maximum size is the number of tokens of the shortest string
of the comparison (A or B). This size is reduced progressively until 1, but always checking that
the substrings’ weights are equal or above the cut weight. A copy of each one of the original
strings is used to mark down the already found valid matching substrings. Potential valid
matching substrings have to be checked against those copies to assure that condition 4 is met.

The Cut Weight
The cut weight selection has an effect on the computation cost, as the algorithm takes into
account all the substrings whose weights are equal or greater than the cut weight. If the cut
weight is 1, all substrings have to be compared. An increase on the cut weight allows the
filtering of substrings with small weights. If the cut weight is closer to the weight of the strings
(A or B), the number of substrings having a valid weight is reduced considerably. Hence, the
higher the cut weight, the cheaper the computation.

Additionally, the cut weight controls the size of the consecutive parts that are shared. For
example, if the cut weight is set to be as big as the weight of either A or B, we are only
accepting that either A or B is contained fully on the other string. This might be useful to
perform code search: specific segments of code can be survey in library or a project. A decrease
on the cut weight permits that segments of the strings can be considered as valid matching

66



substrings. If the cut weight is closer to 1, short sequences of tokens will contribute on the
similarity score. A trade-off has to be found. Experimentation (see Chapters 5 and 6) showed
that cut weight values up to 64 were optimal for the construction of a good similarity matrix.

The kernels presented here are asymmetric kernels, which means that the kernel value
depends on the order in which two string are compared. Because the substrings conforming the
first string are always the base for the search, there might be a difference when the strings are
swapped. Given the kernels start always searching for the longest matching substrings, these
changes happen with smaller matching substrings only, so the difference between the kernel
values is not significantly high. This also shows that the smaller is the cut weight, the highest
is the probability of this difference to appear.

Example:
Consider the strings A and B of Figure 3.12, and a cut weight value of 4:

Figure 3.12: Examples of Strings

The first valid matching substring with the longest size (S1) is found once in A and twice in
B (see Figure 3.13):

Figure 3.13: S1 as the Longest Matching Substring

The second longest valid matching substring (S2) is found twice in A and twice in B (see
Figure 3.14). This substring appears at least once as an independent substring in one of the
strings, hence complying with condition 4. Notice that an extra occurrence is ignored because
its weight is smaller than 4:

Figure 3.14: S2 is another Matching Substring

The last and shortest valid matching substring (S3) is found twice in A and twice in B (see
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Figure 3.15). As the substring appears as an independent case in both strings, it complies with
condition 4. Here also an extra occurrence is ignored due to a smaller weight:

Figure 3.15: S3 is the last Matching Substring

3.3.2 Kast Spectrum Kernel
When comparing two strings, this kernel aims to build a feature vector for each string, where
each feature corresponds to a valid matching substring. Having two strings A and B, the first
kernel here presented is the kast spectrum kernel, defined by the following rules:

• Each valid matching substring embeds a new feature for A and B. Hence, the size of
the new embedding vector for both strings is equal to the number of valid matching
substrings.

• The feature value is the summation of the weights of all the occurrences of the valid
matching substring in the string.

• The kernel value is evaluated as the the inner product of the new feature vectors of A
and B.

Rationale:
The kast spectrum kernel was the first kernel designed in this work and was conceived as an
improved version of the blended spectrum kernel, where long string matching is favored against
short string matching. That is the reason why our kernels take the cut weight as an inferior
limit, while the baseline kernel uses it as the superior limit. Segments of the strings that have
been already matched can only be used for further matching with unmatched segments. This
strategy reduces the similarity score.

Example:
Let A and B be the same strings of the previous example (Figure 3.12). The function
weightw≥n(A) returns the summation of the weights of all the tokens of A whose weight is
greater than or equal to n. For a cut weight of 4 (n = 4), the respective weights of A and B
are:

weightw≥4(A) = 64 (3.4)

weightw≥4(B) = 52 (3.5)
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Let S be a valid matching substring according to the general kernel definition. The function
weight_k0w≥n(S)A returns the summation of the weights of all the matching instances of S in
A whose weight is greater than or equal to n. Three matching substrings are obtained: S1, S2
and S3 (see Figures 3.13, 3.14 and 3.15). For a cut weight of 4 (n = 4),the respective weights
of each feature in A are calculated with:

weight_k0w≥4(S1)A = 19 (3.6)

weight_k0w≥4(S2)A = 7 + 6 = 13 (3.7)

weight_k0w≥4(S3)A = 6 + 9 = 15 (3.8)

The new embedding feature vector for A is then:

f0w≥4(A) = {19, 13, 15} (3.9)

Now, the respective weights of each feature in B are calculated with:

weight_k0w≥4(S1)B = 17 + 18 = 35 (3.10)

weight_k0w≥4(S2)B = 6 + 5 = 11 (3.11)

weight_k0w≥4(S3)B = 8 + 6 = 14 (3.12)

The new embedding feature vector for B is:

f0w≥4(B) = {35, 11, 14} (3.13)

The function k0w≥n(A, B) returns the evaluation of the kernel value between A and B; this
is no more than the inner product of the new feature vectors:

k0w≥4(A, B) = 〈f0w≥4(A), f0w≥4(B)〉 = 1018 (3.14)

The function k̄0w≥n(A, B) is the normalized version of the kernel. A normalization step will
use the weights of each string:

k̄0w≥4(A, B) = k0w≥4(A, B)√
k0w≥4(A, A)× k0w≥4(B, B)

= k0w≥4(A, B)
weight_k0w≥4(A)× weight_k0w≥4(B)

(3.15)

k̄0w≥4(A, B) = 1018
64× 52 = 1018

3328 ≈ 0.3059 (3.16)

In other words, according to this kernel, the strings are 30.59% similar.
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3.3.3 Kast1 Spectrum Kernel
This kernel also intends to build a feature vector for each string based on the valid matching
substrings. Having two strings A and B, the second kernel here presented is the kast1 spectrum
kernel, which has the following definition:

• Each valid matching substring embeds a new feature for A and B. Hence, the size of
the new embedding vector for both strings is equal to the number of valid matching
substrings.

• Only the weights of the independent valid matching substrings are taken into account to
build the feature value, which corresponds to the summation of these weights.

• If the string does not present an independent occurrence of a particular valid matching
substring, the feature value is set to 1, to avoid zero values when calculating the inner
product.

• The kernel value corresponds to the inner product of the new feature vectors of A and B.

Rationale:
During the experimentation stage, the results of the original kernel, namely, the kast spectrum
kernel, did not show a remarkable difference with the baseline kernel (see Sections 5 and 6).
With the first kernel, though the similarity score was mainly extracted from the largest common
substrings, the gaps between the found segments were still considered valid matching substrings.
This means that for small cut weight values, the gaps could be, in the worse case, of the size of
a token, which, if it is spread all over the strings, could introduce a high weight value for such a
small match. For that reason, we introduced an improvement in the weight calculation: in the
kast1 spectrum kernel, if there is a match, only the weights of the independent valid substrings
are taken into account. This strategy reduces the noise introduced by the small matches.

Example:
Let A and B be the same strings of previous examples (see Figure 3.12). Recall the weight
calculation for A and B (see Equations 3.4 and 3.5). The function weight_k1w≥n(S)A returns,
either:

• the summation of the weights of all the independent matching instances of S in A whose
weight is greater than or equal to n,

• or 1 if there are no independent substrings.

Though, the matching substrings are the same (see Figures 3.13, 3.14 and 3.15), the weight
function has changed. For a cut weight of 4 (n = 4),the respective weights of each feature in A
are calculated with:

weight_k1w≥4(S1)A = 19 (3.17)

weight_k1w≥4(S2)A = 6 (3.18)
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weight_k1w≥4(S3)A = 9 (3.19)

The new embedding feature vector for A is:

f1w≥4(A) = {19, 6, 9} (3.20)

Notice in Figure 3.14 that S2 does not appear as an independent valid matching substring in
B. Hence, the partial feature value is set to 1 (see Equation 3.22). The respective weights of
each feature in B are calculated with:

weight_k1w≥4(S1)B = 17 + 18 = 35 (3.21)

weight_k1w≥4(S2)B = 1 (3.22)

weight_k1w≥4(S3)B = 6 (3.23)

The new embedding feature vector for B is:

f1w≥4(B) = {35, 1, 6} (3.24)

The function k1w≥n(A, B) returns the evaluation of the kernel value between A and B; this
is no more than the inner product of the new feature vectors:

k1w≥4(A, B) = 〈f1w≥4(A), f1w≥4(B)〉 = 725 (3.25)

The function k̄1w≥n(A, B) is the normalized version of the kernel. A normalization step will
use the weights of each string:

k̄1w≥4(A, B) = k1w≥4(A, B)√
k1w≥4(A, A)× k1w≥4(B, B)

= k1w≥4(A, B)
weight_k1w≥4(A)× weight_k1w≥4(B)

(3.26)

k̄1w≥4(A, B) = 725
64× 52 = 725

3328 ≈ 0.2178 (3.27)

It is possible to say that these two strings are 21.78% similar.

3.3.4 Kast2 Spectrum Kernel
One of the differences of this kernel with respect to the others, is that it does not built a vector
of features. It only extracts a single feature from each string. Having two strings A and B, the
third kernel we propose is the kast2 spectrum kernel, which has the following definition:

• Only the weights of the independent valid matching substrings are taken into account to
build a partial feature value, which is the summation of these weights.

• Unlike the previous kernel, if the string does not present an independent occurrence of a
particular valid matching substring, no weight value is taken into account.
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• The major difference with the previous kernels is that only a single feature value is
created for each string A and B, which corresponds to the summation of all partial
feature values.

• A penalization value is introduced and it corresponds to the number of effective segments
reduced by one; an effective segment is an instance of an independent valid matching
substring. this value is subtracted from the feature value; the reduction by one prevents
exact matching strings from being penalized.

• The kernel value corresponds to the product of the feature values after penalization.

Rationale:
Finally, the kast2 spectrum kernel was created to reflect more naturally the way string matching
is done. Instead of performing the inner product immediately after finding a valid matching
substring, this kernel sums up all the their weights an creates a single feature. In other words,
the feature value of a string is the weight of all matching segments of a string. The penalization
value automatically favors long string matches: the more segmented is a string, the major the
penalization.

Example:
Let A and B be the same strings from previous examples (see Figure 3.12). Recall the weight
calculation for A and B (see Equations 3.4 and 3.5). The function weight_k2w≥n(S)A returns,
either:

• the summation of the weights of all the independent matching instances of S in A whose
weight is greater than or equal to n,

• or 0 if there are no independent substrings.

Though, the matching substrings are the same (see Figures 3.13, 3.14 and 3.15), the weight
function has been changed again. For a cut weight of 4 (n = 4),the respective weights of each
partial feature in A are calculated with:

weight_k2w≥4(S1)A = 19. (3.28)

weight_k2w≥4(S2)A = 6. (3.29)

weight_k2w≥4(S3)A = 9. (3.30)

The only feature of A is the summation of the previous weights:

f2w≥4(A) = 19 + 6 + 9 = 34. (3.31)

The penalization value in this case is 2:

p2w≥4(A) = 34− 2 = 32. (3.32)
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Notice in Figure 3.14 that S2 does not appear as an independent valid matching substring in
B. Hence, the feature value is set to 0 (see Equation 3.34). The respective weights of each
substring in B are:

weight_k2w≥4(S1)B = 17 + 18 = 35. (3.33)

weight_k2w≥4(S2)B = 0. (3.34)

weight_k2w≥4(S3)B = 6. (3.35)

Here too, the only feature of B is the summation of the previous weights:

f2w≥4(B) = 35 + 6 = 41. (3.36)

For this case, the penalization value is also 2:

p2w≥4(B) = 41− 2 = 39. (3.37)

The function k2w≥n(A, B) returns the evaluation of the kernel value between A and B; this
is no more than the product of these two values:

k2w≥4(A, B) = 〈p2w≥4(A), p2w≥4(B)〉 = 1248. (3.38)

The function k̄2w≥n(A, B) is the normalized version of the kernel. A further normalization
step using the weights of each string can be applied:

k̄2w≥4(A, B) = k2w≥4(A, B)√
k2w≥4(A, A)× k2w≥4(B, B)

= k2w≥4(A, B)
weight_k2w≥4(A)× weight_k2w≥4(B) .

(3.39)

k̄2w≥4(A, B) = 1248
64× 52 = 1248

3328 ≈ 0.375. (3.40)

In this case, the kernel emits a similarity score of 37.5% between A and B.

We have seen how each of the proposed kernels is an evolution of the previous one. In theory,
more kastx kernels could be designed by changing the way the weights are summarized, as long
as the four rules are respected.

Summary
In this chapter, we introduced to the reader a string representation and three novel string
kernel functions for the comparison of those strings. We also showed how generic trees, Clang
Abstract Syntax Trees, LLVM Intermediate Representations and I/O traces can be converted
to the mentioned string form. A proof of the concepts here presented is developed in the next
chapter in the form of a more detailed example.
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4 Proof of Concept
In the previous chapter we introduced to the reader a string representation based on weights, as
well as three novel string kernel functions to compare them. In this chapter we present a proof
of the concept by means of an example with synthetic strings using symbols of three different
alphabets. The idea behind is to show how the kernels are able to separate the strings into
the expected classes. The first section (4.1) explains the reasons why the blended spectrum
kernel was selected as the baseline kernel. Section 4.2 presents the structure of the alphabets
per class, while Section 4.3 details the strings that compound each class. Section 4.4 explains
how the experiment is configured. Section 4.5 shows the results of running the three kernels
and presents the comparison with the results of the baseline algorithm. Finally, Section 4.6
discusses the complexity order of the developed algorithms.

4.1 Blended Spectrum Kernel as Baseline Kernel
The intention of this thesis is to explore the application of string kernels in the problem of
detection of patterns in I/O traces and Intermediate Representations. The blended spectrum
kernel has been successfully used for the classification of proteins, but not in the mentioned
problem of this research.

Given the particular form of the string representation proposed here, where a group of
subsequent tokens can encode more meaningful information than a single one, we discarded the
bag-of-characters and the bag-of-words kernels. Experimental evaluation done during this thesis
(see Chapters 5 and 6) also showed that the k-spectrum kernel was not successful at finding an
acceptable clustering, a task where the blended spectrum kernel had a better performance.

A characteristic of the blended spectrum kernel is that it takes into account all the k-spectrum
kernels below a certain given k (the name blended reflects the fact that is a mix of other kernels).
Hence, the smaller the value, the cheaper the computation gets.

On the contrary, all the proposed kernels in this thesis take into account the values above the
cut weight. For them, the smaller the cut weight value, the more expensive the computation
gets.

4.2 Classes and Alphabets
In order to test the viability of our approach, we have created a synthetic set of strings, which
can be divided in two broad categories:

• Primary Classes (A,B and C): Primary classes are characterized by having their own
alphabet. None of the elements of an alphabet are present in the others. For simplification
purposes, the alphabets of the primary classes do not have more than seven elements.
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• Mixed Class (X): The alphabet for class X is given by the union of all alphabets. The idea
behind the use of a mixed class is to see how this class is placed in a data visualization
analysis with respect to the primary ones.

The expectation is to see the four classes clearly separated, with the mixed one in the middle.
All the alphabets are listed in Table 4.1.

4.3 Classes and Strings
Each primary class contains four strings (see Tables 4.2, 4.3 and 4.4). Two of the strings are
pure, which means they are compound only by symbols of the class alphabet. The other two
are impure, which means they present elements from other alphabets; in any case, the external
part represents no more than a quarter of the string. The idea behind the usage of impure
strings is to see how they are located with respect to the pure ones.

The mixed class contains only two examples (see Table 4.5). The notion of pure and impure
strings does not apply for this class.

4.4 Experiment Configuration
For the sake of simplicity, the following rules are applied:

• All strings have the same size (27 tokens).

• Each token (symbol) has an implicit weight of 1, so the weight of each string is always
27.

• As the tokens are single characters, the enclosing symbols [ and ] are omitted.
The three proposed kernels are applied over the 14 strings using a cut weight from 1 to

27; the idea is to see how the selection of the cut weight affects the formation of the clusters.
The obtained kernel matrices are analyzed using Kernel PCA [SSM97]; the dimensionality
reduction of this technique allows the detection of linearly separable clusters. For the sake of
visualization, the first two principal components are used to plot the data items position, with
the first component as the horizontal axis and the second component as the vertical axis.

4.5 Results
In this section we discuss the observed patterns and their relationship with the cut weight
selection. We show that, although all kernels present two patterns where the separation of
classes is clear, the proposed kernels are more sensible to the selection of the cut weight than
the baseline kernel.

4.5.1 Observed Patterns
The three proposed kernels show a similar behavior, totally different to the baseline algorithm.
For this reason, we have only included the figures of one kernel, the kast spectrum kernel. A
different behavior from the baseline kernel is expected, as the matching strategy used by both
classes of algorithms is different.
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A alphabet a,b,c,d,e,f,g
B alphabet 1,2,3,4,5
C alphabet s,t,u,v,x,y,z
X alphabet a,b,c,d,e,f,g,1,2,3,4,5,s,t,u,v,x,y,z

Table 4.1: Alphabets for Primary and Mixed Classes
Pure Strings

A0 abcdefgacdefgabcdefgabcdefg
A1 cccdefgacdefgabcdefgabcdecc

Impure Strings
A2 (contains elements of B) cccdefgacd12345cdefgabcdecc
A3 (contains elements of C) cccdefgacdefgstuvxzgabcdecc

Table 4.2: Strings for Primary Class A
Pure Strings

B0 123451234512345123451234512
B1 223311123451234512345145231

Impure Strings
B2 (contains elements of A) 223abcde3451234512345145231
B3 (contains elements of C) 22331112345123451234stuvx31

Table 4.3: Strings for Primary Class B
Pure Strings

C0 stuvxzystuvxzystuvxzystuvxz
C1 stuvxzystuvxzystuvxzytuvzxy

Impure Strings
C2 (contains elements of B) stuvxzystuvxzystuvxzyt12345
C3 (contains elements of A) abcdezystuvxzystuvxzytuvzxy

Table 4.4: Strings for Primary Class C
X0 1234stuvxabcdstuvx123abcdxy
X1 1as34stuvxabcdstuvx122xev4f

Table 4.5: Strings for Mixed Class X

Pattern 1: Clear inter-cluster separation and meaningful intra-cluster distances
Seen on the following kernels: All (kastx kernel family and baseline kernel).

Details: For small values of the cut weight, all kernels (1 to 3 for the kast spectrum kernel,
and 1 to 5 for the rest, including the baseline kernel), pure strings tend to be closer to each
other than to the impure strings (see Figures 4.1 and 4.2). Recall that the proposed kernels
have a similar clustering scheme, hence, we have included the figures of one kernel only. Notice
that all classes are clearly separated and the mixed class (class X) is always in the middle. The
impure strings tend to be located to the side of the class where the external symbols belong.
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The same pattern is seen again with the blended spectrum kernel at higher cut weight levels
(15 to 27).

Figure 4.1: Pattern 1 Observed in Kernel PCA for Blended Spectrum Kernel in Synthetic
Strings (cut weight = 5).

Figure 4.2: Pattern 1 Observed in Kernel PCA for Kast Spectrum Kernel in Synthetic
Strings (cut weight = 3).
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Pattern 2: Clear inter-cluster separation
Seen on the following kernels: All (kastx kernel family and baseline kernel).

Details: Pure strings are preserved on their respective groups for cut weights from 1 till 14
(see Figures 4.3 and 4.4), while some impure strings tend to join the mixed class. The intra
cluster separation between pure and impure strings no longer holds for all classes. However,
the mixed class is still located in the middle.

Figure 4.3: Pattern 2 Observed in Kernel PCA for Blended Spectrum Kernel in Synthetic
Strings (cut weight = 14).

Figure 4.4: Pattern 2 Observed in Kernel PCA for Kast Spectrum Kernel in Synthetic
Strings (cut weight = 14).
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Pattern 3: One class tended to merge the mixed class
Seen on the following kernels: kastx kernel family only.
Details: For cut weights from 15 till 21, the pure strings of one of the primary classes are

no longer in a separate cluster, and tend to join the mixed class (see Figure 4.5).

Figure 4.5: Pattern 3 in KPCA for Kast Spectrum Kernel (cut weight = 21).

Pattern 4: Two classes tended to merge the mixed class
Seen on the following kernels: kastx kernel family only.
Details: With cut weights of 22 and 23, only the pure strings of one class are separated

from the mixed cluster (see Figure 4.6).

Figure 4.6: Pattern 4 in KPCA for Kast Spectrum Kernel (cut weight = 23).
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Pattern 5: No pattern
Seen on the following kernels: kastx kernel family only.

Details: For cut weights of 24 till the size of the strings (27), no class patterns are detected.

4.5.2 Remarks
From a certain cut weight close to half the size of the strings, the proposed kernels show a
different behavior to the baseline kernel. The baseline kernel presents only the Pattern 1 and 2,
which are the ones showing the clearest cluster separation. Because this kernel adds up the
spectrums below the cut weight, it stabilizes once the maximum substring size is reached. On
the contrary, the proposed kernels take into account substrings whose weight is above the cut
weight; hence, if the cut weight is greater than the largest matching substring size, no patterns
will be detected.

The last observation clearly gives a hint: in order to detect meaningful patterns, the cut
weight should be small enough to cover at least the size of all the meaningful largest matching
substrings among all observations. In the given example, half the size of the strings is the
decision boundary.

The size of the strings in this example is too small to show differences between the proposed
kernels but have helped to prove the stability of the approach. To see major differences among
the kernels, the strings have to be longer, as it will be seen in the following chapters.

4.6 Complexity Considerations
All developed kernels present the same general code structure (see Listing 4.1), varying only in
the most nested loops, where the weights are summarized. In order to simplify this analysis,
let us assume the following:

• The strings have the same size.

• All tokens can be represented by a single character, which makes unnecessary the
consideration of a token separator.

• The weight of each token is 1, so the number of tokens corresponds to both the weight
and the size of the string, and its is represented by n.

4.6.1 Worse Case Complexity
In order to consider the worse case scenario, the cut weight is set to 1 and the strings to be
compared, namely, A and B, have no substrings in common. Recall that in our kernels, the cut
weight acts as a lower limit, and all the weights above it must be considered. The algorithm is
analyzed from the inner loops to the outer loops.
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Inner Loops
Loop 3 starts at line 20 and loop 4 at line 29. A reference string is searched in B using the
find algorithm of C++, which has, in this case a worse complexity order of O(n2). If a match
is found, the corresponded match is marked down in a separate copy, which is important to
keep track of the matching progress. Same is done in string A. This step is necessary to ensure
that all copies of the reference string in A are also marked down. Due to the fact that the two
inner loop are independent from each other, the combined complexity of them corresponds to
the summation of their complexities:O(n2) + O(n2) = O(n2).

Outer Loops
Loop 1 starts at line 6 and loop 2 at line 16. Starting from the largest substring of A, each
substring of A is extracted as a reference substring. The search starts always from left to
right. This operation is performed by two external loops which have a computational cost of
n(n− 1)/2, as it represents a classical combinatorial loop. The complexity order until this two
loops is: O(n2).

Total Complexity
Due to the fact that the inner loops are nested inside the outer loops, the overall complexity is
given by the multiplication of their values: O(n2)×O(n2) = O(n4). In this case, the weight of
the substring corresponds to its length. However, when the weights can not be guessed, the
algorithm precises a third loop nested inside the inner loops that collects the weights of each
token, with linear complexity. This would increase the complexity of the inner loops to O(n3),
hence increasing the complexity of the whole algorithm to O(n6).

4.6.2 Best Case Complexity
The two conditions after the first loop permit to avoid further execution by checking in the
marked down strings how many tokens are still available for comparison. If the number of
available tokens is not sufficient, the loop skips to a lower number of tokens. The best case
scenario occurs when both strings are equal. In this case, there are no more tokens left, which
is control by the second condition (line 12), which interrupts the execution of the loop. This
means that the overall complexity of the algorithm is given only by the find function of C++,
which has, in the best case, the complexity order of: Ω(n), when both strings are equal.

4.6.3 Baseline Algorithm Complexity
In order to perform the experimentation, we developed our own implementation of the baseline
algorithm, using a similar code structure for the kastx kernel family (see Listing 4.1). The
only difference is that, for the baseline algorithm, the worse case scenario occurs when the cut
weight is set to the maximum weight, in this case, the length of the string, opposite to our
kernels. Similarly, the best case happens when the cut weight is set to 1. This happens because,
in the baseline algorithm, the cut weight acts as the upper limit, and all the weights below
must be taken into consideration.
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1 f loat ∗ k e r n e l C a l c u l a t i o n ( s t r i n g StringA , s t r i n g StringB , s t r i n g MarkedA , s t r i n g
↪→ MarkedB , int n)

2 {
3 f loat ∗ f e a t u re V e c to r ;
4 int remainingTokensA = n ;
5 int remainingTokensB = n ;
6 for ( int i = n ; i > 0 ; i−−) // LOOP 1
7 {
8 i f ( remainingTokensA < i | | remainingTokensB < i )
9 {

10 continue ;
11 }
12 i f ( remainingTokensA == 0 | | remainingTokensB == 0 )
13 {
14 break ;
15 }
16 for ( int j = 0 ; j <= n−i ; j++) // LOOP 2
17 {
18 s t r i n g subStr ing = StringA . subs t r ( j , i ) ;
19 int p = 0 ;
20 while ( ( p = StringB . f i n d ( subStr ing , p) ) != s t r i n g : : npos ) // LOOP 3
21 {
22 i f ( MarkedStringB . subs t r (p , i ) == subStr ing )
23 {
24 MarkedStringB . r e p l a c e (p , i , i , '_ ' ) ;
25 remainingTokensB = remainingTokensB − i ;
26 }
27 }
28 int p = j + i ;
29 while ( ( p = StringA . f i n d ( subStr ing , p) ) != s t r i n g : : npos ) // LOOP 4
30 {
31 i f ( MarkedStringA . subs t r (p , i ) == subStr ing )
32 {
33 MarkedStringA . r e p l a c e (p , i , i , '_ ' ) ;
34 remainingTokensA = remainingTokensA − i ;
35 }
36 }
37 // Feature v e c t o r c a l c u l a t i o n
38 . . .
39 }
40 }
41 return f e a t u re V e c to r ;
42 }

Listing 4.1: C++ Code Segment Scheme of the Kernel Calculation.

Summary
We have shown how the proposed kernels correctly separate a group of synthetic strings into
the expected classes they belong, and how they perform with respect to a baseline algorithm.
Additionally, we have discussed their complexity. Next chapter is dedicated to present the results
of the application of these kernels in a problem of the real world, namely, the detection of
patterns in I/O traces. There, the kernels show a different behavior among each other.
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5 Comparison of I/O Traces
A preliminary experimentation stage with I/O traces was the first application of the kastx
kernel family in a real domain. This phase helped to refine the kernel design and paved the way
for the main highlight of this work, which is the comparison of intermediate representations (see
Section 6). In that sense, in this chapter, we present those initial findings. Understanding I/O
for data-intense applications is the foundation for the optimization of these applications. The
classification of the applications according to the expressed I/O access pattern eases the analysis.
The three kernels have been compared against the blended spectrum kernel, a kernel found
in the literature that is noted to be good to find similarities among strings. The similarity
matrices have been analyzed using two well-known clustering algorithms: Hierarchical clustering
and kernel principal component analysis. Section 5.1 is dedicated to detail the experiment
configuration. Section 5.2 shows the results obtained with the baseline kernel. Sections 5.3, 5.4
and 5.5 present the results for the kernels proposed here.

5.1 Experiment Configuration
It is on the interest of this thesis to study the suitability of the proposed strategy to find
similarities among four distinct classes of I/O access patterns, which have been obtained from
two different parallel I/O benchmarks:

• The IOR HPC Benchmark: It is used for benchmarking parallel file systems that use
POSIX, MPIIO, or HDF5 interfaces [LMM12].

• The FLASH I/O Benchmark: It measures the performance of the FLASH parallel
HDF 5 output. FLASH is scientific tool for modeling astrophysical thermonuclear
flashes [Fry+00].

5.1.1 Preprocessing
The I/O traces are organized in the following classes of storage access:

• Class A (Flash I/O): 10 traces. Characterized for containing contiguous write operations
with diverse byte values that are not present in the other classes.

• Class B (Random POSIX I/O): 4 traces. These ones present lseek operations not seen
elsewhere.

• Classes C and D (Sequential I/O): 4 traces each. 8 in total. Classes C and D do
not have any remarkable difference among them, a fact that has been confirmed by
experimentation. However, they come from different runs, that is why we present them
here separately.
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Strings Representation Using Byte Information Ignoring Byte Information
Number of tokens 32 – 111 32 – 45
Weight range 1473 – 8386 1460 – 8387

Table 5.1: Ranges for both String Representations for I/O traces (the byte information
corresponds to the number of bytes involved in the I/O operations).

The traces have a size that ranges between 1504 and 16587 lines. For each trace, 4 additional
synthetic copies have been created. Such copies introduce small mutations on the pattern; the
idea behind these mutations is the need to create access patterns that are, in theory, closer to
a determined example than to the rest of the category members. The creation of synthetic I/O
traces has been used before to facilitate the analysis of the behavior of programs whose source
code cannot be accessed, mainly due to copyright restrictions [Beh+14]. This results in a total
of 110 examples for our similarity study.

5.1.2 String Conversion and Comparison
As seen previously (see Chapter 3), it is necessary to filter the operations that are not important
for the formation of patterns. Deleting the unnecessary information reduces the noise and
facilitates the detection of similarities. After this filtering step, each trace is converted into
the two proposed string representations; Table 5.1 details the respective ranges in number of
tokens and weights for each of them. The three kernels here proposed have been applied to the
set of strings, as well as the blended spectrum kernel. The selected cut weight values are the
following: {21, 22, ..., 2n} : n = 10. If the resulting matrices present negative eigenvalues, those
values are replaced by zeros and the matrices are rebuilt. After that, all the similarity matrices
are analyzed with both Kernel Principal Component Analysis (Kernel PCA) and Hierarchical
Clustering (HC), the latest using the simple linkage method.

5.2 Baseline Kernel: Blended Spectrum Kernel
Hereby we present first the results of the baseline kernel, as this facilitates the comparison
with the proposed kernels. The results of the experiment have shown that the baseline kernel
presents a bad performance at separating classes, as it has been able to identify only two groups,
one conformed by all the examples in class A, and another one conformed by all the examples
of the other three classes. In other words, this kernel has detected only those patterns related
to the Flash I/O benchmark, regardless of the string representation involved. However, as it
is explained next, those strings that keep the byte information from the I/O traces are less
sensitive to the changes of the cut weight than the ones that ignore it. Let us review each case
in detail.

5.2.1 Clustering with Strings Using Byte Information
When the experimentation involves strings that keep the byte information from the I/O
traces, the variation in the cut weight value does not affect significantly the clustering scheme.
Unfortunately, the obtained clustering is not good enough to separate all the classes. For
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example, with Hierarchical Clustering, two clusters are conformed, one corresponding to class
A (Flash I/O), while the other one gathers all the remaining 3 classes (B-C-D) (see Figure 5.1).
The results are even worse with Kernel PCA: although class A is still separated from the rest,
it is shown divided into two clusters (see Figure 5.2). This shows that, for the baseline kernel,
the internal differences of the members of this class have the same strength as the differences
among classes, which does not correspond with the expected behavior.

Figure 5.1: Hierarchical Clustering for Blended Spectrum Kernel in I/O Traces using
Byte Information (Cut Weight = 2).

Figure 5.2: Kernel PCA for Blended Spectrum Kernel in I/O Traces using Byte Informa-
tion (Cut Weight = 2).
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5.2.2 Clustering With Strings Ignoring Byte Information
When the experimentation involves strings that ignore the byte information from the I/O traces,
and additionally, small cut weight values are used, the results of both clustering techniques are
not satisfactory, because the members of all classes appear mixed together, and no clear cluster
formation is seen. In order to achieve at least the separation of one class, higher cut weight
values have to be used, e.g. 512 (see Figure 5.3). Only then the results are similar to those
obtained by the other category of strings. Still, class A (Flash I/O) keeps being divided into
two clusters with Kernel PCA (see Figure 5.4).

Figure 5.3: Hierarchical Clustering for Blended Spectrum Kernel in I/O Traces ignoring
Byte Information (Cut Weight = 512).

Figure 5.4: Kernel PCA for Blended Spectrum Kernel in I/O Traces ignoring Byte
Information (Cut Weight = 512).
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5.2.3 Remarks
The baseline kernel presents the following particularities: On the one hand, small cut weight
values suffice for comparing strings using the byte information, which maintains the comparison
cheap and the parametrization efforts low. On the other hand, strings lacking the byte
information are shorter, hence, their comparison is cheaper. But they require higher cut
weight values to work properly, which incurs in higher computational costs and additional
parametrization efforts. In any case, only the patterns coming from the Flash I/O benchmark
have been detected by this kernel.

5.3 Kast Spectrum Kernel
The first kernel to be tested is the kast spectrum kernel. This kernel has shown a better
performance than the baseline kernel, as it is able to separate 3 clusters, while the baseline
kernel have identified only 2. Two of the clusters correspond to two classes, namely, the Flash
I/O (class A) and the POSIX I/O (class B). The third cluster gathers together Sequential
Access I/O (classes C and D), which corresponds to the expectation, as examples of these
classes are very similar among each other. Similar as with the baseline kernel, the use of strings
that keep the byte information are not affected significantly by the selection of the cut weight,
while the other category of strings work only if the cut weight is high.

5.3.1 Clustering with Strings Using Byte Information
The application of the first of the proposed kernel functions (kast spectrum kernel) over strings
that preserve the byte information from the I/O operations, achieves the best results when
a small cut weight is used, e.g. 2. The fact that small cut weights are sufficient to achieve a
meaningful clustering, eases the parametrization of the comparison process. It is remarkable
that both learning algorithms clearly separate the same 3 clusters (see Figures 5.5 and 5.6):

• Class A (Flash I/O).

• Class B (POSIX I/O).

• Classes C and D (Sequential I/O).

The kernel captures the similarity between classes C and D, as they share the same pattern.
It is important to notice that there are no misplaced examples on any of the groups in the
HC analysis. For higher cut weight values, e.g. 512, the same clusters are identified, with the
difference that the intra cluster distances in the HC are smaller. Notice also that with Kernel
PCA, Flash I/O samples are divided into two parts; however, the distance between these two
parts is negligible in comparison with the inter-cluster distances. This shows that the new
kernel is more capable to generalize the I/O patterns than the baseline kernel.
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Figure 5.5: Hierarchical Clustering for Kast Spectrum Kernel in I/O Traces using Byte
Information (Cut Weight = 2).

Figure 5.6: Kernel PCA for Kast Spectrum Kernel in I/O Traces using Byte Information
(Cut Weight = 2).
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5.3.2 Clustering with Strings Ignoring Byte Information
In the case of the strings that ignore the byte information, such clear separation of clusters is
not achieved when using small cut weights. In order to obtain the same three clustering groups
identified using the other string category, the weight value has to be increased considerably, e.g.
512 (see Figures 5.7 and 5.8).

Figure 5.7: Hierarchical Clustering for Kast Spectrum Kernel in I/O Traces ignoring
Byte Information (Cut Weight = 512).

Figure 5.8: Kernel PCA for Kast Spectrum Kernel in I/O Traces ignoring Byte Informa-
tion (Cut Weight = 512).
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5.3.3 Remarks
On the one hand, the usage of higher cut weights is appropriate for finding general categories,
with lower computational costs. On the other hand, the usage of lower cut weights is appropriate
for discriminating better among examples, with higher computational costs. However, strings
lacking the byte information yield good results with higher cut weight values only.

5.4 Kast1 Spectrum Kernel
The second of the developed kernels is the kast1 spectrum kernel. Experimentation shows that
this kernel also performs better than the baseline kernel, due to the fact that it detects more
patterns: i) Flash I/O, ii) POSIX I/O, and iii) Sequential I/O. In fact, it also outperforms
the kast spectrum kernel, as with both categories of strings, the obtained clustering does not
change significantly when the cut weight is modified. Recall that this kernel was designed as
an improved version of the kast spectrum kernel, that reduces the noise introduced by small
matches.

5.4.1 Clustering with Strings Using Byte Information
When this kernel is applied over strings that keep the byte information, the clustering results
are similar to those ones from the previous kernel for small cut weight values, e.g. 2 (see Figures
5.9 and 5.10), as well as for higher values. This means that class A and class B are presented
separated on their respective clusters, while classes C and D are mixed together in another
cluster.

Figure 5.9: Hierarchical Clustering for Kast1 Spectrum Kernel in I/O Traces using Byte
Information (Cut Weight = 2).
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Figure 5.10: Kernel PCA for Kast1 Spectrum Kernel in I/O Traces using Byte Informa-
tion (Cut Weight = 2).

5.4.2 Clustering with Strings Ignoring Byte Information
An advantage of this kernel, in contrast with the previous kernel, is that, when it is applied
over strings that ignore the byte information, it performs also well with small cut weight values,
e.g. 2 (see Figures 5.11 and 5.12). In other words, this kernel is less sensitive to the selection of
the cut weight when this category of strings is used.

Figure 5.11: Hierarchical Clustering for Kast1 Spectrum Kernel in I/O Traces ignoring
Byte Information (Cut Weight = 2).
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Figure 5.12: Kernel PCA for Kast1 Spectrum Kernel in I/O Traces ignoring Byte Infor-
mation (Cut Weight = 2).

5.4.3 Remarks
Regardless of the cut weight or the string category used, Kernel PCA divides class A into
two parts, but the distance among those parts is not comparable to distance among clusters.
Recall that, with the baseline kernel, this does not hold. The clustering obtained with the
kast1 spectrum kernel reflects more the nature of the I/O traces than the clustering thrown by
the baseline kernel. Moreover, both string categories are less sensitive to the selection of the
cut weight, which supposes also an improvement with respect to the kast spectrum kernel.

5.5 Kast2 Spectrum Kernel
The last kernel that has been tested is the kast2 spectrum kernel. The results are similar to
the kast1 spectrum kernel, as it outperforms both the baseline kernel and the kast spectrum
kernel. Here too, the selection of the cut weight does not have a significant effect on the
clustering. However, the intra-cluster distances do not show remarkable changes with both
small and high cut weight values. This stability is an advantage with respect to all other kernels
analyzed. Recall that this kernel changes the way that weights are summarized and introduces
a penalization value. This way it is possible to reflect more naturally the matching between
two strings.

5.5.1 Clustering with Strings Using Byte Information
In contrast with the previous kernels, when strings that keep the byte information are utilized,
the usage of small or high cut weight values does not show a significant difference in the
inter-cluster and intra cluster distances. The usual clusters are found: i) Flash I/O, ii) POSIX
I/O, and iii) Sequential I/O. Small cut weight values present a compact cluster formation
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(see Figures 5.13 and 5.14) High cut weight values with HC (see Figure 5.15) yield a similar
scheme, while with Kernel PCA (see Figure 5.16), Class A is divided into two parts, but the
distance among those two parts is negligible compared to the inter-cluster distances. This is a
big advantage in comparison to the baseline kernel.

Figure 5.13: Hierarchical Clustering for Kast2 Spectrum Kernel in I/O Traces using Byte
Information (Cut Weight = 2).

Figure 5.14: Kernel PCA for Kast2 Spectrum Kernel using byte information (Cut Weight
= 2).
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Figure 5.15: Hierarchical Clustering for Kast2 Spectrum Kernel in I/O Traces using Byte
Information (Cut Weight = 512).

Figure 5.16: Kernel PCA for Kast2 Spectrum Kernel in I/O Traces using Byte Informa-
tion (Cut Weight = 512).
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5.5.2 Clustering with Strings Ignoring Byte Information
In the case of the strings that ignore the byte information, such clear separation of clusters
is not so easily achieved when using small cut weights. However, if the cut weight value is
increased, e.g. 512, the usual 3 groups are found (see Figures 5.17 and 5.18). The fact that the
cut weight value infers on the clustering makes the parametrization a key point when using
this string category.

Figure 5.17: Hierarchical Clustering for Kast2 Spectrum Kernel in I/O Traces ignoring
Byte Information (Cut Weight = 512).

Figure 5.18: Kernel PCA for Kast2 Spectrum Kernel in I/O Traces ignoring Byte Infor-
mation (Cut Weight = 512).
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5.5.3 Remarks
It has been concluded that the usage of the kast2 spectrum kernel with strings that preserve
the byte information of the I/O traces, is the best option to detect the patterns in the given
examples, due to the fact that both inter-cluster and intra-cluster are not significantly affected
by the selection of the cut weight value. This reduces the parametrization efforts from the user.

Summary
This chapter was dedicated to show the experimental results of the comparison of strings coming
from I/O traces. The family of kastx kernels performed better than the baseline kernel for
the clustering of a given set of traces, as it was able to identified three different patterns, one
more than the baseline kernel. From this family of kernels, the kast2 spectrum kernel was
the one showing the best stability, as the selection of the cut weight value did not affect either
the cluster formation nor the intra-cluster distances. The three kernels presented here were
able to find clusters that reflected the similarity on the domain of I/O patterns. However, I/O
pattern recognition is not the major domain where these kernels have been tested. Next chapter
shows the results of a similar experiment with the Intermediate Representations of the LLVM
Compiler.
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6 Comparison of Intermediate
Representations

In this chapter, we extend the application of the family of kastx kernels to the analysis of
the Intermediate Representations of a popular compiler. The experiment has been designed to
see how well these kernels perform at separating four different classes of functions written in C
language, using separately their Clang ASTs and LLVM IRs as the source of information. In
Section 6.1, we explain the configuration of the experiment. Section 6.2 is dedicated to describe
the findings with the baseline kernel, namely the blended spectrum kernel. Sections 6.3, 6.4
and 6.5 are dedicated to each one of the string kernels which are the main contribution of this
thesis.

6.1 Experiment Configuration
In the previous chapter, we showed how the family of kastx kernels have outperformed
the baseline kernel on the problem of detecting patterns on a set of I/O traces. The major
domain where this new family of kernels has been tested is the comparison of the intermediate
representations of a compiler. For doing that, we have created a collection of code pieces that
manifest certain relations among each other. From a broad perspective, the collection has
been organized in four classes of functions. From a closer perspective, each code piece has
five different implementations (clones). The idea behind these two approaches is to identify
how well the analyzed kernels perform at separating general classes and what is the role of the
clone types in the conformation of them. For this experiment, 20 functions have been written
manually. They are divided in four broad classes:

• Class A: Matching Functions. They are string kernels of the literature, but the name
was changed to avoid confusion when referring to the kernels used in this study. These
functions can be divided in two groups:

– Group I: Size-based Matching. These functions search for matching substrings of a
given size, regardless of the presence of separators and words.

∗ K-spectrum: it tries to find matching substrings of size k.
∗ Blended spectrum: it searches for matching substrings of size k or less.
∗ Bag-of-characters: it aims to find matching substrings of size 1.

– Group II: Delimiter-based Matching. The matching is restricted to substrings
enclosed between delimiters, regardless of the size.

∗ bag-of-words functions: the delimiter can be a blank space.
∗ bag-of-sentences functions: it is similar to the latter but with two delimiters,

one for the opening, one for the closing.
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• Class B: Sort Functions. As the name suggests it, they are a popular set of functions
used for sorting numbers:

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

• Class C: 3D Stencils. Stencils are operations performed on a structured grid, where
the value of a cell is calculated using the values of the surrounding cells. In the stencils
here used, the initial value of the cell itself is always taken into account and the selected
operation is simply the summation of all values.

– Compact stencil: Compact stencils take into account the values all the neighboring
cells.

– Side stencil: this one only takes into account neighboring cells sharing the same
position in two axes.

– Edge stencil: this stencil takes into account neighboring cells sharing the same
position in only one axis.

– Vertex stencil: it only takes into account neighboring cells on a diagonal position.
– Non-compact stencil 1 additional layer: Non-compact stencils go a few layers further

the neighboring cells.

• Class D: 2D Stencils. Similar to the previous class, with the number of dimension
reduced by one. Obviously, there is no room for a Side stencil.

– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 additional layer.
– Non-compact stencil 2 additional layers.

It is also the interest of this thesis to study the structure of clone types inside each function
class; for that reason, each of them has been implemented in five different variants with the
same functionality:

• Original version: written from scratch.

• Type-1 Clone: It is created automatically from the original version. It presents changes
in the number of spaces, break lines and comments.

• Type-2 Clone: It is also generated automatically from the original version. It shows
variable renaming and changes in data types.

• Type-3 Clone: In order to create it, the Type-2 Clone is manually restructured in some
lines of code (insertions, deletions and modifications) without affecting the result.
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• Type-4 Clone: It is manually created and is a different implementation that delivers the
same result.

This results then in a set of 100 examples for the study, whose size ranges from 32 to 124
lines of code1. We have leveraged the Clang AST of each code sample and converted it into
string. Same has been done with the LLVM IR. Several similarity matrices have been obtained
by running the baseline kernel function over those strings. The same has been done with
the kernel functions proposed on this work. We have tested the following cut weight range:
{20, 22, ..., 2n} for n = 9. Note that when the computed matrices present negative eigenvalues,
these eigenvalues have been replaced by zeros and the matrices have been recalculated using
the new eigenvalues. All the similarity matrices have been analyzed with both Kernel Principal
Component Analysis (Kernel PCA) and Hierarchical Clustering (HC), the latter using the
simple linkage method.

6.2 Baseline Kernel: Blended Spectrum Kernel
We start with the analysis of the blended spectrum kernel, whose results are the basis for the
comparison with the family of kastx kernels. For the baseline kernel, a basic scheme of clusters
has been achieved: i) matching functions, ii) sort functions and iii) stencils. The experiment
also shows clearly the following ranking in distances for clone types with respect to the original
version: i) Type-1, ii) Type-2, iii) Type-3 and iv) Type-4 clones. Type-1 clones are almost
overlapped with the original versions. This ranking reflects the theoretical definition of clone
types. However, Type-4 clones have the tendency to break the class clustering. Let us see how
is the clustering for each intermediate representation.

6.2.1 Clustering with Clang Abstract Syntax Trees
When the baseline kernel is used in conjunction with the Clang ASTs, this kernel shows only
a good performance with the hierarchical clustering (HC) technique, as Kernel PCA fails to
create meaningful clusters. This behavior is seen not only in the broad class separation but
also in the clone type separation.

Clustering by Function Class
The analysis of the complete collection of examples shows that the best results with this kernel
are obtained when using a cut weight of 16. HC separates the examples in 3 clusters (see
Figure 6.1): i) matching functions, ii) sort functions and iii) stencils. However, three code
pieces (Type-4 clones of sort functions a.k.a class B), are misplaced in the cluster of matching
functions (class A). Unfortunately, Kernel PCA presents an unclear clustering, with class A
being the only one separated from the rest.

1Available under https://git.wr.informatik.uni-hamburg.de/raul.torres/kast_test_functions.
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Figure 6.1: Hierarchical Clustering for Blended Spectrum Kernel using ASTs (Cut Weight
= 16).

Clustering by Clone Type
Let us see now the clustering inside each function class and how clone types are organized
around the original version. With Clang ASTs, it is possible to detect patterns inside all
function classes.

Class A (Matching Functions): HC and Kernel PCA show a similar cluster formation
inside class A (see Figures 6.2 and 6.3). Notice that group I (size-based matching functions)
and Group II (delimiter-based matching functions) are clearly separated. For all functions,
Type-1 and Type-2 clones are found very close to its corresponding original version, conforming
a small cluster, while Type-3 and Type-4 clones are located at a larger distance from it. It is
noticeable that there is not a clear tendency of clones of the same type to conform clusters.
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Figure 6.2: Hierarchical Clustering for Blended Spectrum Kernel using ASTs of Matching
Functions (Cut Weight = 16).

Figure 6.3: KPCA for Blended Spectrum Kernel using ASTs of Matching Functions (Cut
Weight = 16).

Class B (Sort Functions): With this class, only HC shows conclusive results (see Figure
6.4). Merge sort and heap sort are separated completely in single branches. Additionally, the
distance ranking to the original version is the same as in the previous class. In this class also,
clones do not tend to conform clusters.
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Figure 6.4: Hierarchical Clustering for Blended Spectrum Kernel using ASTs of Sort
Functions (Cut Weight = 16).

Class C (3D Stencils): HC and Kernel PCA show a similar behavior at clustering class C
(see Figures 6.5 and 6.6). The clustering, however, shows a different behavior to the previous
classes, as clones of the same type tend to be grouped together. In comparison with the
previous classes, the original functions of this class are more similar among each other; due
to this fact, they tend to conform a cluster. Both clustering algorithms conglomerate all the
original functions and Type-1 clones in a single cluster. Close to that first cluster, another
one is conformed by all Type-2 clones. The most distanced cluster is conformed by all Type-4
clones, while Type-3 clones fail to be clustered altogether.

Figure 6.5: Hierarchical Clustering for Blended Spectrum Kernel using ASTs of 3D
Stencils (Cut Weight = 16).
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Figure 6.6: KPCA for Blended Spectrum Kernel using ASTs of 3D Stencils (Cut Weight
= 16).

Class D (2D Stencils): With this class, only HC shows conclusive results (see Figure 6.7),
with a similar behavior presented by class C (3D stencils).

Figure 6.7: Hierarchical Clustering for Blended Spectrum Kernel using ASTs of 2D
Stencils (Cut Weight = 16).

The results of applying the baseline kernel to Clang ASTs have been presented. The following
section details the results obtained with the LLVM intermediate representations.

6.2.2 Clustering with LLVM Intermediate Representations
Let us change now the intermediate representation. When the baseline kernel is used in
conjunctions with LLVM IRs instead, the results of hierarchical clustering and Kernel PCA are
very similar. Let us see that in detail.
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Clustering by Function Class
In the broad test, the best clustering is achieved when using a cut weight of 64 (see Figures 6.8
and 6.9). In comparison with the Clang ASTs, LLVM IRs allow a partial distinction between
3D and 2D stencils, hence improving the clustering results. However, Type-4 clones keep being
the most differentiated structures, showing a tendency to create clusters that break the class
separation.

Figure 6.8: Hierarchical Clustering for Blended Spectrum Kernel using IRs (Cut Weight
= 64).

Figure 6.9: KPCA for Blended Spectrum Kernel using IRs (Cut Weight = 64).
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Clustering by Clone Type
Let us look inside the separation inside each function class. With LLVM IRs, the detection of
meaningful patterns inside classes is not always possible.

Class A (Matching Functions): The clustering results are not conclusive. Both Kernel
PCA and HC show a separation between group I and group II. However, group I do not conform
a compact cluster and all its members seem to be sparse.

Class B (Sort Functions): In this class, the clustering results are not conclusive either.
The only clear pattern inside this group is the formation of a cluster with all Type-4 clones.

Class C (3D Stencils): Both clustering algorithms yield a similar pattern detection
performance in class C. The patterns favor the formation of clusters of clone types rather than
clusters of functions, same like when using Clang ASTs. However, with Clang ASTs, Type-3
clones do not present a compact formation. This changed with LLVM IRs, as with HC they do
conform a single branch (see Figure 6.10), and with Kernel PCA they present a solid cluster
formation together with Type-2 clones (see Figure 6.11).

Figure 6.10: Hierarchical Clustering for Blended Spectrum Kernel using IRs of 3D Stencils
(Cut Weight = 64).
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Figure 6.11: KPCA for Blended Spectrum Kernel using IRs of 3D Stencils (Cut Weight
= 64).

Class D (2D Stencils): With this class, the results are similar to those obtained with 3D
stencils (see Figures 6.12 and 6.13). The major difference is that Type-3 clones are clustered
all together and separated from Type-2 clones.

Figure 6.12: Hierarchical Clustering for Blended Spectrum Kernel using IRs of 2D Stencils
(Cut Weight = 64).
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Figure 6.13: KPCA for Blended Spectrum Kernel using IRs of 2D Stencils (Cut Weight
= 64).

6.2.3 Remarks
For the baseline kernel, the use of LLVM IRs yields a clearer class separation than the use of
Clang ASTs. However, for the detection of patterns inside classes, Clang ASTs are more effective.
Experimentation also shows that Hierarchical Clustering is more effective on detecting patterns
than Kernel PCA. This kernel is sensitive to the strong differences in the implementation of
Type-4 clones; this is reflected on the fact that several of these clones are found in an incorrect
class or conforming a separate cluster.

6.3 Kast Spectrum Kernel
Let us review the results with the first kernel of the kastx family: the kast spectrum kernel. The
following conclusions learned from experimentation show that there is no significant advantage
on the usage of this kernel over the baseline kernel:

• Similarities with the baseline kernel: For the kast spectrum kernel, the same basic scheme
of clusters is achieved, though hierarchical clustering is more effective on the task than
Kernel PCA.

• Differences with the baseline kernel: Contrary to the baseline kernel, the use of Clang ASTs
yields a clearer class separation than the use of LLVM IRs. However, the intra-cluster
distances are larger than those of the baseline kernel.

• Disadvantages with respect to the baseline kernel: While the kast spectrum kernel only
shows the expected ranking in distances for clone types when using Clang ASTs, the
baseline kernel shows this behavior with both representations.
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• Advantages with respect to the baseline kernel: If the kast spectrum kernel is applied
over Clang ASTs, no misplaced examples are found. In this case, the strong semantical
differences of Type-4 clones do not have a significant effect on the general clustering
scheme.

6.3.1 Clustering with Clang Abstract Syntax Trees
If the kast spectrum kernel is applied over Clang ASTs, the ranking in distances to the original
version correspond to the expectation according to the definition of clone types: Type-1 and
Type-2 clones are found almost overlapped to the original version, while Type-3 and Type-4
clones are situated at further distances.

Clustering by Function Class
In the problem of detecting general classes, only the use of Hierarchical Clustering shows that
this kernel is able to separate the usual 3 clusters without misplaced examples (see Figure
6.14). One difference with the baseline kernel is that the intra-cluster distances are larger.
Unfortunately, the results of Kernel PCA are not conclusive, as there is no clear formation of
clusters.

Figure 6.14: Hierarchical Clustering for Kast Spectrum Kernel using ASTs (Cut Weight
= 64).

Clustering by Clone Type
The analysis of each function class does not show a remarkable improvement with respect to
the baseline kernel. class A and class B, for example, do not show additional patterns.
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Class C (3D Stencils): The clustering achieved with Kernel PCA is clearer than the one
with HC. On the one hand, HC is able to separate together only Type-4 clones (see Figure 6.15).
On the other hand, Kernel PCA shows how Type-3 and Type-4 clones tend to be gathered
together with their own type (see Figure 6.16). Moreover, an additional pattern is detected:
the non-compact stencil (Function 5) is located at a larger distance from the compact stencils.

Figure 6.15: Hierarchical Clustering for Kast Spectrum Kernel using ASTs of 3D Stencils
(Cut Weight = 64).

Figure 6.16: KPCA for Kast Spectrum Kernel using ASTs of 3D Stencils (Cut Weight =
64).
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Class D (2D Stencils): Here, Type-3 and Type-4 clones create clear compact formations
with both clustering algorithms (see Figures 6.17 and 6.18). The new pattern is also detected:
the non-compact stencils (Functions 4 and 5) conform a small cluster far from the rest.

Figure 6.17: Hierarchical Clustering for Kast Spectrum Kernel using ASTs of 2D Stencils
(Cut Weight = 64).

Figure 6.18: KPCA for Kast Spectrum Kernel using ASTs of 2D Stencils (Cut Weight =
64).
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Those are the results corresponding to the analysis of Clang ASTS. The following section
presents the findings obtained with LLVM IRs.

6.3.2 Clustering with LLVM Intermediate Representations
The usage of LLVM IRs with the kast spectrum kernel presents some differences. When using
LLVM IRs, the ranking in distances to the original version do not correspond completely to the
expectation according to the definition of clone types: as expected, Type-1 clones are found
almost overlapped to the original version, while Type-4 clones are situated at further distance.
However, some Type-3 clones are located closer to their corresponding original version than
the Type-2 clones. Let us see that in detail.

Clustering by Function Class
In the problem of separating broad classes of functions, Hierarchical Clustering shows that this
kernel is able to separate the usual 3 clusters, but with misplaced examples (see Figure 6.19).
Same like with the baseline kernel, the misplaced examples are all Type-4 clones of the class B
(Sort functions). It still holds that the intra-cluster distances are larger than with the baseline
kernel. Unfortunately, Kernel PCA keeps failing at showing a good clustering in this problem.

Figure 6.19: Hierarchical Clustering for Kast Spectrum Kernel using IRs (Cut Weight =
32).

Clustering by Clone Type
In the problem of organizing functions inside a determinate class according to the clone type
they belong, there is no remarkable improvement with respect to the baseline kernel. For
matching functions (class A) and sorting functions (class B), there are no additional detected
patterns. The separation between group I and group II inside matching functions is not detected.
Only stencil functions show a meaningful clustering inside each class, but without distinction
between compact and non-compact stencils.
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Class C (3D Stencils): The clustering achieved by Kernel PCA is clearer than HC. On
the one hand, HC manages to collect all Type-2 and Type-4 clones in their respective clusters
(see Figure 6.20). On the other hand, Kernel PCA achieves the same plus the separation
of Type-3 clones (see Figure 6.21). However, these Type-3 clones are localized closer to the
original versions than Type-2 clones. Unfortunately, there are no clear signs of separation of
the non-compact stencil from the rest.

Figure 6.20: Hierarchical Clustering for Kast Spectrum Kernel using IRs of 3D Stencils
(Cut Weight = 32).

Figure 6.21: KPCA for Kast Spectrum Kernel using IRs of 3D Stencils (Cut Weight =
32).
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Class D (2D Stencils): Inside 2D stencils, clones of the same type conform clear compact
formations with Kernel PCA only. HC can only separate completely Type-4 clones (see Figure
6.22), while Kernel PCA achieves the separation for Type-2, Type-3 and Type-4 clones (see
Figure 6.23). In any case, there are no signs of separation between compact and non-compact
stencils.

Figure 6.22: Hierarchical Clustering for Kast Spectrum Kernel using IRs of 2D Stencils
(Cut Weight = 32).

Figure 6.23: KPCA for Kast Spectrum Kernel using IRs of 2D Stencils (Cut Weight =
32).
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6.3.3 Remarks
The application of the kast spectrum kernel over Clang ASTs shows a better separation of
classes of functions in the problem of general clustering, than its application over LLVM IRs.
In the particular case of the stencil classes, the separation between compact and non-compact
stencils is a new pattern not seen with the baseline kernel. However, the separation between
group I and group II inside class A (matching functions) is not achieved.

6.4 Kast1 Spectrum Kernel
In this section, the results of the analysis of the second kernel from the kastx family are
covered, namely, the kast1 spectrum kernel. For this kernel, the experiment shows that it yields
a better cluster separation than the baseline kernel:

• Similarities with the baseline kernel: For the kast1 spectrum kernel, the usual basic
scheme of clusters is achieved, with hierarchical clustering being more effective on the
task than Kernel PCA. Another common point is, that the ranking in distances for clone
types with respect to the original version correspond to the expectation according to the
theory.

• Differences with the baseline kernel: The major difference with respect to the baseline
kernel is that the intra-cluster distances are larger.

• Advantages with respect to the baseline kernel: In the fist place, with this kernel, there
are no misplaced examples. Secondly, Type-4 clones do not create clusters outside their
respective classes. Thirdly, it is important to notice that both LLVM IRs and Clang
ASTs yield similar clustering results. Fourthly, when using Clang ASTs, the original
version of a function and its corresponding Type-1 and Type-2 clones are found almost
overlapped.

Recall that this kernel was designed as an improved version of the kast spectrum kernel, that
reduces the noise introduced by small matches. The following sections detail the behavior of
this kernel with Clang ASTs and LLVM IRs respectively.

6.4.1 Clustering with Clang Abstract Syntax Trees
If the kast1 spectrum kernel is applied over Clang ASTs, original versions with their correspond-
ing Type-1 and Type-2 clones are gathered together very close to each other. This is new with
respect to all the previous kernels.

Clustering by Function Class
In the problem of detecting classes as general patterns, the best results for Hierarchical
Clustering are obtained using a cut weight of 16, showing no misplaced examples on any of the
clusters (see Figure 6.24). Unfortunately, Kernel PCA results are not conclusive, as no clear
cluster formation can be seen.
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Figure 6.24: Hierarchical Clustering for Kast1 Spectrum Kernel using ASTs (Cut Weight
= 16).

Clustering by Clone Type
When it comes to see the internal organization of each class of functions, both Kernel PCA
and HC show that the original versions and their corresponding Type-1 and Type-2 clones
conform single clusters. It is important to notice Type-1 and Type-2 clones seem to be at a
similar distance from the original version in both HC and Kernel PCA. For class A and class
B, no other significant patterns are found.

Class C (3D Stencils): HC shows three branches, one for Type-3 clones, one for Type-4
clones and one for the rest (see Figure 6.25) This findings are confirmed by the results of Kernel
PCA; with it, five different small clusters are formed that comprise each original function an
its corresponding Type-1 and Type-2 clones (see Figure 6.26). This supposes an improvement
in comparison with the baseline kernel, which could only gather the original versions with its
Type-1 clone. Additionally, Type-3 clones of all examples conform a compact cluster away from
the original versions. The same behavior is observed with Type-4 clones, which were located
further away. Unfortunately, there is not clear separation between non-compact and compact
stencils.
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Figure 6.25: Hierarchical Clustering for Kast1 Spectrum Kernel using ASTs of 3D Stencils
(Cut Weight = 16).

Figure 6.26: KPCA for Kast1 Spectrum Kernel using ASTs of 3D Stencils (Cut Weight
= 16).

Class D (2D Stencils): HC shows a similar behavior presented by 3D stencils (see Figure
6.27). However, in Kernel PCA, the edge and vertex stencils are not separated but mixed in the
same small cluster (see Figure 6.28). In this case, the non-compact stencils appear separated
from the compact stencils.
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Figure 6.27: Hierarchical Clustering for Kast1 Spectrum Kernel using ASTs of 2D Stencils
(Cut Weight = 16).

Figure 6.28: KPCA for Kast1 Spectrum Kernel using ASTs of 2D Stencils (Cut Weight
= 16).

Next section shows the results of using LLVM IRs instead of Clang ASTs.

6.4.2 Clustering with LLVM Intermediate Representations
The usage of this kernel with LLVM IRs achieves the usual clustering scheme of three groups
with no misplaced examples. In the internal analysis of each class, the expected organization of
clone types is detected.
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Clustering by Function Class
In the general problem of separating functions according to the class they belong, the best
results for hierarchical clustering are obtained when using a cut weight value of 1. It is important
to remark that there are no misplaced examples. However, some intra-cluster distances appear
to be too large. HC clearly detects the same 3 usual clusters (see Figure 6.29). However, Kernel
PCA failed at that task.

Figure 6.29: Hierarchical Clustering for Kast1 Spectrum Kernel using IRs (Cut Weight
= 1).

Clustering by Clone Type
A deeper look into each class shows that, with both Kernel PCA and HC, the original versions
and their corresponding Type-1 clones tend to conform single clusters, while Type-2 and Type-3
have the tendency to agglomerate on the same cluster at considerable distance from their
corresponding original versions. Type-4 clones have the tendency to conform a separate cluster
with the longest distance to the original versions. As expected, Type-2 clones are located
closer to the original version, followed by Type-3 and Type-4 clones. This kernel is sensible to
the changes in the LLVM IRs of Type-2 clones, which put them far from the original version.
However, due to the fact that code modifications follow similar rules, they are placed closer
to clones of the same type that might not have the same semantics but contain the similar
structure. class A and class B did not show any other interesting pattern.

Class C (3D Stencils): HC shows 4 defined branches, one for the original versions and
Type-1 clones, and one for each remaining type (see Figure 6.30). All this is confirmed by Kernel
PCA, where the original functions and Type-1 clones conglomerate in a sparse cluster, except
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from the non-compact stencil. The non-compact stencil differs from the other stencils because it
has a few additional instructions that correspond to the extra layer calculation. Type-2, Type-3
and Type-4 clones conform three different clusters, each one with a clear compact formation
(see Figure 6.31).

Figure 6.30: Hierarchical Clustering for Kast1 Spectrum Kernel using IRs of 3D Stencils
(Cut Weight = 1).

Figure 6.31: KPCA for Kast1 Spectrum Kernel using IRs of 3D Stencils (Cut Weight =
1).

Class D (2D Stencils): This class presents a similar behavior like 3D stencils, with the
non-compact stencils closer to each other than to other stencils (see Figures 6.32 and 6.33).
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Figure 6.32: Hierarchical Clustering for Kast1 Spectrum Kernel using IRs of 2D Stencils
(Cut Weight = 1).

Figure 6.33: KPCA for Kast1 Spectrum Kernel using IRs of 2D Stencils (Cut Weight =
1).
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6.4.3 Remarks
The kast1 spectrum kernel has a good performance with the two intermediate representation
from LLVM. This is an improvement with respect to the kast spectrum kernel.

6.5 Kast2 Spectrum Kernel
The last kernel of the family of kastx kernels is the kast2 spectrum kernel. This kernel presents
a better performance in comparison with the baseline kernel:

• Similarities with the baseline kernel: For the kast2 spectrum kernel, the same basic
scheme of clusters is achieved. The ranking in distances for clone types with respect to
the original version corresponds to the expectation according to the theory. Additionally,
the intra-cluster distances are small too.

• Differences with the baseline kernel: The major difference with respect to the baseline
kernel is that Type-4 clones tend to create clusters outside their respective classes only
when using Clang ASTs. The baseline kernel shows this behavior when using both
representations.

• Advantages with respect to the baseline kernel: On the one hand, when using Clang ASTs,
the original version of a function and its corresponding Type-1 and Type-2 clones are
found almost overlapped. On the other hand, using LLVM IRs, no misplaced examples
are found. This kernel is the only one where Hierarchical Clustering and Kernel PCA
manifest the same clustering patterns.

Recall that this kernel changes the way that weights are summarized and introduces a
penalization value. This way it is possible to reflect more naturally the matching between two
strings.

6.5.1 Clustering with Clang Abstract Syntax Trees
The application of the kast2 spectrum kernel over Clang ASTs shows the usual groups of
clusters; it also reflects congruent clone relationships. This kernel is also capable to separate
some classes into the expected groups.

Clustering by Function Class
The first problem is the separation of functions into classes. With Clang ASTs, the best results
are obtained when using a cut weight value of 32. This kernel clearly detects the same 3 clusters
with both algorithms (see Figures 6.34 and 6.35).
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Figure 6.34: Hierarchical Clustering for Kast2 Spectrum Kernel using ASTs (Cut Weight
= 32).

Figure 6.35: KPCA for Kast2 Spectrum Kernel using ASTs (Cut Weight = 32).

Clustering by Clone Type
The second problem is the organization of code clones inside each class. Both Kernel PCA and
HC, show that the original versions and their corresponding Type-1 and Type-2 clones conform
single clusters when compared only with examples of the same general group. It is important
to notice Type-1 and Type-2 clones seem to be at a similar distance from the original version
in both HC and Kernel PCA. Type-3 and Type-4 clones are found outside those clusters. As
expected, Type-3 clones are located closer to their respective original versions than Type-4
clones.
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Class A (Matching Functions): With HC, Group I and II seem to be separated. However,
Type-4 clones are grouped on a separated branch (see Figure 6.36). The clustering is better
with Kernel PCA, where it can be seen that Type-4 clones respect the discrimination between
Group I and Group II (see Figure 6.37).

Figure 6.36: Hierarchical Clustering for Kast2 Spectrum Kernel using ASTs of Matching
Functions (Cut Weight = 32).

Figure 6.37: KPCA for Kast2 Spectrum Kernel using ASTs of Matching Functions (Cut
Weight = 32).

Class B (Sort Functions): No additional patterns were observed.

Class C (3D Stencils): HC manifests three branches, one for the Type-3 clones, one for
Type-4 clones and one for the rest (see Figure 6.38). See how in Kernel PCA all the original
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functions and Type-1 and Type-2 clones conglomerate in a single cluster (see Figure 6.39). The
Type-3 clones of all programs conform a sparse cluster away from the original versions. The
same behavior is observed with Type-4 clones. A distinction between compact and non-compact
stencils is evident in Kernel PCA, with the non-compact stencil separating from the main
conglomeration, and in HC, with a branch collecting compact stencils, while another one does
the same with the non-compact one. This is not seen with the blended spectrum kernel.

Figure 6.38: Hierarchical Clustering for Kast2 Spectrum Kernel using ASTs of 3D Stencils
(Cut Weight = 32).

Figure 6.39: KPCA for Kast2 Spectrum Kernel using ASTs of 3D Stencils (Cut Weight
= 32).
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Class D (2D Stencils): 2D stencils show a similar behavior presented by 3D stencils (see
Figures 6.40 and 6.41). Here also both algorithms are able to distinguish between compact and
non-compact stencils.

Figure 6.40: Hierarchical Clustering for Kast2 Spectrum Kernel using ASTs of 2D Stencils
(Cut Weight = 32).

Figure 6.41: KPCA for Kast2 Spectrum Kernel using ASTs of 2D Stencils (Cut Weight
= 32).

Next, we detail the results with the other intermediate representation.
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6.5.2 Clustering with LLVM Intermediate Representations
With LLVM IRs, the kast2 spectrum kernel presents a trade off between separating clone types
(intra-cluster distances) while separating classes (inter-cluster distances).

Clustering by Function Class
In the problem of finding classes as patterns, the best results are obtained when using a cut
weight value of 32. It is important to remark that there are no misplaced examples when using
HC (see Figure 6.42). This kernel clearly detects the usual 3 clusters with both algorithms. With
both clustering techniques, the intra-cluster distances are smaller than the ones obtained by the
previous kernel. Small intra-cluster distances make a cluster more compact and distinguishable
from others. This easies the detection of function classes. A closer inspection of Kernel PCA
(see Figure 6.43) depicts that some examples of all classes are drastically separated from the
rest, sometimes conforming totally separated clusters. As expected, these exceptional clusters
are mostly conformed by all the Type-4 clones of their class, which correspond to the the most
different implementations to the original versions. Such finding is confirmed by HC, where
Type-4 clones tend to be organized under a separate branch inside their respective class.

Figure 6.42: Hierarchical Clustering for Kast2 Spectrum Kernel using IRs (Cut Weight
= 32).
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Figure 6.43: KPCA for Kast2 Spectrum Kernel using IRs (Cut Weight = 32)

Clustering by Clone Type
Here both clustering techniques grouped original versions and their corresponding Type-1.
However, the distance between the original versions and their corresponding Type-2 clones has
been significantly reduced. This represents an enhancement on the clone detection capabilities.
Type-3 and Type-4 clones are the most distanced examples.

Class A (Matching Functions): Both clustering algorithms were able to clearly separate
Group I and II. (see Figures 6.44 and 6.45).

Figure 6.44: Hierarchical Clustering for Kast2 Spectrum Kernel using IRs of Matching
Functions (Cut Weight = 32).
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Figure 6.45: KPCA for Kast2 Spectrum Kernel using IRs of Matching Functions (Cut
Weight = 32).

Class C (3D Stencils): HC creates four branches, one for the Type-2 clones, one for the
Type-3 clones, one for Type-4 clones and one for the rest (see Figure 6.46). With Kernel PCA,
all the original functions and Type-1 clones conglomerate in a compact cluster (see Figure
6.47). Type-2 clones and Type-3 clones locate themselves on the neighboring clusters with a
less compact formation than Type-4 clones, which clearly show a solid agglomeration. The
drastic changes in code seem to put away these clones from the original version and puts them
closer to other clones that might not have the same semantics but contain the similar structure.
With LLVM IRs, a distinction between compact and non-compact stencils is not possible.

Figure 6.46: Hierarchical Clustering for Kast2 Spectrum Kernel using IRs of 3D Stencils
(Cut Weight = 32).
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Figure 6.47: KPCA for Kast2 Spectrum Kernel using IRs of 3D Stencils (Cut Weight =
32).

Class D (2D Stencils): It shows a similar behavior presented by 3D stencils, but with
more compact patterns (see Figures 6.48 and 6.49).

Figure 6.48: Hierarchical Clustering for Kast2 Spectrum Kernel using IRs of 2D Stencils
(Cut Weight = 32).
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Figure 6.49: KPCA for Kast2 Spectrum Kernel using IRs of 2D Stencils (Cut Weight =
32).

6.5.3 Remarks
On the one hand, the application of the kast2 spectrum kernel applied over Clang ASTs allows
the detection of function classes that reflect the nature of the code pieces; this combination
also permits the detection of subclasses inside each class, as well as the depiction of a well
structured organization of clones around the original versions. On the other hand, the usage
of LLVM IRs supposes a downgrade in the intra-cluster detection capabilities, but instead
achieves a general clustering with no misplaced examples.

Summary
This chapter showed to the reader the application of the three proposed string kernel functions
with strings coming from the intermediate representations of a popular compiler (LLVM), and
their performance in comparison with the baseline kernel (blended spectrum kernel). Two of
the proposed kernels presented a better performance than the baseline kernel, namely the kast1
and kast2 spectrum kernel. This demonstrates that our contribution is suited for different
domains, as in the previous chapter similar results were presented in the area of I/O pattern
recognition. In the following chapter we have collected the conclusions of this work and possible
ways of extending it in the future.
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7 Conclusions and Future Work
In this thesis we have shown how the I/O traces of a program, as well as its intermediate
representations, can be represented as a string of weighted tokens, which subsequently are used
to extract patterns. The resulting strings have been compared using three novel kernel functions
proposed by the author. The kast, kast1 and kast2 spectrum kernels emit similarity matrices
between examples that can be later analyzed by a clustering algorithm.

7.1 General Remarks
The use of strings with associated weights is one of the pillars of the new method that we have
proposed, since these weights allow the compression of the information encoded in the strings,
as well as the modulation of the feature value that characterizes and distinguishes each of the
new kernels that we have developed.

One of the parameters of greater relevance for our comparison strategies is the cut weight.
In the first instance, the higher is the cut value, the smaller is the number of comparisons made
by the algorithm and therefore the speed of it increases; however, a smaller cut weight allows
to consider short sequences in the contribution to the similarity of the strings, hence improving
the pattern discovery performance. We have identified in our test cases that a cut weigh below
64 was a value that allowed to separate clusters in an adequate way.

In the specific case of synthetic strings, it has been found that our kernels do not perform
better than baseline kernel; since the baseline kernel is oriented to take values lower than the
cut weight, it stabilizes the clustering results once the longest matching substring is reached.
Despite this, our kernels achieve the same clustering by decreasing the value of the cut weight,
although this increases the computational cost.

Beyond this, in the two case studies of the real world presented in this research, the developed
kernels show a better clustering performance than the baseline kernel.

7.2 Comparison of I/O traces
The method for converting the trees into strings has proved to be effective, thanks to: i) the
hierarchical nesting via the definition of nodes like [ROOT], [HANDLE] and [BLOCK], ii) the
reduction of the information via the simplification of adjacent nodes that shared names and
number of bytes.

It has been on the interest of this thesis to study the suitability of the proposed strategy to
find similarities among four different classes of I/O access patterns. For all proposed kernels,
both hierarchical clustering and Kernel PCA have yielded similar results. The best results have
been obtained when the string representation takes into account the byte information of the
operations and the cut weight is small. It has been observed that the cut weight determines
the granularity of the search, while the usage of the byte information permits the separation
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between examples of the same cluster. These findings clearly show that both the proposed
string representation and the comparison method are suitable to compare I/O access patterns
of a parallel application.

The baseline kernel (blended spectrum kernel) presents the worse performance, as it is able to
identify only 2 patterns. On the contrary, the kernels proposed here have been able to identify
3 patterns:

• Class A (Flash I/O).

• Class B (POSIX I/O).

• Classes C and D (Sequential I/O).

The intrinsic similarity between classes C and D is captured by our kernels. The kast
spectrum kernel works well only with strings using byte information and small weight values.
The kast1 spectrum kernel works well with small weights, regardless of the byte information.
However, the kast2 spectrum kernel performs better than all the other kernels, as the selection
of the cut weight does not have a significant effect on the clustering. This means that the
speed of the comparison could be increased with this kernel by selecting higher values of the
cut weight.

7.3 Comparison of Intermediate Representations
It has been shown that the conversion of Clang Abstract Syntax Trees into strings is done in an
intuitive way following a pre-order traversal. In the case of LLVM Intermediate Representations
it was necessary apply a preliminary step to convert the representation into tree to capture
hierarchical relationships among the instructions.

With this experiment, we aim to depict the efficacy of the string kernels at separating 4
different classes of functions written in C language. We have used separately their Clang ASTs
and LLVM IRs as the source of information. Each function has been implemented in five
different variants with the same functionality, to reflect the notion of clone types. All kernels,
including the baseline kernel, have been able to detect the same scheme of clusters:

• Class A: String kernels.

• Class B: Sort functions.

• Classes C and D: 3D and 2D stencils.

The intuitive similarity of 3D and 2D stencil calculations has been clearly captured by all
kernels. The expected ranking in distances for clone types with respect to the original version
has been observed by all the kernels, excepting by the kast spectrum kernel. Two types of
clones have exhibit the same patterns with all the kernels: Type-1 clones are found almost
overlapped with the original versions., while Type-4 clones have the tendency to break the
class clustering by conforming a cluster by themselves. In general, both representations (Clang
ASTs and LLVM IRs) yield similar results. Regarding the clustering algorithm, Hierarchical
Clustering has been more effective on the task than Kernel PCA.

132



The kast spectrum kernel does not offer a substantial advantage over the baseline kernel.
While the kast spectrum kernel only shows the theoretical ranking in distances for clone types
when using Clang ASTs, the baseline kernel shows this behavior with both representations.

On the contrary, the kast1 and kast2 spectrum kernels exhibit a better cluster separation,
evidencing that, when considering only the weights of the independent valid matching substrings,
it is possible to obtain a better differentiation of the four types of clones and while maintaining
a meaningful separation of the three major function classes: matching functions, sort functions
and stencils. With the kast1 spectrum kernel there are no misplaced examples. Additionally,
Type-4 clones do not tend to create clusters outside their respective classes. With the kast2
spectrum kernel, both representations yield a similar cluster scheme. This kernel is the only
one where Hierarchical Clustering and Kernel PCA are effective for separating classes.

These results indicate that these novel comparison methods can be promisingly utilized to
find similarities in source code snippets.

7.4 Applications and Future Work
The proposed solution is susceptible to improvements that will pave the way for a broader
application in other domains.

7.4.1 Improvements
We saw how the cut weight is a parameter that has to be defined by the user. Testing all
the possible cut weights will only increase the complexity order of the algorithm. A future
improvement for the comparison method is the automatic selection of this value. This could be
done by some heuristics that could profile the strings and determine an acceptable cut weight
according to the size of the data or its nature. Another way of automatically establishing the
cut weight is to relate it to the minimum size in numbers of lines that the code or the I/O
traces must have. For example, the user might decide that only code snippets with more than
20 lines are of his interest; the key here would be to determine the average weight that code
snippets of that size might have.

From all the conversion strategies presented in this work, only the one related to LLVM IRs
does not introduce a compression step. A further step would consist in the study of the effect
of uncompressed strings for Clang ASTs and I/O traces in the final similarity score, as well as
in the performance of the algorithm. This can be used as a guideline for the selection of the
most adequate string representation form.

Another possibility of exploration is the comparison of the string kernel proposed here
against other types of comparison methods that are not string kernels, e.g. tree kernels applied
directly over the ASTs, or source metrics applied directly over the code. Further studies in
these direction would assess the capabilities of the string kernels and would serve as guide for
researchers that are constantly looking for new and better ways of comparing code.

In this thesis, the focus has been placed into the intermediate representations of C programs.
However, given that the comparison objects are weighted strings, the ASTs or IRs generated
by other languages could also be used. A possible study would try to determine how much
does the similarity of the same program change when it is implemented in different languages,
e.g. C vs Python, or Fortran vs Java.
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Finally, one of the most promising extensions of this work could be related to the creation of
new kastx kernels, and its corresponding experimentation.

7.4.2 Applications in Computer Science
One of the possible applications of these kernels is the implementation of a code smell detection
plug-in inside a integrated development environment (IDE). The plug-in could verify if a
particular piece of code indicated by the user, contains bad code that might affect maintainability
or performance. The verification can be done against a well-studied collection of code pieces
that exhibit good and bad programming code practices.

On the same direction, they may be utilized in the prediction of the presence of bad patterns
inside server side I/O log files of an specific application in a distributed system. For example, on
a first phase, a significant amount of I/O traces containing bad patterns could be automatically
labeled as problematic by a benchmark. On a second stage, those patterns are converted into
weighted strings and compared with any of the string kernels proposed in this work. As a
result, a kernel matrix among the bad examples is obtained, with each row of it associated to
a determined bad pattern. For new logs coming from the application, the respective kernel
values will be calculated, and the respective label will be inferred using only the information
from the kernel matrix.

7.4.3 Applications in Other Fields
Following the same idea, the string representation and the proposed kernels can be used for
performing comparison of DNA sequences or to find similarity among data structures taken from
chemical properties. For example, the molecular electrostatic potential (MEP) of a molecule
can be represented as a tree [DMT13]. The trees of a collection of molecules with drug affinity
can be flattened to the string representation that we proposed in this work, and posteriorly
they can be compared and analyzed with our kernels, in order to determine which compound
is a candidate as replacement of another compound. This could be of great interest to find
alternative compounds for designing less expensive medicaments.
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Publications
In order to share the findings of this work with the scientific community, we participated in
several conferences and journals. The following is a list of the publications that resulted from
that exercise:

• “A Novel String Representation and Kernel Function for the Comparison of I/O Access
Patterns”, in Parallel Computing Technologies. Springer International Publishing, 2017,
pp. 500–512.

• “Comparison of Clang Abstract Syntax Trees using String Kernels”, in International
Conference on High Performance Computing and Simulation (HPCS 2018). To be
published.

• “A Similarity Study of I/O Traces via String Kernels”, in the Journal of Supercomputing,
Special Issue: Parallel Computing Technologies 2018. To be published.
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