
Comparing Naïve Bayesian Networks to Support Vector
Machines to predict Stock Prices Based on Press Release

Sentiment

– Master Thesis –
Author:
Max Lübbering, 21599173

Supervisors:
Dr. Julian Kunkel

Dr. Patricio Farrell

Examiner:
Dr. Patricio Farrell

December 4, 2018





Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Introduction to Stock Trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Efficient Market Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Reading Stock Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Introduction to Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Motivation by the Full Joint Distribution . . . . . . . . . . . . . . . . . . 15
2.3.2 Introduction to Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Exact Inference by Enumeration . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Parameter learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Naïve Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Feature Selection Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.2 χ2 Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 State of the Art and Related Work 31
3.1 Text Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Influence of the Media on Stock Prices . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Methodology 33
4.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Text Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Text Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Count Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.5 Stock Prices Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Formal Description of the Machine Learning Problem . . . . . . . . . . . 36
4.3.2 Trivial Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Naïve Bayesian Networks for Text Classification . . . . . . . . . . . . . . 37
4.3.4 Support Vector Machines for Text Classification . . . . . . . . . . . . . . 38

4.4 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Implementation 41
5.1 Press Release Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Crawling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Stock Price Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Extraction Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.2 Cleaning Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

I



5.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.1 Trivial Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.2 Naïve Bayesian Network Pipeline . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.3 Support Vector Machine Pipeline . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.4 Grid Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Results and Evaluation 51
6.1 Data Sets Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Stock Prices Data Set Exploration . . . . . . . . . . . . . . . . . . . . . . 51
6.1.2 Press Release Data Set Exploration . . . . . . . . . . . . . . . . . . . . . 56
6.1.3 Joint Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Performance Comparison of Impact Models . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 Trivial Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.2 Naïve Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Performance Comparison of Sentiment Models . . . . . . . . . . . . . . . . . . . 80
6.3.1 Trivial Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.2 Naïve Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Summary 92

8 Future Work 94

9 Appendix 96

II



List of Figures

1 Schematic sketches of training and prediction with the impact model and the
sentiment model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Posterior probability of each bag given candies d and posterior predictive probability of
next candy given candies d [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

18 Sequence diagram of feed crawling run . . . . . . . . . . . . . . . . . . . . . . . . 43
19 Sequence diagram of article retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 44
20 Histograms of stock prices count per company for NASDAQ, NYSE and S&P

500 companies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
21 NASDAQ, NYSE, S&P500 stock price retrieval rate boxplots . . . . . . . . . . . 55
22 Number of press releases published each day . . . . . . . . . . . . . . . . . . . . . 57
23 Number of press releases per weekday . . . . . . . . . . . . . . . . . . . . . . . . 57
24 Number of press releases by hour of day . . . . . . . . . . . . . . . . . . . . . . . 58
25 Number of press releases per minute . . . . . . . . . . . . . . . . . . . . . . . . . 58
26 Histogram of number of press releases per company . . . . . . . . . . . . . . . . . 58
27 Number of press releases of NASDAQ,NYSE and S&P500 companies during

trading and after hours over time . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
28 Simple net opportunity calculation of press releases (time in UTC) . . . . . . . . 61
29 Press releases’ simple net opportunity vs. general simple net opportunity with

an offset of 5 h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
30 Number of NASDAQ and NYSE press releases published each hour and labeled

as one of {pos., neutral, neg.} after discretizing the 30min SNO on thresholds
[−0.03, 0.03] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

31 Class proportions of labeled NASDAQ and NYSE press releases published each
hour after discretizing the 30min SNO on thresholds [−0.03, 0.03] . . . . . . . . . 63

33 Median and mean absolute simple net opportunity (ASNO) on the datasets D1
(all press releases) and D2 (only press releases having ASNO of at least 3% after
5 h) for different offsets o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

34 Comparison of mean absolute simple net opportunity (ASNO) on the datasets
D1 (all press releases) and D2 (only press releases having ASNO of at least 3%
after 5 h) for different offsets o to the general mean ASNO of companies in D1
and D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

35 Stock price development heat map of press releases with SNO of at least 8% after
an offset of 5 h after exchange opens . . . . . . . . . . . . . . . . . . . . . . . . . 66

36 Stock price development heat map of press releases with SNO of less than -8%
after an offset of 5 h after exchange opens . . . . . . . . . . . . . . . . . . . . . . 66

37 Stock price development heat map of press releases with SNO in [0, 8%] after an
offset of 5 h after exchange opens . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

38 Stock price development heat map of press releases with SNO in [−8%, 0] after
an offset of 5 h after exchange opens . . . . . . . . . . . . . . . . . . . . . . . . . 67

39 Best train and validation score of trivial classifier for different discretization
thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

40 Confusion matrix of best trivial classifier trained and evaluated on press release
dataset discretized by [−0.08, 0.08] . . . . . . . . . . . . . . . . . . . . . . . . . . 71

41 Quarter result rates of each bin of the trivial classifier’s confusion matrix . . . . 71
42 Best train and validation score of naïve Bayesian network pipeline on each dataset 73
43 Confusion matrix of best naïve Bayesian network pipeline trained and evaluated

on press release dataset discretized by [−0.08, 0.08] . . . . . . . . . . . . . . . . . 73
44 Quarter result rates in each bin of the naïve Bayesian network pipeline’s confusion

matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III



45 Best train and validation score of support vector machine pipeline on each dataset 78
46 Confusion matrix of best support vector machine pipeline trained and evaluated

on press release dataset discretized by [−0.08, 0.08] . . . . . . . . . . . . . . . . . 79
47 Quarter result rates in each bin of the support vector machine pipeline’s confusion

matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
48 Best train and test score of trivial classifier for different datasets . . . . . . . . . 82
49 Confusion matrix of best trivial classifier trained and evaluated on press release

dataset discretized by [−0.08, 0.08] . . . . . . . . . . . . . . . . . . . . . . . . . . 82
50 Quarter result rates in each confusion matrix bin of best trivial classifier . . . . . 83
51 Best train and validation score of naïve Bayesian network pipeline on each dataset 84
52 Confusion matrix of best naïve Bayesian network pipeline trained and evaluated

on the press release dataset discretized by [−0.08, 0.08] . . . . . . . . . . . . . . . 84
53 Quarter result rates in each confusion matrix bin of best naïve Bayesian network

pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
54 Best train and validation score of support vector machine pipeline on each dataset 88
55 Confusion matrix of best support vector machine classifier trained and evaluated

on press release dataset discretized by [−0.08, 0.08] . . . . . . . . . . . . . . . . . 89
56 Quarter result rates for each true label and predicted label combination . . . . . 89

List of Tables

1 Exemplary samples of press releases with SNO as target variable . . . . . . . . . 6
2 Apple stock prices (open, close, high, low) in Dollars from April 11, 2018 4:00PM

to April 11, 2018 4:04PM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Contingency table of gender and empathy example . . . . . . . . . . . . . . . . . 30
4 Exemplary word list for each class . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5 Confusion matrix for binary classification . . . . . . . . . . . . . . . . . . . . . . 39
6 Key figures of each dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7 Business day counts for NASDAQ companies . . . . . . . . . . . . . . . . . . . . 54
8 Business day counts for NYSE companies . . . . . . . . . . . . . . . . . . . . . . 54
9 Business day counts for S&P500 indexed companies . . . . . . . . . . . . . . . . 54
10 Descriptive statistics on the stock price retrieval rates of NASDAQ, NYSE and

S&P500 companies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11 Companies with least press releases . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12 Companies with most press releases . . . . . . . . . . . . . . . . . . . . . . . . . 59
13 Number of press releases and quarter result rates for each class (impact, no im-

pact) depending on the discretization threshold . . . . . . . . . . . . . . . . . . . 68
14 Best trivial classifier for each dataset found by grid search . . . . . . . . . . . . . 69
15 Best hyperparameters of naïve Bayesian network pipeline found by grid search

for each dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
16 Best hyperparameters of support vector machine pipeline for each dataset found

by grid search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
17 Number of press releases and quarter result rates for each class (negative senti-

ment ¬S, positive sentiment S) depending on the discretization threshold . . . . 81
18 Best trivial classifier for each dataset after applying grid search . . . . . . . . . . 81
19 Best naïve Bayesian network pipeline for each threshold after applying grid search 84
20 Best support vector machine pipeline for each threshold after applying grid search 88

IV



Listings
1 Extraction algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2 Exemplary parameterization of extraction algorithm . . . . . . . . . . . . . . . . 45
3 Text cleaning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4 Labeling process of press releases . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 Implementation of trivial classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Training and prediction of trivial classifier . . . . . . . . . . . . . . . . . . . . . . 48
7 Implementation of naïve Bayesian network pipeline . . . . . . . . . . . . . . . . . 48
8 Implementation of SVM pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9 Evaluating the model performance for a given parameter on different datasets . . 49
10 Best trivial classifier hyperparameters to test for during grid search . . . . . . . . 69
11 Top 50 words of class impact according to trivial classifier’s vocabulary ranking . 71
12 Top 50 words of class no impact according to trivial classifier’s vocabulary ranking 72
13 Naïve Bayesian network pipeline hyperparameters to test for during grid search . 72
14 Top 200 words for the impact models according to χ2 test statistic score . . . . . 74
15 Top words 200 for the impact models according to mutual information score . . . 75
16 The top 50 words for class I ranked by probability p(I|ti) out of 200 features . . 76
17 The top 50 words for class ¬I ranked by p(¬I|ti) out of 200 features . . . . . . . 76
18 Support vector machine pipeline hyperparameters to test for during grid search . 77
19 Top 50 words of class sentiment (S) according to trivial classifier’s ranking . . . . 83
20 Top 50 words of class no sentiment (¬S) according to trivial classifier’s ranking . 83
21 Top 200 words according to χ2 test statistic score . . . . . . . . . . . . . . . . . . 85
22 Top 200 words according to mutual information score . . . . . . . . . . . . . . . 86
23 The top 50 words for class S ranked by probability p(S|ti) out of 200 features . . 86
24 The top 50 words for class ¬S ranked by probability p(¬S|ti) out of 200 features 87

V



Listings Max Lübbering, 21599173

In this master thesis, we trained and evaluated two models, namely a naïve
Bayesian network and a support vector machine, to predict stock price trends based
on count vectorized press releases published in the after hours. Additionally, we
introduced a trivial classifier to put the results of the other two into perspective.
The stock price trend prediction was solved in two steps: In the first step, we

built for each of the three algorithms a classifier in order to predict the impact of a
press release. For training and evaluation, every press release was assigned the label
impact, if the stock price had changed at least 8% from the exchange closing time
to exchange opening time plus an offset of 5 hours and no impact, otherwise. In the
second step, all press releases with no impact were discarded. The remaining ones
were reassigned to the classes sentiment and no sentiment based on the direction
of their impact. Afterwards, we built a model for each of the three algorithms to
predict the sentiment of press releases.
After applying grid search on an extensive grid, the impact models of the naïve

Bayesian network, the support vector machine and trivial classifier had an accuracy
of 76%, 78% and 77%, respectively. The balanced dataset contained 919 training
samples and 231 samples in the holdout set. These high accuracies show that im-
pact prediction is per se possible, even though count vectorization destroys all the
semantics.
The sentiment models of the naïve Bayesian network, the support vector machine

and trivial classifier had an accuracy of 47%, 53% and 53%, respectively. The
balanced training set contained 426 samples and the holdout set 108. The weak
results reveal that sentiment prediction is far more complex than impact prediction
and cannot be captured by the word frequency in a document.
As part of our press release exploration, we demonstrated that over night press

releases cause inefficiencies in the market for the entire next trading day. As a
consequence, we provided an example that clearly contradicts with the theoretical
efficient market hypothesis. If our models become more reliable, these inefficiencies
can be exploited.

1





1 INTRODUCTION Max Lübbering, 21599173

1 Introduction

This section sheds light on the different aspects of algorithmic trading in general and the benefits
of leveraging press releases for stock market prediction. After having motivated the topic in
Section 1.1 which partly already appeared in [18], we state the goals and requirements for a
press release trading system in Section 1.2 and introduce the three concrete approaches for such
a system in Section 1.3. Finally, an outline on the entire thesis is provided.

1.1 Motivation

Nowadays, the Internet offers a vast amount of business news that a single individual is unable to
process. There are thousands of news articles about exchange traded companies being published
every single day.

Additionally, publicly traded companies are legally required to publish their quarter results in
form of press releases and important insider information by ad hoc announcements in order to
prevent insider trading.

What if we were able to process this information reliably within seconds and were able to react
to market change before any other party? This is essentially what stock traders do, with the
manual manner of their work taking them a couple of minutes to adapt to market change [17].
They usually install a notification alarm of some news provider, giving them access to the latest
news regarding the companies in their portfolio. Broadly speaking, they continuously read these
news articles and choose one of the three trading options: hold, buy or sell.

We have shown in previous work, that the task of labeling news articles by the companies
they mention is a rather complex task, however not impossible in practice [18]. As part of
our research, we pursued two approaches. In the first one, we trained a k-nearest neighbor
classifier based on either count vectorized or tf-idf vectorized company descriptions, which were
labeled by the company name. For prediction of news articles we then picked the k company
descriptions, that were most similar to the news article and performed majority vote (ordinary
k-nearest neighbor on word distributions). For k-nearest neighbor with count vectorization we
reached an accuracy of 47% and for k-nearest neighbor with tf-idf vectorization an accuracy of
51%, where the task was to find the correct company mentioned in a news article out of 480
companies.

In the second approach we used either the count vectorized or the tf-idf vectorized company
descriptions to build a topic model using Latent Dirichlet Allocation (LDA). We had at least
seven company descriptions for each of the 480 companies and parameterized the algorithm to
cluster 480 topics. Our intention was thereby to give the algorithm a bias towards representing
each company by one topic. Using the topic distributions of each company description, we
trained a k-nearest neighbor classifier and predicted companies in the same fashion as in the first
approach. The difference here is, that LDA reduces the feature space of the k-nearest neighbor
algorithm to 480, which is less than a tenth of feature space in the first approach, making
prediction less computationally expensive. However, this approach performed worse, having
an accuracy of 37% for count vectorized company descriptions and 13% for tf-idf vectorized
company descriptions.

Even though the results are not applicable in the field, yet, we think that our findings are
promising given the fact that we have chosen the parameters only by our best intuition and
we have not performed a proper hyperparameter optimization, yet. Also, we should keep in
mind, that this is not a binary classification problem but in fact a classification problem with

3



1 INTRODUCTION Max Lübbering, 21599173

480 possible classes, which means that our performance is at least 60 times better than random
guessing.

Having demonstrated that news article to company matching is possible in theory and practice
after further optimization, our objective in this master thesis is to further automate a day
traders job. Specifically, we want to investigate, whether it is possible to utilize press releases
to derive trading strategies based on their sentiment. For instance, when a company’s quarter
results are being released and they are better than the investors had predicted them to be, then
we would expect the company’s stock price to spike, because at this very moment the shares
are undervalued and many traders will want to buy shares to make profits. Our model similar
to the the day trader is supposed to recognize these kind of positive or negative sentiments and
predict the trend of future stock prices. Utilizing press releases labeled with the corresponding
company, we can combine them with the stock price development of each company. This dataset
is passed to the supervised machine learning algorithm to train models, that predict the trend
of a stock based on a press release.

It would have been a logical conclusion to not only use press releases but also to use arbitrary
business news articles. However, press releases have a huge advantage over usual news articles
e.g., published by the New York Times, as press releases contain most of the time the company’s
ticker symbol. Searching for ticker symbols using a regular expression is an easy way to label
the press releases. We will stick to press releases until we have found a good refinement of the
parameterization of the news article to company matching model of our previous work and will
then expand the trading system to all kind of news articles.

1.2 Goals

In particular, we want to solve the following tasks:

• Data Acquisition:
We need to develop a crawler that retrieves the press releases and another one that retrieves
the corresponding stock prices. Both press releases and stock prices have to be tagged with
the company symbol and a timestamp, such that we can set both datasets into relation.

• Preprocessing:
The press releases have to be represented in a way, such that they can be forwarded to
the respective machine learning algorithms.

In order to predict stock price trends, we have to find a scale-free measure, that allows to
compare stocks of different price categories. For instance, a stock that is traded at 1,000 $
per share is probably fluctuating more than a stock that is worth 1 $ per share. Also, we
have to find an appropriate time frame, when comparing price changes. For example, if
a press release was published at 1AM, do we take last stock price before the exchange
closed as reference and compare it to the exchange open price or do we compare it to the
stock price e.g., 5 h after the exchange opened? It is not clear what time frames work best
and it is part of our goals to determine those.

Another important factor is the market itself: When the market is bullish, all stock prices
tend to increase. If the market is bearish, the stock prices tend to move in the opposite
direction. In a bullish market our model might not learn the true impact of press releases’
sentiments as they are shifted by a rising trend. This is why, part of our analysis is to
investigate if these market effects are also relevant for shorter terms (i.e., five hours). One
possibility to compensate for that, is to subtract the relative price development of indices
like the Dow Jones which reflects the US market, from the stock prices.

4



1 INTRODUCTION Max Lübbering, 21599173

• Modeling:
The supervised machine learning algorithms, that we choose for stock price trend predic-
tion based on press releases, are supposed to provide a model that meets the following
criteria:

– For a given press release we want the prediction to be either one of rising, falling or
steady.

– We want the model to be applicable to all stocks and not limited to a subset of stocks
(e.g., only the banking industry)

– The model should work with a variety of press releases, while providing stable pre-
dictions.

• Evaluation:
For each trained model, we want to apply the same evaluation methods such that we can
compare each model’s performance. We also want to pinpoint the weaknesses of each
algorithm qualitatively. For instance, there might be a company, which always tries to
massage their bad quarter results and there could be a model that tends to get fooled in
this situation. We want to locate these kind of weaknesses for each model.

1.3 Approaches

The task of predicting the trend of a stock price i.e., rising, falling or steady is highly complex
as the model has to learn weather a press release has an impact and if so whether it is positive
or negative. This is why, this task is being solved by two separate models, namely an impact
model, which predicts whether the stock price will significantly diverge due to the press release
and a sentiment model which predicts the direction of the stock price development. If the impact
model predicted a press release to have an impact, then this press release is being forwarded to
the sentiment model, which predicts the direction of the divergence from the stock price before
the press release was published.

The model training and prediction of both tasks is represented by the schematic sketch, shown
in Figure 1. For both tasks we have a stock dataset, that contains the stock prices for each
company at one minute frequency. These stock prices are transformed during the preprocessing
into a scale-free quantity by calculating for each timestamp the relative change of each stock
after a fixed offset. This quantity is later introduced as the simple net opportunity (SNO).

Each raw press release contains plain HTML. Obviously, this representation is not applicable
to be passed to machine learning algorithms. Therefore, we perform several preprocessing steps
including text extraction, tokenization, stop word and punctuation removal, part-of-speech
tagging (POS tagging) and lemmatization, which are explained in Section 4.2.2. After having
cleaned the texts, we need a representation of the texts that the machine learning algorithms
can deal with. We will use count vectorization which is introduced in Section 4.2.3.

Then, we assign each preprocessed press release the corresponding relative stock price change
(SNO) by carrying out the following steps:

1 For each company c of all companies :
2 For each press release p of c’s press releases :
3 Assign p relative stock price change (SNO) at time p. retrieval_timestamp

This essentially boils down to an inner join of the press releases and relative stock price changes
on the companies and timestamps.

5



1 INTRODUCTION Max Lübbering, 21599173

The result is a dataset which contains the preprocessed texts and the stocks, as shown in
Table 1.

Prep. Texts SNO
Text 1 0.05
Text 2 -0.01
. . . . . .
Text n 0.11

Table 1: Exemplary samples of press releases with SNO as target variable

Depending on which task we want to solve i.e., impact or sentiment, we have to discretize the
continuous SNO appropriately. For the impact model we want to distinguish between the two
classes impact i.e., falling or rising trends and no impact i.e., steady trends. The two classes
will be denoted by {I,¬I}, respectively. For the sentiment model we differentiate between press
releases having positive or negative sentiment, thus leading to a falling or rising trend. The two
classes will be denoted by {S,¬S}, respectively.

After having discretized the relative stock price changes using pre-defined thresholds, we train
the model which is represented by the green circles in Figure 1a and Figure 1b. For prediction,
we preprocess the press releases the same way as in the training set and pass them to the model.
Then, the impact model predicts one of the classes {I,¬I} and the sentiment model one of the
classes {S,¬S}.

AAPL 
Press Release 
~~~~~
~~~~~

Impact 
Model

Prediction
{I, ¬I}

Preprocessing

Model 
Training

AAPL

Preprocessing

a1,1

a2,1

a3,1

a1,2

a2,2

a3,2

.

.

.
.
.
.

. . .
. . .

. . .

. . .

944$
01.01.2010
11:02

Representation

AAPL
SNO=9% ≙ I
01.01.2017
11:02 AM UTC

a1,1

a2,1

a3,1

a1,2

a2,2

a3,2

.

.

.
.
.
.

a1,3 . . .
. . .

. . .

. . .

Representation

Preprocessing

Press Release 
~~~~~
~~~~~

(a) Impact model

AAPL 
Press Release 
~~~~~
~~~~~

Sentiment
Model

Prediction
{S, ¬S}

Preprocessing

Model 
Training

AAPL

Preprocessing

a1,1

a2,1

a3,1

a1,2

a2,2

a3,2

.

.

.
.
.
.

. . .
. . .

. . .

. . .

944$
01.01.2010
11:02

Representation

AAPL
SNO=9% ≙ S
01.01.2017
11:02 AM UTC

a1,1

a2,1

a3,1

a1,2

a2,2

a3,2

.

.

.
.
.
.

a1,3 . . .
. . .

. . .

. . .

Representation

Preprocessing

Press Release 
~~~~~
~~~~~

(b) Sentiment model

Figure 1: Schematic sketches of training and prediction with the impact model and the sentiment
model

6



1 INTRODUCTION Max Lübbering, 21599173

From a technical point of view the impact model and the sentiment model differentiate only by
the discretization of the target variable, which is part of the preprocessing. This is why, we can
apply our concrete approaches to both tasks without having to adapt anything. Next, we will
briefly introduce each approach applied to the task of impact modeling.

Approach 1: Trivial Approach
This approach’s objective is to put the performance of the following algorithms into perspective
by providing comparative values. The model is not sophisticated at all and is not necessarily
intended to be competitive.

During model training we split the training set into the two classes {¬I, I} and keep the k
most frequent words of each class. For prediction of a press release’s impact, the class is being
selected whose k most frequent words appear most often in the press release.

Undoubtedly, this approach has various shortcomings e.g., if a most frequent word appears in
both classes this word does not contribute to classification. However, we will see that albeit its
simplicity and methodological errors, this approach yields even competitive results.

Approach 2: Naïve Bayesian Networks
This special case of Bayesian networks has two layers, where the features are the leaves and the
class that is to be predicted is the root. Naïve Bayesian networks can be used to classify texts
by treating the words in the documents as features, as shown in Figure 2.

Impact

MusicWinLoss Bankruptcy Subpoena

Figure 2: Example of naïve Bayesian network for text classification

A typical query against our model would be the probability of impact given that the press release
contains the words loss, bankruptcy and does not contain the words win,subpoena and music,
which would be expressed in mathematical terms by p(Impact = True |Loss = True,Bankruptcy =
True,Win = False, Subpoena = False,Music = False).

Approach 3: Support Vector Machines
In contrast to the naïve Bayesian network approach, in this approach we do not build a prob-
ability model but try to separate the press releases in a high dimensional feature space. After
having count vectorized the press releases, we can represent each press release as a vector and
project them into the feature space. The objective of the support vector machine (SVM) is to
find a hyperplane that separates the press releases of both classes best. We will see that this
optimization problem boils down to solving a convex optimization problem.

For prediction of a sample, we only check on which side of the hyperplane the sample is lo-
cated.

7



1 INTRODUCTION Max Lübbering, 21599173

1.4 Outline

This master thesis is structured in eight sections. After this introductory chapter, we will
provide the reader with comprehensive background information, including an introduction to
stock trading as well as the mathematical foundations of the two machine learning algorithms
and feature selection strategies in Section 2, to enable him to understand the subsequent sections
of this thesis.

Section 3 deals with the related work and research others have conducted on text classification.
This section also gives an overview of the analysis that other researchers have performed on the
influence of the media on stock prices.

In Section 4, we explain how the datasets have been acquired and preprocessed such that the
machine learning algorithms can learn based on them. We also explain how the machine learning
algorithms, whose theoretical aspects have been only covered in Section 2, can be applied to
text classification and how these models are evaluated.

The implementation of the methods stated in Section 4 is covered in Section 5. In particular,
we explain how the two datasets (press release set and stock price set) are mined, how we
preprocess them and finally how the models are implemented.

In Section 6, we explore the two datasets for possible holes, redundancies and other criteria and
evaluate each impact and sentiment model.

In Section 7 all the work is being summed up and reflected in terms of our initial goals stated in
Section 1. Based on this, we give a prospect on what is left for future work in Section 8.

8



2 BACKGROUND Max Lübbering, 21599173

2 Background

We familiarize the reader in Section 2.1 with important terms and concepts from the trading
domain. Afterwards we explain the mathematics and algorithms used in our research. First, we
give a short introduction to Bayesian statistics in Section 2.2. This provides the basis to under-
stand the Bayesian networks and naïve Bayesian networks which are explained in Section 2.3
and Section 2.4, respectively. The theory behind support vector machines is explained in Sec-
tion 2.5. In order to limit the number of features passed to the machine learning algorithms,
feature selection strategies are introduced in Section 2.6.

2.1 Introduction to Stock Trading

This section explains financial terms and concepts imperative to understand the subsequent
chapters.

2.1.1 Efficient Market Hypothesis

The efficient market hypothesis initially created by Fama [7], states that it is impossible to beat
the market, because the price of an asset reflects all information that is available at any time.
That is why according to this hypothesis, it is impossible to predict price movements using
fundamental or technical analysis.

As with any hypothesis, there are also critics. In [19] Malkiel collected and reviewed patterns
that are considered to enable traders to beat the market. On the one hand, he concluded
that markets are generally efficient apart from rare bubbles in the past. On the other hand
looking at smaller time periods, in his opinion there might be some inefficiencies in the stock
markets.

One of our main goals within the scope of this thesis is to analyze, whether there are any inef-
ficiencies due to press releases. If this was the case, we could build models that take advantage
of these inefficiencies and later on we could even trade stocks on the basis of press releases. As
another consequence, we could confidently reject the efficient market hypothesis, which would
lead to new research possibilities.

2.1.2 Entities

In this section, we briefly explain the entities involved in trading, namely exchange, broker,
trader and stock.

Stock
Stocks, also known as shares, represent portions in the ownership of a company. This entitles
the owner to have a vote in company decisions and to have a share of profits in form of dividends.
From a legal perspective the owner does only own a portion of the shares and not a portion of
the company’s assets (e.g., you cannot leave the company’s office with a conference table even
if it matches the value of your shares). However, you can cash on the shares by selling them to
a buyer.

9



2 BACKGROUND Max Lübbering, 21599173

Exchange
An exchange is the marketplace, where stocks and other assets are being traded publicly. The
exchange’s job is to provide a transparent environment, such that there is a fair order execution.
In our work we focus on companies whose stocks are traded on NASDAQ and NYSE, which are
the two biggest exchanges in the USA.

It is not possible to trade at the exchanges 24/7. Every exchange has its own trading hours,
which are for NASDAQ and NYSE from 1:30PMUTC to 8:00PMUTC, as shown by Fig-
ure 3.

Exchange
opens

Trading hours

Exchange
closes

After hours

1:30PM 8:00PM

Figure 3: Exchanges’ trading hours

Electronic Communication Networks (ECNs) break up this limitation, allowing traders to en-
gage in the market even when the exchanges are closed. ECNs directly match buyers and sellers
anonymously using their own order books. This made them especially popular among institu-
tions as they can hide their trading strategies. Today, also private traders use these networks to
benefit from the possibilities of extended trading hours. In [12], Hendershott states that already
in 2002 the volume traded on ECNs made up approx. 40% of the total volume in NASDAQ
securities1.

Trader
A trader is a person, who buys and sells stocks in order to earn money from short term stock
price movements. This is the main distinction from investors, who hold stocks for a long period
of time.

Broker
A broker acts as proxy between a trader and an exchange. A trader orders a broker to sell or
buy a stock, which then executes the order at the exchange. In return the broker charges the
trader a commission fee.

2.1.3 Reading Stock Charts

When we want to analyze stock prices of a certain company, we are interested in their develop-
ment over time, as exemplary showed in Table 2 for Apple Inc.

Every minute we are provided with the latest stock prices. Since trading happens continuously,
stock values not only change with every minute tick. In order to also track trends within these
periods, we store the stock price at the beginning (open) and at the end of each period (close),
as well as, the maximum (high) and minimum (low) stock prices within each period. That is
why for every 1min period we receive four values.

1https://www.investopedia.com/terms/s/security.asp

10

https://www.investopedia.com/terms/s/security.asp


2 BACKGROUND Max Lübbering, 21599173

datetime exchange symbol open close high low

0 2018-04-11 16:00:00 nasdaq aapl 173.20 173.23 173.26 173.13
1 2018-04-11 16:01:00 nasdaq aapl 173.22 173.30 173.30 173.22
2 2018-04-11 16:02:00 nasdaq aapl 173.30 173.42 173.43 173.27
3 2018-04-11 16:03:00 nasdaq aapl 173.42 173.47 173.52 173.42
4 2018-04-11 16:04:00 nasdaq aapl 173.46 173.74 173.83 173.44

Table 2: Apple stock prices (open, close, high, low) in Dollars from April 11, 2018 4:00PM to
April 11, 2018 4:04PM

As manually analyzing these stock price tables is too difficult, we need a better representation,
such that we can identify trends at first glance. One approach is to plot the open, close, low
and high stock price for each minute as a Japanese candle stick, as shown in Figure 4.

The thicker vertical lines represent the open and closing stock values within the respective
minute. Depending on the trend within each period, the sticks are colored red (falling) or
green (rising). So the candle stick is colored green when the open value is lower than the close
price.

The upper thin end of the stick shows the highest stock value within the period. Likewise, the
lower thin end of the stick shows the lowest stock value within the period.

59 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Time (min)

173.2

173.4

173.6

173.8

St
oc

k 
pr

ice
 ($

)

Figure 4: Example of Japanese candle stick chart: Apple stock from April 11, 2018 4:00PM to
April 11, 2018 4:30PM

One way to interpret the Japanese candle stick chart in Figure 4 would be to conclude, that
from 4:00PM to 4:12PM there was and upwards trend, which was followed by a downward
trend from 4:13PM to 4:30PM. Also notable, after each strong upward stick (see 4:04PM or
4:11PM) there is a slight decrease. This process is called correction. After a steep upwards
trend the traders come to the conclusion, that the market price of a stock is overvalued, so they
either sell or stop buying. The lack of interest in this stock automatically leads to a correction
to the true market value (see efficient market hypothesis in Section 2.1.1). Of course, the same
holds for strong trends in the opposite direction.

The correction behavior can be seen in short-term, as well as, for long-term periods. Every time
the market overreacts, the traders will spot their opportunity.

11



2 BACKGROUND Max Lübbering, 21599173

2.2 Introduction to Bayesian Statistics

As Bayesian networks build upon Bayesian statistics, we will give a short introduction on the
basics of Bayesian statistics and how to use it. This section was partly adopted from [18] and
is based on the great book on Bayesian statistics called “Bayesian Data Analysis” [9], whose
approach and notation we will follow.

Other than the text book, we will specifically mark a distribution’s arguments when it is unclear
whether they are constants or variables. For example, given the distribution p(y|Θ) it is unclear
to the reader, whether this is a function of y or of Θ. To prevent any confusion, we will mark
the distribution’s variables by underlines e.g., for p(y|Θ), y would be constant and Θ would be
the variable.

When performing Bayesian inference, we always have an unknown population. For instance
this population could be the true number of males and females in a country. Next, we select a
probability distribution that we assume fits the population and that is parameterized by Θ. The
parameter Θ defines the shape of the distribution and for simplicity of our example, we say that
Θ also represents the sex ratio (females divided by population size) in the population.

One objective of Bayesian inference is to estimate Θ for given samples y (observed data). Let
H = {h1, h2, . . . , hn} be the hypothesis space i.e., the set of values Θ can attain, then for each hi,
Θ has a certain posterior probability p(Θ = hi|y). Assuming we have 10 males and 12 females
as evidence, we want to determine the probability of p(Θ = 0.1 |males = 12, females = 10),
which is low because the observed data contradicts with such Θ, but for Θ = 0.55 the posterior
probability distribution would peak.

The other objective assumes, that we do know the distribution of p(Θ|y) (i.e., we know the
probability of all sex ratios in a country given 10 males and 12 females) and we want to predict
the probability of unseen data given some observations p(ỹ|y). In the example, we would want
to know how likely it is, that a person picked at random is male:
p(y = male |males = 10, females = 12).

In summary, Bayesian inference means to draw conclusions on the parameter(s) Θ of the popula-
tion given some observed data y, or to predict unknown data ỹ given some observed data y. We
define p(Θ|y) as the posterior density and p(ỹ|y) as the posterior predictive distribution.

Bayes’ theorem
In order to make probability predictions of parameter Θ for given data y, we calculate the joint
probability p(Θ, y) first.

p(Θ, y) = p(Θ)p(y|Θ)

The joint probability is the product of the prior probability p(Θ) and the sampling distribution
p(y|Θ).

Now, we condition on y, which gives us the posterior probability p(Θ|y). This step is known as
Bayes’ Theorem:

p(Θ|y) = p(Θ, y)
p(y) = p(Θ)p(y|Θ)

p(y) . (1)

It is important to note that the posterior density is a function of Θ and that therefore also
p(y|Θ) is a function of Θ. The function Θ 7→ p(y|Θ) is called likelihood.

Since p(y) is by definition constant (y is given), we can leave it out of Equation (1) and define

12



2 BACKGROUND Max Lübbering, 21599173

the resulting equation as the unnormalized posterior density 2 by

p(Θ|y) ∝ p(Θ)p(y|Θ). (2)

Prediction
When there is no observed data y available so far, all we can do is calculate the prior predictive
distribution p(y). This marginal distribution3 is being calculated from the joint probability by
summing out / integrating over the hypothesis space H of Θ:

p(y) =
∫

H
p(y,Θ = h)dh =

∫
H
p(Θ = h)p(y|Θ = h)dh. (3)

From the point on when data is available, we can calculate the probability of some unknown
data ỹ given observed data y.

We will now derive the formula of Full Bayesian learning (FBL) for calculating p(ỹ|y):

p(ỹ|y) =
∫

H
p(ỹ,Θ = h|y)dh

=
∫

H
p(ỹ|Θ = h, y)p(Θ = h|y)dh

=
∫

H
p(ỹ|Θ = h)p(Θ = h|y)dh. (4)

The last step follows from the conditional independence of y and ỹ given Θ. By integrating
over the hypothesis space H, we get a weighted average over the predictions of each hypothesis,
where the weights are denoted by the posterior density p(Θ = h|y) and the prediction p(y|Θ =
h).

As integrating over the entire hypothesis space H of Θ is in most cases intractable, a common
approximation is to use Maximum a Posteriori (MAP) learning. Instead of integrating
over the hypothesis space H, we pick the one that maximizes the posterior density p(Θ = h|y)
i.e., the hypothesis that explains the observations y best.

hMAP = arg max
h∈H

p(Θ = h|y) (5)

= arg max
h∈H

p(Θ = h, y)
p(y) (6)

= arg max
h∈H

p(y|Θ = h)p(Θ = h)
p(y) (7)

= arg max
h∈H

p(y|Θ = h)p(Θ = h) (8)

Using hypothesis hMAP as the only hypothesis for Θ our prediction simplifies to

p(ỹ|y) ≈ p(ỹ|Θ = hMAP ). (9)

With more observations y the MAP learning approaches FBL, because the other hypotheses in
H become less likely. It is worth noting that the prior probability p(Θ) plays an important role
in MAP and FBL as it gives a bias towards which hypotheses are being favored.

2 Here, ∝ indicates proportionality.
3A probability distribution that only depends on a subset of the random variables of the original distribution.
Marginal distributions are retrieved by summing out the unwanted random variables.

13



2 BACKGROUND Max Lübbering, 21599173

If each hypothesis is equally likely or we do not have any knowledge about the prior probability
p(Θ), one way is to assume it to be uniformly distributed. This further simplification is called
Maximum Likelihood (ML) learning. We pick the hypothesis that maximizes the likelihood
of the data y

hML = arg max
h∈H

p(y|Θ = h). (10)

The prediction
p(ỹ|y) ≈ p(ỹ|Θ = hML) (11)

works the same as in MAP learning. Note that to overcome the influence of the prior probability
p(Θ), we need a large dataset.

Candy example
To show how FBL works in practice, we give a simple example, which we have taken from
[25]. Let us suppose there is a candy manufacturer who provides lime and cherry candy which
are wrapped identically. Then the consumer is only able to tell the flavor after tasting the
candy. The manufacturer likes surprises and decides to send the purchaser one of the bag types
H = {h1, h2, . . . , h5}:

• Type h1: 100% cherry

• Type h2: 75% cherry, 25% lime

• Type h3: 50% cherry, 50% lime

• Type h4: 25% cherry, 75% lime

• Type h5: 100% lime

The manufacturer picks the bags according to the distribution

p(H) =< 0.1, 0.2, 0.4, 0.2, 0.1 > . (12)

Now, we buy a bag, whose lime cherry ratio we do not know. We unwrap one candy after another
and determine its flavor. We denote all candies classified so far by D = {d1, d2, . . . , dn}, where
dn is the last candy that we picked. After each pick, we calculate the posterior probability

p(hi|d1, d2, . . . dn) = αp(d1, d2, . . . dn|hi)p(hi) (13)

of each bag type hi given the n unwrapped candies seen so far and calculate the posterior
predictive probability of the next picked candy being of flavor lime

p(x = lime|d1, d2, . . . dn). (14)

Now, we suppose that the manufacturer has sent us a bag of candies of type h5 and we try the
first ten, which are obviously all lime. After each trial, we calculate the posterior of each bag
type according to Equation (13), as shown in Figure 5a and the predictive posterior probability
of next candy being lime according to Equation (14), as shown in Figure 5b.

After n observations, we would pick a bag as a best guess according to:

hF BL = arg max
h

p(h|d1, d2, . . . dn) = αp(d1, d2, . . . dn|h)p(h). (15)

14



2 BACKGROUND Max Lübbering, 21599173

(a) Posterior probability after each observation
for each (b) Posterior predictive probability of next candy

being lime

Figure 5: Posterior probability of each bag given candies d and posterior predictive probability of next
candy given candies d [25]

2.3 Bayesian Networks

In this section, we first motivate Bayesian Networks by working out the disadvantages of the
full joint distribution (FJD) and then explain how Bayesian networks improve upon them.
Afterwards we derive the parameter learning and inference of Bayesian networks.

2.3.1 Motivation by the Full Joint Distribution

Let Y = {Y1, Y2, . . . , Yn} and Z = {Z1, Z2, . . . , Zm} be two distinct sets of random variables
that fully describe a probabilistic model. The joint distribution p(Y,Z) of all random variables
is called the full joint distribution. Using this distribution, we can answer any query to the
probabilistic model (inference) by performing marginalization

p(Y ) =
∑
z∈Z

p(Y, z) (16)

or by conditioning
p(Y ) =

∑
z∈Z

p(Y |z)p(z), (17)

where
∑

z∈Z denotes in both cases all possible combinations of the values of the random variables
in Z.

One of the shortcomings of the FJD is its disability to scale. Given n random variables, which
can take k values each, the full joint distribution is described by kn probabilities. A probabilis-
tic model with 20 binary random variables would already be described by 1,048,576 probabili-
ties.

In order to overcome this shortcoming, Bayesian networks were introduced. They make use of
conditional independence between random variables to build an acyclic, directed graph, whose
parameters only grow linearly in the number of random variables.

15



2 BACKGROUND Max Lübbering, 21599173

2.3.2 Introduction to Bayesian Networks

Bayesian networks make use of conditional independence of random variables, in order to reduce
the number of parameters to be trained. Before going too much into detail, we briefly define
independence and conditional independence. Two random variables A and B are independent
if the following equation holds:

p(A,B) = p(A)p(B), (18)

where p(A,B) is the joint probability of A and B. A typical example for independence is rolling
a dice twice. The first outcome is independent of the second and vice versa.

Conditional independence between two random variables A and B given random variable
C is present, if one of the two equations holds:

p(A,B|C) = p(A|C)p(B|C) (19)
p(A|B,C) = p(A|C). (20)

Let us visualize conditional independence via an example: Imagine a patient has an appointment
with the dentist and gets his tooth checked for cavity. The dentist determines the tooth’s
condition on whether the probe catches in or not. The probability that the probe catches
in given the fact that the patient has a cavity is not influenced whether he has toothache or
not

p(catch|cavity, toothache) = p(catch|cavity). (21)

We now pick up the dentist example, again and extend it by the random variable weather at
that day, which is obviously independent of all the other random variables (catch, toothache
and cavity). A Bayesian network can be represented as an acyclic, directed graph, as we did in
Figure 6 for the dentist example. The link between two nodes (these are the random variables)
means that the parent directly influences its child random variable.

CavityWeather

CatchToothache

Figure 6: Bayesian network of dentist example

The random variable weather is independent of all the other random variables and therefore
there are no links to any of the other random variables. Cavity on the other handy directly
influences / causes toothache and the probe to catch in, leading to the corresponding links.

The network not only encodes independence but also conditional independence:
A node is independent of its non-descendants given its parents.

In the example toothache is independent of catch given cavity, which also feels intuitive. When
we already know that there is a cavity, the probability of the probe catching in is not influenced
by whether the patient has toothache or not (see Equation (21)).

The independence and conditional independence assumptions greatly reduce the number of
parameters. When we assert nothing, the FJD has 24 = 32 parameters, of which we had to
determine only 31, because the sum over all probabilities in the FJD is equal to one. The
parameters in a Bayesian network are represented in conditional probabilities tables (CPTs),

16



2 BACKGROUND Max Lübbering, 21599173

as shown in Figure 7. The Bayesian Network has only six free parameters (probabilities in the
CPTs) that have to be determined.

Cavity p(Cavity) = 0.01Weatherp(Weather = bad) = 0.3

CatchCavity p(toothache|Cavity)
True 0.6
False 0.05

Toothache Cavity p(catch|Cavity)
True 0.9
False 0.01

Figure 7: Bayesian network of dentist example with invented probabilities in the CPTs (network
parameters)

This locally structured system i.e., each subcomponent (here: random variable) interacts with
a bounded number of other subcomponents, leads to a complexity that is rather linear than
exponential in the number of subcomponents [25].

Supposing we have n Boolean variables and each variable is influenced by at most k parents,
then each CPT has at most 2k parameters and the entire system at most n2k parameters. In
contrast, the FJD has 2n parameters.

Finally, we have to show that a Bayesian network (topology and CPTs) in fact represents the
FJD. We define the FJD to be

p(x1, . . . , xn) =
n∏

i=1
Θ(xi|parents(xi)), (22)

where Θ(xi|parents(xi)) denotes the parameters of the Bayesian network in the CPTs. We have
to show that Θ(xi|parents(xi)) corresponds to the conditional probability p(xi|parents(xi)).

Since the general proof is more sophisticated, we refer the reader to [25]. The simpler proof for
the exemplary Bayesian network, which is shown in Figure 8, is discussed instead.

X Y Z

Figure 8: Simple Bayesian Network with random variables X, Y and Z

The proof begins with representing the conditional probability p(z|y) in terms of the FJD by
applying Bayes theorem and marginalization:

p(z|y) = p(z, y)
p(y) (23)

=
∑

x∈X p(z, y, x)∑
z′∈Z

∑
x∈X p(y, z′, x) . (24)

Next, we rewrite the expression using Equation (17) in terms of the network parameters

p(z|y) =
∑

x∈X Θ(x)Θ(y|x)Θ(z|y)∑
x∈X

∑
z′inZ Θ(x)Θ(y|x)Θ(z′|y) , (25)

17



2 BACKGROUND Max Lübbering, 21599173

which can be rewritten as

p(z|y) = Θ(z|y)
∑

x∈X Θ(x)Θ(y|x)∑
x∈X Θ(x)Θ(y|x)

∑
z′inZ Θ(z′|y) (26)

by moving the sum over z′ inwards. This expression can be further simplified by taking into
account that

∑
z′inZ Θ(z′|y) = 1 and we can cancel

∑
x∈X Θ(x)Θ(y|x) which proves that

p(z|y) = Θ(z|y). (27)

Now, we have shown for this Bayesian network that its topology and CPTs in fact represent the
FJD distribution by

p(x1, . . . , xn) =
n∏

i=1
Θ(xi|parents(xi)). (28)

2.3.3 Exact Inference by Enumeration

To explain exact inference in Bayesian networks we introduce another example (taken from
[25]). Suppose we are out of town and our house has a burglar alarm installed. This alarm
can not only be set off by a burglar but also erroneously by an earthquake. There are two
neighbors John and Mary, who call when the alarm was set off, but who might also call for
other reasons. This situation can be modeled using a Bayesian network, whose topology is
shown in Figure 9.

Alarm

Burglary Earthquake

John calls Mary calls

Figure 9: Bayesian network of burglary example

This Bayesian network encodes independence of Burglary and Earthquake

p(Burglary, Earthquake) = p(Burglary) p(Earthquake)

and conditional independence of John calls and Mary calls given Alarm

p(John calls, Mary calls |Alarm) = p(John calls |Alarm) p(Mary calls |Alarm),

John calls and Burglary given Alarm

p(John calls, Burglary |Alarm) = p(John calls |Alarm) p(Burglary |Alarm),

John calls and Earthquake given Alarm

p(John calls, Earthquake |Alarm) = p(John calls |Alarm) p(Earthquake |Alarm),

18



2 BACKGROUND Max Lübbering, 21599173

Mary calls and Burglary given Alarm

p(Mary calls, Burglary |Alarm) = p(Mary calls |Alarm) p(Burglary |Alarm),

as well as, Mary calls and Earthquake given Alarm

p(Mary calls, Earthquake |Alarm) = p(Mary calls |Alarm) p(Earthquake |Alarm).

In the following, we will denote every of the five random variables by its first letter.

As in any probabilistic inference system, we are interested in the posterior probability p(X|E),
where X is the query variable and E is the evidence. The variable Y denotes the hidden
variables we have to sum over, as we will see in Equation (31). With regard to the previous
burglary example, a typical query could be the probability whether there is a burglary given
that John and Mary call: p(B|j,m).

The idea behind the inference algorithm is to rewrite the posterior probability as the joint
probability of the query variable and the evidence variable and divide the expression by the
prior of the evidence:

p(x|e) = p(x, e)
p(e) . (29)

As the posterior probability is a function of x, we can replace the denominator by a constant α
and describe the posterior by marginalizing y out the full joint distribution:

p(x|e) = αp(x, e) (30)
= α

∑
y∈Y

p(x, e, y). (31)

The FJD can then be expressed in terms of the the probabilities in the CPTs. Applying these
steps to the example query p(B|j,m) yields

p(B|j,m) = αp(B, j,m) (32)
= α

∑
e∈E

∑
a∈A

p(B, j,m, e, a) (marginalization) (33)

= α
∑
e∈E

∑
a∈A

p(B) p(e) p(a|B, e) p(j, a) p(m|a). (topology) (34)

In the worst case scenario, we would have to sum out all of the n variables but one, thus leading
to a complexity of of O((n − 1)2n−1), where n − 1 are the multiplications and 2n−1 are the
number of combinations of the variable values.

One improvement is to move as many variables as possible out of the sums. This simplifies the
calculation for the example to:

p(B|j,m) = αp(B)
∑
e∈E

p(e)
∑
a∈A

p(a|B, e) p(j, a) p(m|a). (reordering) (35)

The variable elimination algorithm is a further improvement over the the inference by enumer-
ation algorithm. Looking at Figure 10, which visualizes each calculation step of Equation (35),
we see that there are calculations which are performed multiple times. The variable elimination
algorithm prevents repeated calculations by calculating them once and storing the results. A
full description of the variable elimination algorithm can be found in [25].

19



2 BACKGROUND Max Lübbering, 21599173

Figure 10: Visualized evaluation of the query p(B|j,m), where B = True [25]

2.3.4 Parameter learning

We will now explain how the parameters, which are the probabilities in the CPTs, can be learned
in a Bayesian network that meets the following criteria:

• Known structure (topology)

• All random variables (nodes) are observable

• No missing data

Think of another manufacturer that provides candy bags, whose lime-cherry ratio Θ ∈ [0, 1]
is unknown for each new bag. For each new bag the ratio is sampled from a uniform prior
distribution p(Θ). We can represent this as a Bayesian network with one node (flavor), as
shown in Figure 11.

Flavor p(F = cherry) = Θ

Figure 11: Minimal Bayesian network with one random variable flavor

As we unwrap N candies, the likelihood of the data can be calculated for each possible lime-
cherry ratio Θ by

p(d|Θ) =
N∏

j=1
p(dj |Θ) = Θc(1−Θ)l, (36)

where the vector d contains the flavor of each of the N candies, c denotes the number of cherry
candies in d and l the number of lime candies in d.

Our objective is to determine the Θ, that maximizes the likelihood of the data. As the logarithm
of a function keeps the function’s monotonicity in place, the extrema will be the same. The
log-likelihood L(|Θ) = log(p(d|Θ)) transforms the products into summations, which are easier
to calculate for a computer and are also simpler to differentiate. The log-likelihood L can be

20



2 BACKGROUND Max Lübbering, 21599173

expressed in terms of Θ, c and l by

L(d|Θ) = log p(d|Θ) (37)

=
N∑

j=1
log p(dj |Θ) (38)

= c log Θ + l log(1−Θ). (39)

Next, the log-likelihood is differentiated to determine its maximum:

dL(d|Θ)
dΘ = c

Θ −
l

1−Θ = 0. (40)

Solving for Θ, it follows that Θ, that maximizes the likelihood, is exactly the ratio of cherries
in the bag:

⇒ Θ = c

c+ l
= c

N
. (41)

We now extend the example and suppose that the wrapper of the candies are selected according
to an unknown conditional distribution p(wrapper ∈ {red, green}|flavor ∈ {cherry, lime}).

Flavor p(Flavor = cherry) = Θ

Wrapper Flavor p(Wrapper = red|Flavor) p(Wrapper = green|Flavor)
cherry Θ1 1−Θ1
lime Θ2 1−Θ2

Figure 12: Bayesian network of extended candy example

Our objective again is to learn the parameters Θ, Θ1 and Θ2 after having unwrapped N candies
of which c are cherries and l are limes. We denote the number of cherry candies having red
wrapper as rc, the number of cherry candies having green wrappers as gc, the number of lime
candies having red wrappers as rl and the number of lime candies having green wrappers as
gl.

The likelihood of the unwrapped candies d given the parameters is given by

p(d|Θ,Θ1,Θ2) = p(Flavor = cherry)c p(Flavor = lime)l

p(Wrapper = red|Flavor = cherry)rc

p(Wrapper = green|Flavor = cherry)gc

p(Wrapper = red|Flavor = lime)rl

p(Wrapper = green|Flavor = lime)gl

(42)

= Θc(1−Θ)lΘrc
1 (1−Θ1)gcΘrl

2 (1−Θ2)gl (43)

Again we calculate the log-likelihood and determine the parameters that maximize it

L = log(p(d|Θ,Θ1,Θ2)) (44)
= [c log Θ + l log(1−Θ)] + [rc log Θ1 + gc log(1−Θ1)] + [rl log Θ2 + gl log(1−Θ2)], (45)

which once again are the respective frequencies.

21



2 BACKGROUND Max Lübbering, 21599173

A final note on missing data: If our dataset did not provide any samples e.g., having flavor
cherry then according to Equation (43) we would learn that the probability of getting a cherry
flavored candy is 0. This means that any query involving a cherry flavored candy, would have
0 probability (see Equation (45)).

In text classification we often deal with missing data, which is why we need to compensate
for this. One approach which is called Lidstone smoothing adds exactly one sample to each
feature

Θ = c+ α

N + dα
, (46)

where the smoothing parameter α = 1 and d is the number of features [3]. For α ∈ [0, 1) this
is called Laplace smoothing, where a value of 0 means no smoothing at all. Note, that the
smoothing parameter α and the number of features d are unrelated to the preceding nomencla-
ture regarding Bayesian networks and have been chosen to be consistent with the nomenclature
used in the literature regarding smoothing in natural language processing.

2.4 Naïve Bayesian Networks

Naïve Bayesian networks are a special case of Bayesian networks. At the root of the network,
there is the class variable, that is to be predicted. The features follow directly as the leaves of the
network. Therefore, naïve Bayesian networks always have exactly two layers. The term naïve
stems from the fact, that the network assumes conditional independence between its features
given the class.

Figure 13 shows such a naïve Bayesian network. Its objective is to classify emails whether
they are spam or not based on the words present in the email. At the root we have the class
variable Spam. The features Lottery, Nudes and Viagra provide strong evidence for spam if
any of those is present in an email. In contrast, if any of the words Science, Computer or
Journal is present, we can be quite sure that this is a regular email. Using this network, we
can give an example why this network is rather naïve: Its conditional independence property
states, that p(science | journal,¬spam) = p(science | ¬spam), which means that in a regular
mail the probability of the word science is not influenced whether the mail also contains the
term journal or not. This does not really reflect reality. However, the successful application of
naïve Bayesian networks for spam detection in the field has been shown by Sahami et al. in [26]
and others.

Spam

ViagraNudesLottery Science Computer Journal

Figure 13: Exemplary Naïve Bayesian Network

A naïve Bayesian network is trained in the same way as explained in Section 2.3.4 for Bayesian
networks. Likewise, inference is performed as derived in Section 2.3.3 for Bayesian networks.

22



2 BACKGROUND Max Lübbering, 21599173

2.5 Support Vector Machines

In this section, we explain how support vector machines (SVMs) work. We will follow the
derivation approach provided by [1], but extend it by additional steps in between and visual-
izations.

Before introducing the foundations of SVMs, the reader needs to get familiar with linear dis-
criminant functions, which we from now on call decision boundaries. Our objective is to classify
a sample by its position relative to the decision boundary. All samples above the decision
boundary are supposed to have the same label (e.g., 1), whereas all samples below the decision
boundary are assigned another label (e.g., -1).

In Figure 14, we plotted an exemplary decision boundary (red line), which is defined in terms
of the weight vector w and the bias b by

y(x) = wT x + b. (47)

For an arbitrary point p that lies on the decision boundary y(p) = 0. Any sample x that does
not lie on the decision boundary, is classified by the following decision rule:

1 if y(x) > 0 (48)
−1 if y(x) < 0 (49)

axis2

axis1

−b
‖w‖

w
x

xA

xB

y(x)
‖w‖=r

x⊥

Figure 14: Classification by decision boundary (red line)

Let the points xA and xB lie on the decision boundary, then y(xA) = 0 and y(xB) = 0.
Subtracting both equations yields wT (xA − xB) = 0. From this we can conclude that w is
perpendicular to any vector collinear to the decision boundary and therefore determines the
orientation of the decision boundary.

The displacement is defined by b. Given a point xA that lies on the decision boundary the
equation

y(xA) = wT xA + b = 0 (50)

23



2 BACKGROUND Max Lübbering, 21599173

holds. By applying equivalent transformations, we get wT xA = −b and normalizing by the
magnitude of w we receive wT

‖w‖xA = − b
‖w‖ . The left part of the equation is the inner product

of the point xA and the unit vector w
‖w‖ . Therefore, b

‖w‖ is the shift of the decision boundary
from the origin in direction of w.

Next, we show that y(x) returns the actual distance r from the decision boundary. Let x be a
point in the feature space not lying on the decision boundary. Orthogonally projecting x onto
the decision boundary leads to point x⊥. Therefore, the point x can be represented by x⊥ and
a shift by a multiple of w. Note, that the vector w is perpendicular to the decision boundary
and therefore the distance can be represented by a multiple of the unit vector w

‖w‖ .

x = x⊥ + r
w
‖w‖ . (51)

Multiplying both sides with w from the left and adding b, we get

wT x + b = wT (x⊥ + r
w
‖w‖) + b (52)

y(x) = wT x⊥ + b+ wT rw
‖w‖ (53)

y(x) = ‖w‖r (54)

r = y(x)
‖w‖ . (55)

From Equation (53) to Equation (54), we made use of Equation (50). The distance r of a point
x to the decision boundary is given by r = y(x)

‖w‖ , as determined in Equation (54). The sign of r
can be used to classify any instance in the feature space.

During model training of a SVM, the objective is to determine the model parameters w and b
of the decision boundary

y(x) = wT Φ(x) + b, (56)

where the function Φ(x) is a feature space transformation, which we explain later.

We presume the set of samples X = {x1,x2, . . . ,xN}, having labels T = {t1, t2, . . . , tN}, where
ti ∈ {−1,+1}, to be linearly separable in the feature space such that

y(xi) > 0 ∀ i ∈ {i | ti = 1} (57)
y(xi) < 0 ∀ i ∈ {i | ti = −1}, (58)

which can be rewritten as
tiy(xi) > 0 i ∈ {1, 2, . . . , N}. (59)

In practice, there are usually many possible decision boundaries, that linearly separate the
samples based on their class. This is why, we need an objective function that we can optimize
to find the best decision boundary. In the SVM approach, we pick the decision boundary, which
maximizes the margin, as shown Figure 15. Choosing the decision boundary maximizing the
margin, yields the best robustness for outliers and thus a strong generalization performance.
The samples closest to the decision boundary are called support vectors.

We will now demonstrate how to frame the optimization problem as a convex optimization
problem that can be solved with Lagrange multipliers. The absolute distance of a point xi to

24



2 BACKGROUND Max Lübbering, 21599173

axis2

axis1

y(x
) =

w
T x +

b =
0

y(x
) =

w
T x +

b =
1

y(x
) =

w
T x +

b =
−1

margin

b‖w‖

w

Figure 15: Visualization of the best decision boundary and its margin

the decision boundary is given by

|ri| =
tiy(xi)
‖w‖ = ti(wT Φ(xi) + b)

‖w‖ . (60)

The distance of the closest point is supposed to be maximized, thus the objective function
o(w, b) becomes

o(w, b) = min
i∈{1,2,...N}

ti(wT Φ(xi) + b)
‖w‖ (61)

o(w, b) = 1
‖w‖ min

i∈{1,2,...N}
ti(wT Φ(xi) + b). (62)

We want to maximize o(w, b) with respect to w and b.

Since this optimization function is rather complex, we apply a trick to simplify the function. If
we rescale w → kw and b → kb, then the distance of any point xi to the decision boundary
does not change:

ri = tiy(xi)
‖w‖ (63)

= ti(kwT Φ(xi) + kb)
k‖w‖ (64)

= kti(wT Φ(xi) + b)
k‖w‖ (65)

Making use of this scaling invariance, we can set the samples closest to the decision boundary
to fulfill the constraint tiy(xi) = ti(wT Φ(xi) + b) = 1 and for all the other points tiy(xi) =
ti(wT Φ(xi) + b) ≥ 1.

Now, the objective function simplifies to o(w, b) = 1
‖w‖ , which we want to maximize. Due to

mathematical convenience, we choose to minimize o∗(w, b) = 1
2‖w‖

2 instead, which is mathe-
matically equivalent to the maximization of the original objective function o(w, b).

25



2 BACKGROUND Max Lübbering, 21599173

The full optimization problem now corresponds to

arg min
w,b

1
2‖w‖

2 (66)

subject to
ti(wT Φ(xi) + b) ≥ 1 i = 1, . . . , N. (67)

We can solve this with the method of Lagrange multipliers. Minimizing the Lagrange function
L(w, b,a)

L(w, b,a) = 1
2‖w‖

2 −
N∑

i=1
ai{ti(wT Φ(xi) + b)− 1}, (68)

where the Lagrange multipliers are denoted by a = (a1, a2, . . . , aN )T and each ai ≥ 0. Note,
that to minimize L, we have to maximize for a and minimize for w, b.

Calculating the derivatives of L for w, b and setting them to zero we get the two equations:

w =
N∑

i=1
aitiΦ(xi) (69)

0 =
N∑

i=1
aiti (70)

Plugging w into L and eliminating b, we get a dual problem L̃, in which we have to maximize
over a:

L(w, b,a) = 1
2‖w‖

2 −
N∑

i=1
ai[ti(wT Φ(xi) + b)− 1] (71)

= 1
2wT w−

N∑
i=1

aitiwT Φ(xi)−
N∑

i=1
aitib+

N∑
i=1

ai (72)

= 1
2wT w−wT

N∑
i=1

aitiΦ(xi)− b
N∑

i=1
aiti +

N∑
i=1

ai (73)

= 1
2wT w−wT w +

N∑
i=1

ai (74)

= −1
2wT w +

N∑
i=1

ai (75)

= −1
2

N∑
n=1

N∑
m=1

anamtntmΦ(xn)T Φ(xm) +
N∑

i=1
ai (76)

=
N∑

i=1
ai −

1
2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm) (77)

=: L̃(a), (78)

where k(x,x′) ≡ Φ(x)T Φ(x′) is kernel function, that corresponds to the scalar product in the
feature space Φ(x) is projecting x to.

With L̃(a), we can define a dual representation of the prior problem in which we have to

26



2 BACKGROUND Max Lübbering, 21599173

maximize the objective function over a:

arg max
a

L̃(a) = arg max
a

N∑
i=1

ai −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm) (79)

subject to

0 =
N∑

i=1
aiti (80)

ai ≥ 0 i = 1, . . . , N. (81)

The big advantage of the dual problem representation is the fact that it allows the use of kernel
functions. This way, we do not have to project the points to a higher feature space explicitly
and also spare the subsequent calculation of the dot product.

The decision boundary is defined in terms of a by

y(x) =
N∑

i=1
aitik(x,xi) + b (82)

and can be derived as follows using Equation (69):

y(x) = wT Φ(x) + b (83)

=
( N∑

i=1
aitiΦ(xi)

)
Φ(x) + b (84)

=
N∑

i=1
aitiΦ(xi)T Φ(x) + b. (85)

Note, that x is a point that is passed to the decision boundary function y and that each sample
point xi is element of the sample set earlier denoted by X.

The value of b can be calculated by

b = 1
NS

∑
n∈S

(
tn −

∑
m∈S

amtmk(xn,xm)
)
, (86)

as proved by [1], where NS is the number of support vectors and S is the indices set of the
support vectors.

Often, even in a high dimensional space the training data is not linearly separable, which is
why we would not find a solution using the approach presented so far. To solve this problem,
one approach is to add slack variables to the constraints, which allow each training sample to
meet the criteria. However, for each slack variable we add a cost proportional to its value to the
objective function. This approach, which is called soft margin classification, allows the decision
boundary to correctly divide the majority of the data, while not taking few noisy samples into
account. A full derivation of this approach can be found in [20].

2.6 Feature Selection Strategies

In this section, we introduce two different methods to intelligently select a subset of features
(here: words) for training and evaluation.

27



2 BACKGROUND Max Lübbering, 21599173

2.6.1 Mutual Information

Mutual Information is a measure to determine the mutual dependence between two random
variables. Given the two random variables X and Y , we calculate the mutual information I
by

I(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log p(x, y)
p(x)p(y) . (87)

which boils down to how much information the random variable X contains about random
variable Y .

The concept of mutual information is closely related to entropy and conditional entropy, which
we define now, in order to highlight certain properties of mutual information.

The amount of information a random variable contains is usually being measured in terms of
the entropy4 of a random variable:

H(X) = −
∑
x∈X

p(x) log p(x) (88)

Conditional entropy is defined by

H(X|Y ) = −
∑
y∈Y

∑
x∈X

p(x, y) log p(x|y), (89)

which is the amount of information that Y does not reveal about X.

The relationship between mutual information, entropy and conditional entropy can be repre-
sented in a Venn diagram, as shown in Figure 16.

H(Y |X)H(X|Y ) I(X,Y ) H(Y )H(X)

H(X,Y )

Figure 16: Mutual information and entropy relationship

We want mutual information to be zero if two random variables are independent of each other
and to be maximum if the two variables are deterministic functions of each other (i.e., maximum
dependency possible). We now show that these two properties are fulfilled by the mutual
information concept.

If random variable X is independent from random variable Y , we expect the mutual information

4“It is said that von Neumann recommended to Shannon that he use the term entropy, not only because of its
similarity to the quantity used in physics, but also because ‘nobody knows what entropy really is, so in any
discussion you will always have an advantage’.” [1]

28



2 BACKGROUND Max Lübbering, 21599173

to be zero. Hence, let X be X ⊥ Y , then the mutual information amounts to

I(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log p(x, y)
p(x)p(y) (90)

=
∑
y∈Y

∑
x∈X

p(x, y) log 1 (91)

= 0. (92)

We now derive the second property, which states that mutual information is maximum, if the
variable Y is a deterministic function of X and vice versa:

I(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log p(x, y)
p(x)p(y) (93)

=
∑
y∈Y

∑
x∈X

p(x, y) log p(x|y)p(y)
p(x)p(y) (94)

=
∑
y∈Y

∑
x∈X

p(x, y)(log p(x|y)− log p(x)) (95)

=
∑
y∈Y

∑
x∈X

p(x, y) log p(x|y)−
∑
y∈Y

∑
x∈X

p(x, y) log p(x) (96)

=
∑
y∈Y

∑
x∈X

p(x, y) log p(x|y)−
∑
x∈X

log p(x)
∑
y∈Y

p(x, y) (97)

=
∑
y∈Y

∑
x∈X

p(x, y) log p(x|y)−
∑
x∈X

p(x) log p(x) (98)

= H(X)−H(X|Y ). (99)

This property can be directly deduced from the Venn diagram in Fig. 16. If our objective is
to maximize I(X,Y ), we have to minimize H(X|Y ) such that it approaches zero. If the two
circles of the random variables completely overlap, then the conditional entropy becomes zero,
meaning that if we know the value of X, then Y can be directly deduced from X and vice
versa. Therefore, if X and Y are deterministic functions of each other, the mutual information
approaches its maximum.

When performing feature selection based on mutual information, we determine the mutual
information between every feature candidate and the classes. We pick the ones having highest
mutual information i.e., the features that contain most information about the classes.

2.6.2 χ2 Test Statistic

The χ2 test for independence is used to determine if two random variables are independent by
calculating the χ2 test statistic between two sample sets of the random variables. For instance,
consider the random variables Gender, whose value is one of {male, female} and Empathy,
whose value is one of {low, high}. We want to determine, if there is no relationship between
Gender and Empathy (i.e., independence between Gender and Empathy) by evaluating the
gender sample set and the empathy sample set.

The null hypothesis h0 in this case states that there is no relationship between Gender and
Empathy. The alternative hypothesis h1 states, that there is a relationship between Gender
and Empathy. Our objective is to test whether we can reject h0. To do so, we calculate the χ2

29



2 BACKGROUND Max Lübbering, 21599173

test statistic, which is given by

χ2 =
∑

e∈{0,1}

∑
g∈{0,1}

(Oe,g − Ee,g)2

Ee,g
, (100)

where E1,1 is the expected frequency of samples having features empathy = high and gender =
female under the assumption that random variables empathy and empathy are independent.
The variable O1,1 is the number of samples in the sample set that have features empathy = high
and gender = female (observations). Both expected frequency and observed frequency can be
visualized in a contingency table, as shown in Table 3.

Gender = male Gender = female
Empathy = low O0,0, E0,0 O0,1, E0,1
Empathy = high O1,0, E1,0 O1,1, E1,1

Table 3: Contingency table of gender and empathy example

The expected frequency is calculated assuming independence between the two variables:

E1,1 = O p(empathy = high) p(gender = female), (101)

where O is the sample set size. The probabilities are calculated by the frequencies in the
datasets, such that Equation (101) can be expressed by

E1,1 = O
O1,1 +O1,0

O

O1,1 +O0,1
O

. (102)

The χ2 test statistic defined in Equation (100) can be interpreted as the summation of all
squared differences between the expected frequencies (under the assumption of independence
between the two random variables) and the observed frequencies in the sample set normalized
by the expected frequencies. If the test statistic has a low value close to zero, then the two
random variables are independent (expected frequencies equal observed frequencies). If they
exceed a certain threshold, then we can say that they are dependent up to a certain confidence
level and can reject h0.

When using the χ2 test for feature selection we are not interested whether or not we can reject
the null hypothesis. We solely calculate the χ2 test statistic for each feature and the classes and
pick the features that have the highest χ2 test statistic. For instance, let us say we wanted to
distinguish seabass from salmon (both fish species) based on the features color ∈ {bright, dark}
and length ∈ {≥ 15cm,< 15cm}. Assuming our classifier only allows only one feature, we need
to decide for one of the two features. Using the χ2 test statistic, we would calculate the statistic
between length and the two classes as well as between color and the two classes. We would pick
the feature having the highest χ2 test statistic.

For text classification we use the terms as features and select the ones having the highest χ2

test statistic.

30



3 STATE OF THE ART AND RELATED WORK Max Lübbering, 21599173

3 State of the Art and Related Work

This chapter is divided in two parts. In Section 3.1, we show how other researchers have solved
the issue of classifying news articles in a variety of domains. We then present the current state
of research regarding financial trading systems based on news articles in Section 3.2

3.1 Text Classification

The task of text classification has been well researched over the past years. There are different
strategies to vectorize texts e.g., bag-of-words model [20], tf-idf vectorization [20] and n-gram
models [2] that can be understood by classification algorithms. Among these classification
algorithms there are support vector machines, naïve Bayesian networks, neural networks and
others, which have been evaluated and compared to one another regarding text classification,
as done by McCallum et al. in [21] for instance. They compared the two types of naïve
Bayesian networks, namely the Bernoulli model and the multinomial model and found out, that
both models perform similarly well on shorter texts, whereas the multinomial model clearly
outperforms the the Bernoulli model on longer texts.

In [27], Schumaker compared different vectorization strategies of news articles (bag of words,
noun phrases, named entities) as training input for SVM regression.

Another well explored algorithm for text classification are support vector machines. In [13].
Joachims empirically determined, that support vector machines outperform decision trees, k-
nearest neighbor classifiers, as well as, naïve Bayesian networks. While showing a great per-
formance, support vector machines do not need a sophisticated parameter tuning and never
showed total failures in his experiments.

As many machine learning algorithms are sensitive to noise and vectorized texts usually span a
huge feature space, it is important to limit the number of features. In [8], Forman compared dif-
ferent feature selection strategies like information gain, χ2 test statistic or bi-normal separation,
which outperformed previous feature selection strategies.

Due to he huge feature space, it is critical to have machine learning algorithms, that are op-
timized for fast training and prediction. Facebook’s researchers Joulin et al. [14] therefore
developed the algorithm FastText based on neural networks, that is able to classify 500,000 sen-
tences each of them belonging to one of 312,000 classes, in less than one minute on an average
multicore CPU.

3.2 Influence of the Media on Stock Prices

Financial news articles deal with a variety of aspects, that describe a company’s situation e.g.,
they comment on a company’s prospects based on the company’s quarter results or they may
even be investigative by uncovering a major scandal. That is why news articles and press
releases have been a trader’s concern since the beginning of stock trading.

The influence of the media on stock prices has been covered in many financial papers. Tetlock
found out in [28], that pessimistic news articles are predictive for falling stock prices. Addition-
ally, in [29] Tetlock et al. found out that negative words in news articles are good predictors
for earnings and returns of a company.

There have been many approaches analyzed in recent years to utilize machine learning algo-
rithms for stock market prediction using news articles and press releases. It has been shown
by [11], that a naïve Bayesian network is able to weakly predict stock markets. They used a

31



3 STATE OF THE ART AND RELATED WORK Max Lübbering, 21599173

corpus of 5,000 news articles dealing with a total of 12 stocks to train the model for the three
movement classes up, down and unchanged relative to a relevant index.

Mittermayer [23] introduced a news categorization and trading system based on support vector
machines. He used press releases and categorized them by the impact they allegedly had on
the stock by looking at the respective stock prices. The SVM model outperformed a random
trader.

Koppel et al. [15] mined a set of news articles covering 12,000 stories on companies listed on
the S&P500 index. They built an SVM based on the top hundred word features according
to information gain. In 70% of the cases their model was able to distinguish good from bad
news. However, the effects of the news articles were immediately reflected in the stock prices,
which supports the efficient market theory explained in Section 2.1.1. However, Dellavigna et
al. [5] analyzed the duration it takes an earnings report to be represented in a stock price. They
differentiated between every business day and came to the conclusion that traders are especially
inattentive on Fridays. On average the effects had a 70% higher delayed response, thus leading
to greater trading opportunities.

In [10], the authors Généreux et al. utilized the dataset by Koppel and Shtrimberg [15] and
automatically labeled the news articles based on the stock price change from the time before
and after the release. Having trained a linear support vector machine, their results show a
pessimistic view on forward looking investment opportunities.

In [6], Das et al. utilized messages about stocks posted on Yahoo!’s message board, to build
four classifiers each being based on a different machine learning algorithm. The classifiers were
stacked in a boosting fashion. The resulting model, worked better on indexes than individual
stocks.

32



4 METHODOLOGY Max Lübbering, 21599173

4 Methodology

In this section, we describe the methodology that we applied to build and evaluate the three
models introduced in Section 1.3.

The research project is split up into the following parts:

• Data Acquisition (Section 4.1)

• Preprocessing (Section 4.2)

• Modeling (Section 4.3)

• Evaluation (Section 4.4)

In each part we dealt with a variety of subproblems and solved these with different approaches,
which are explained in this section.

4.1 Data Acquisition

In the data acquisition part we used the following two crawlers to populate our data base:

• Press Release Crawler:
Uses Rich Site Summy (RSS) feeds to collect news articles

• Google Stock Crawler:
The latest stocks are crawled from the Google stock API whose endpoint is available at
https://finance.google.com/finance/getprices5. The response format is in CSV,
which contains the same columns as in Table 2 in Section 2.1.3.

The press releases need to be put in relation with the corresponding stock price changes. To do
that, we first have to determine the company that is mentioned in the press release. Fortunately,
almost all press releases name the company symbol in the format (exchange:symbol). Using a
regular expression, we are able to filter the company symbol and tag the press releases with the
corresponding company.

4.2 Preprocessing

The preprocessing chapter has been partly adapted from [18], due to the large methodological
overlap. The press release crawler provides HTML which needs preprocessing. First, the text has
to be extracted from the HTML code (text extraction). Then, we apply multiple preprocessing
steps (text cleaning) to the raw text string such that we can pass the vectorized representation
to the machine learning algorithms.

4.2.1 Text Extraction

HTML code represents a tree structure, where each branch is enclosed by HTML tags. Using
BeautifulSoup6 we traverse that tree until we reach the node that encapsulates the text we want
to obtain.

5Note, that as of July 31, 2018 this API has been closed.
6https://www.crummy.com/software/BeautifulSoup/

33

https://finance.google.com/finance/getprices
https://www.crummy.com/software/BeautifulSoup/


4 METHODOLOGY Max Lübbering, 21599173

4.2.2 Text Cleaning

After having extracted the text from HTML code, we apply the following preprocessing steps
to the corpus, such that the vectorized result can be passed to other machine learning algo-
rithms.

Tokenization
Tokenization is the process of splitting a document by whitespace and punctuation. The result
is a list of tokens.

Removal of stop words and punctuation
Documents usually contain words that are too common in a language such that they do not
convey any information. In the English language these are words like a, the, is, are, which are
called stop words in natural language processing. Fortunately, there are multiple pre-defined
stop words lists available. We use of NLTK’s stopword list7 and remove these words from the
press releases.

Part-of-speech tagging
Part-of-speech tagging (POS tagging) marks up each token in a document with its part of
speech. There are several POS taggers available that build up on a variety of machine learn-
ing algorithms including hidden Markov models, neural network and support vector machine
approaches. For an extensive list of state of the art POS tagging refer to [4]. Python’s NLTK
library sticks to the part-of-speech tags defined by the Linguistic Data Consortium of the Uni-
versity of Pennsylvania8.

Lemmatization for certain POS
The lemmatizer uses the part of speech tags and a dictionary of known word forms to reduce
each word to its normalized form. In contrast to stemming, it takes the role of part of speech
into account. The token computing would be stemmed to comput, dropping the ing suffix.
If computing was a verb it would be lemmatized to compute, if it was a noun it would keep
computing as it is already in the normalized noun form.

4.2.3 Count Vectorization

Since we cannot pass press releases directly to the machine learning algorithms, we need to
transform them into a vectorized representation. One way to do this is to apply count vec-
torization, which is sometimes also referred to as the bag-of-words model. Count vectorization
builds a vocabulary of all words in a corpus (set of all documents) and counts the number of
occurrences of each word for each document. This can be represented as a matrix

BM,|v| =


b1,1 b1,2 · · · b1,|v|
b2,1 b2,2 · · · b2,|v|
...

... . . . ...
bM,1 bM,2 · · · bM,|v|

 ,

7http://www.nltk.org/
8https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

34

http://www.nltk.org/
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html


4 METHODOLOGY Max Lübbering, 21599173

where M is the number of documents in the corpus, |v| is the length of the vocabulary v (set
of all distinct words in a set of documents) and an element bi,j represents how often word j
appears in document i.

Since this approach takes all the features (distinct words) into account, we have to deal with
the two problems:

• Having a huge feature space, this automatically leads to a lot of features which do not
contribute to the classification (noise).

• Complex models with many degrees of freedom tend to fit these noisy features, leading to
poor generalization performance.

Therefore, to prevent overfitting, we have to carefully select the features with high discrim-
inability.

4.2.4 Feature Selection

For feature selection we treat the class and each term as a random variable. Based on the
feature selection scoring functions χ2 test statistic and mutual information, which we explained
in Section 2.6, we select those features whose random variable provides most information about
the class random variable.

4.2.5 Stock Prices Preprocessing

All the stock prices, that we receive from our API, are absolute values in Dollars. Naturally,
a stock traded at 1000 $ per share has a higher volatility compared to a stock, that is being
traded at 1 $ per share. Predicting absolute stock prices would mean, that the classifier has to
learn, that higher stock prices have higher price jumps. This can be tricky, especially for stock
price values, that the classifier has not been trained on.

Therefore, we need a scale-free measure to be able to compare stock price changes. Tsay
introduced the k-periods simple net return in his book [30]. This scale-free measure is defined
as

Rk(t) = pt − pt−k

pt−k
, (103)

where pt is the stock price at time t and k is the offset that we look into the past for the
reference price pt−k. In a nutshell, the k-periods simple net return calculates the return at time
t, that we would have received, if we had invested into the company at time t− k. The return
is normalized by pt−k and thereby scale-free.

When we receive a press release at time t, it does not make sense to only look back in time,
because the effect of the press release will happen in the future. Therefore, we introduce a new
measure, which we will from now on call simple net opportunity (SNO) and define it by

Ok1,k2(t) = pt+k1 − pt−k2

pt−k2

, with k1, k2 ≥ 0. (104)

Part of our analysis in Section 6.1.3 will be to determine the parameters k1 and k2, such that
on average they maximize the absolute value of the SNO for all press releases.

35



4 METHODOLOGY Max Lübbering, 21599173

4.3 Modeling

In this section, we first formally define the machine learning problem. Since the sentiment
model is practically the same as the impact model but with different labels for each sample, we
only define the impact model in Section 4.3.1.

Having generally explained the trivial classifier in Section 1.3, the naïve Bayesian network in
Section 2.4 and the support vector machine in Section 2.5, we show how the three algorithms
can be applied to the text classification problem in Section 4.3.2, Section 4.3.3 and Section 4.3.4,
respectively.

4.3.1 Formal Description of the Machine Learning Problem

Our objective is to learn whether a press release has an impact I or no impact ¬I on the stock
price.

Formally, this classification problem can be expressed as follows: Every press release is repre-
sented by a vector d ∈ X, where X is the document space. There are many different ways to
specify the document space. A simple way is to represent each press release in a vector space
that is spanned by the vocabulary v of the corpus. The vector representation has dimensions
|v| and the jth component counts how often the press release contains the jth word in the vo-
cabulary. In this case the document space can be denoted by N|v|. This kind of vectorization is
called count vectorization, which we already explained in Section 4.2.3

For classification, we need to specify the set of classes, that can be assigned to a press release.
Since we want to predict the impact of a press release on the stock prices, we decided to label
each press release by one of the two classes C = {I,¬I}, where ¬I corresponds to no impact
and I means either a positive or negative impact.

The naïve Bayes network and support vector machine learn the classification function γ, that
maps each press release representation d to one of the classes of C:

γ : X→ C (105)

For sentiment prediction, we only consider the press releases that had an impact on the stock
prices and reassign the labels sentiment (S) or no sentiment (¬S), depending on whether a
press release had a positive or negative impact, respectively.

4.3.2 Trivial Classifier

This trivial classifier groups the training samples of each class and then ranks for each group the
words by their frequency. For each class we only consider the most frequent terms, providing
us with two lists as exemplary shown in Table 4.

I ¬I
great constant
profit steady
loss dog
decrease kitchen
. . . . . .

Table 4: Exemplary word list for each class

36



4 METHODOLOGY Max Lübbering, 21599173

For prediction, we count how often each term in the class lists appeared in the press release.
The class that has the most correspondences is picked for classification. Note, that the terms
in each class are considered of equal importance to prediction. As an improvement one could
weight the terms of a list by the frequency they occur in the documents of this class.

To put the trivial classifier into mathematical terms, we first have to count vectorize the
press release corpus D consisting of M documents, which yields the document matrix B =
[b1,b2, . . .bM ]T ∈ NM×|v|, where the vector v denotes the vocabulary of the corpus.

Each document has a class label c ∈ C = {I,¬I}. We store all the class labels of the press
releases in the vector y, where the ith element of y corresponds to the class of the ith press
release in the corpus.

Model building
For model building we group the training sample indices by their class label c ∈ C:

Gc = {i ∈ N | yi = c} ∀ c ∈ C. (106)

So GI would filter all the document indices in D belonging to class I.

We can then calculate the term frequencies in documents having class label c by summing up
all the bi, whose index is in Gc:

fc =
∑

i∈Gc

bi (107)

For each class label c we calculate fc and store the indices of the k terms having highest frequency
in the set Tc.

Prediction
The document we want to predict is given by s = [s1, s2, . . . , s|v|], where si is the count of how
often the ith term of the vocabulary v occurred in the document (count vectorized representa-
tion). For each class label c, we calculate how strongly s belongs to this label and finally pick
the one with the highest affiliation by:

prediction(s) = arg max
c∈C

∑
i∈Tc

si. (108)

4.3.3 Naïve Bayesian Networks for Text Classification

There are two different types of naïve Bayesian networks for text classification, namely the
multinomial model and the Bernoulli model. A comprehensive description of both models can
be found in [20]. This section gives a brief overview on both models based on the previously
cited textbook’s explanatory approach and its notation.

Both models pick the class cMAP ∈ C, that maximizes the a posteriori probability, which was
introduced by Equation (5) in Section 2.2:

cMAP = arg max
c∈C

p(c|d) (109)

= arg max
c∈C

p(d|c)p(c)
p(d) (110)

= arg max
c∈C

p(d|c)p(c), (111)

37



4 METHODOLOGY Max Lübbering, 21599173

where c is the class over which we maximize and d is the given document.

The two models differentiate in how they represent the document d in the document space X.
In the multinomial model, d is represented by the sequence of terms < t1, . . . , tnd

>, where nd

is it the length of the document. The Bernoulli model represents d as a vector having the size of
the vocabulary v. A vector element has the value either 1 or 0, depending on whether the token
in v at the same index is present in d, formally < e1, . . . , e|v| >, where ei ∈ X = {0, 1}|v|.

The multinomial model assumes conditional independence of each term in the text given the
class and positional independence of terms, which can be expressed by

p(d|c) = p(< t1, . . . , tnd
> |c) =

∏
1≤k≤nd

p(Xk = tk|c) (112)

and
p(Xi = t|c) = p(Xj = t|c) ∀ i, j ∈ {1, . . . , nd}, (113)

where d is the document of length nd represented by the vector consisting of tokens t1 to tnd
. So

as given by Equation (112), the probability of d given class c is the product of the probability
of each term given c, thus making use of the conditional independence assumption for any token
given the class. Note, that Xk is the random variable at position k in the document over the
the vocabulary v. Positional independence is defined by Equation (113), which means that a
token given c is equally likely at every position.

The Bernoulli model assumes conditional independence between the presence of vocabulary’s
tokens given the class, which is expressed by

p(d|c) = p(< e1, . . . , e|v| > |c) =
∏

1≤i≤|v|
p(Ui = ei|c), (114)

where Ui is the random variable for the ith token in the vocabulary and ei value depending
whether the ith term is present in d.

A key property of multinomial models is their ability to take multiple token occurrences into
account, which Bernoulli models are unable to do. Assuming we have a Bernoulli model that
assigns documents to countries: A document dealing generally with Elephants living in Africa
but also mentions Asian Elephants once, might be misclassified. That is why generally speak-
ing, the Bernoulli model should be only used for the prediction of shorter texts, whereas the
multinomial can deal with longer documents as well.

As important words like profit or loss are present in almost every press release, it is crucial for
impact prediction how often these words are used for each press release. This is why, we chose
the multinomial model.

4.3.4 Support Vector Machines for Text Classification

Each count vectorized press release is projected into the corpus’ feature space, to perform model
training and prediction as defined in Section 2.5

There are multiple kernels available. We will evaluate the methods on polynomial kernels with
different degrees. String kernels, which have been introduced by the authors of [16], have shown
promising results in recent research according to [20]. As they are not implemented so far in
the scikit-library, we will consider an implementation and evaluation on press release impact
prediction for future work.

38



4 METHODOLOGY Max Lübbering, 21599173

4.4 Performance Measures

In binary classification, when predicting an instance we get either one of the four cases, shown
in Table 5. This is a representation of the confusion matrix, where TP is the number of positive
instances that have been correctly predicted, TN is the number of negative instances that have
been correctly identified as negative, FP is the number of instances that were predicted as
positive instances, but in fact are negative and finally, FN , which is the number of instances
that have been predicted as negative but are actually positive. This matrix representation gives
more insights on how the model performs than a single scalar value.

actual
value

Prediction outcome

p n total

p′
True
Positive
(TP )

False
Negative
(FN)

P′

n′
False
Positive
(FP )

True
Negative
(TN)

N′

total P N

Table 5: Confusion matrix for binary classification

We also evaluate the model performance by its accuracy, which builds upon the confusion
matrix.

The accuracy of a model is defined by

accmodel = TP + TN

TP + FP + FN + TN
. (115)

It takes all correctly classified instances of a dataset and divides them by the number of all
items in the dataset.

The models will be trained and evaluated on stratified sampling sets. Therefore, the accuracy
values in the confusion matrix do not directly represent the accuracies expected in the field. As
previously shown in Figure 29, only a small fraction of press releases do have a major influence
on the stock price. Due to the fact that p(¬I) � p(I), where p(I) is the prior probability of
a press release having an impact and p(¬I) is the prior probability of a press release having
no impact, it could be more likely that a sample predicted as having an impact truly has no
impact and therefore is just a false positive.

Making use of the prior probabilities, we need to determine p(I|ŷ) and p(¬I|ŷ), where ŷ, denotes
the prediction of a press release to have an impact and ¬ŷ denotes the prediction of a press
release to have no impact:

39



4 METHODOLOGY Max Lübbering, 21599173

p(I|ŷ) = p(ŷ|I)p(I)
p(ŷ)

= p(ŷ|I)p(I)∑
i∈{I,¬I} p(ŷ|i)p(i)

= p(ŷ|I)p(I)
p(ŷ|I)p(I) + p(ŷ|¬I)p(¬I)

=
T P

T P +F N p(I)
T P

T P +F N p(I) + F P
F P +T N p(¬I)

(116)

p(¬I|ŷ) = p(ŷ|¬I)p(¬I)
p(ŷ)

= p(ŷ|¬I)p(¬I)∑
i∈{I,¬I} p(ŷ|i)p(i)

= p(ŷ|¬I)p(¬I)
p(ŷ|I)p(I) + p(ŷ|¬I)p(¬I)

=
F P

F P +T N p(¬I)
T P

T P +F N p(I) + F P
F P +T N p(¬I)

(117)

The two probabilities can be directly computed from the confusion matrix and the prior prob-
abilities. If p(¬I|ŷ) > p(I|ŷ), it is more likely that a press release, that was predicted to have
influence, truly has no influence.

For the sentiment model this comparison is not necessary, since the negative and positive press
releases are almost balanced, which can also be seen in Figure 29.

40



5 IMPLEMENTATION Max Lübbering, 21599173

5 Implementation

This section deals with the implementation of the approaches and methods for impact and senti-
ment prediction as suggested in Section 4. We will describe in detail how the press release mining
has been worked out in Section 5.1 and show in Section 5.2 how we implemented the stock price
crawler. The preprocessing of the press releases using natural language processing tools is cov-
ered in Section 5.3. The implementation of each of the three machine learning approaches is
described in Section 5.4.

5.1 Press Release Mining

This crawler has been implemented as part of a prior research project and has been documented
in [18]. We adapted those texts with minor changes.

As introduced in Section 4.1, we implemented a crawler that uses RSS feeds provided by news
outlets to mine press releases. When the crawler retrieved a press release, it will be added to
a CSV file by dumping the request’s raw HTML response (including the press release’s URL,
timestamp etc.) into the file. Later on, the preprocessing pipeline reads in the CSV file, extracts
the press release texts out of the HTML codes and then uses these texts to build a representation
that can be passed to machine learning algorithms.

5.1.1 Crawling

The crawler is implemented in Python and has the following key features:

• Request limits: The crawler provides a throttle on a domain basis. This means that we
can limit the requests per second for each domain.

• Scheduling: The crawler schedules press release downloads based on the press release’s
feed origin. For each feed we can individually define a download pattern e.g., every 10
minutes 7 times in total. This has been developed for news articles as they might get
modified / updated over time.

• Highly parallel: To make sure no bottlenecks occur in daily use, every time-consuming
task is parallelized. An example for this property is the retrieval of RSS feeds. The pre-
defined feeds list is split up into sublists of equal lengths. For each sublist, we start a
job that downloads the feeds. Another example is data storage. There exists one thread
whose only purpose is to acquire write jobs from a queue and to write the data to disk.
Since queues are thread-safe, we can create new write jobs from any part of the code.

• No dependencies: The crawler does not rely on any database management system
(DBMS), nor does it rely on any framework. However, it makes extensive use of open-
source libraries like requests9.

As shown in Figure 17, the crawler is object-oriented. In the following paragraph, we will
describe the classes and their relationships to each other by starting with the classes that have
few dependencies.

Throttle is used to limit the number of requests per second made to a each domain. Every time
a get_pass of the Throttle object is called, a timer is started for the requested domain. This
timer blocks another get_pass function call for that domain for a pre-defined duration.

9https://github.com/requests/requests

41

https://github.com/requests/requests


5 IMPLEMENTATION Max Lübbering, 21599173

Requester is a wrapper class for the Requester class defined in the requests library and is
extended by a throttling behavior. When calling the wrapper’s request function, the function
calls get_pass of the Throttle.

The Writer class waits until a write job is added to a queue and writes the data coming with
the write job to the hard drive. Even though the Writer class performs all kinds of writes to
disk (e.g., writing logs to disk), we only focus on writing downloaded press releases to disk in
this description.

Scheduler schedules press release downloads using the APScheduler10 library. It also keeps
track of the press releases, that are already known to the scheduler, such that only unknown
press releases are scheduled for downloads.

The central unit in the crawler is Crawler . When Crawler ’s thread is being started, it performs
warmup_iterations many warmup runs. All press releases that are being collected during these
runs, are flagged as known (Scheduler:known_urls). RSS feeds do always show the last n press
releases and not only the new ones. Since we are solely interested in press releases whose publish
date is known, we perform these warmup runs. Afterwards Crawler initializes the crawling runs
in a fixed interval (rss_feed_crawl_period).

In each warmup or crawling run, Crawler instantiates OutletCrawlers11 and passes a Sched-
uler object, a Requester object and one of the subsets of the feeds list. Then the Crawler
executes the run method of each OutletCrawler to initiate the threads. Inside the threads the
OutletCrawlers retrieve all feeds that are defined in their feeds sublist and pass the article URLs
to the Scheduler.

The Scheduler moves all press release download jobs that are due to a queue. The Download-
Worker reads from that queue and downloads the respective press releases. All the downloaded
press releases are then passed to the Writer ’s queue in order to write them to disk.

Figure 18 shows how the feeds are being retrieved and how the press release download jobs
are being scheduled. The Crawler initiates a crawling run by calling the OutletCrawlers’ run
method.

Each OutletCrawler then requests the feeds and passes the press release URLs to the Scheduler.
The Scheduler then schedules the press release download jobs for press releases that have not
been known so far.

When a press release download job is due, the APScheduler calls a callback function that was
set when the press release download job was scheduled. In our case, we defined a callback
method, that automatically adds the download job to a Due Job Queue (see Figure 19).

On the other end of the queue, there are the DownloadWorkers waiting for due press release
download jobs. If there is such a job, one of the DownloadWorkers will acquire it (note that
queues are generally thread-safe in Python) and download the press release using the Requester.
After the press release download is finished, the DownloadWorker puts the press release into
the Writer Queue.

The Writer instance writes all the press release downloads to disk.

10https://apscheduler.readthedocs.io/en/latest/
11Admittedly, the class’ name might be confusing and should be rather named FeedCrawler
12The class diagram does only show the attributes and methods that are necessary to understand the structural

design of the crawler. For extensive insights please refer to https://github.com/le1nux/crawly.

42

https://apscheduler.readthedocs.io/en/latest/
https://github.com/le1nux/crawly


5 IMPLEMENTATION Max Lübbering, 21599173

1

1

1

1

1

1

1

1

1 0..*

1

1

11

Crawler: Thread

rss_feed_crawl_period : int
rss_feed_request_timeout : int
warmup_iterations : int
max_offset : int

update_feeds(feeds_all, old_hash): feeds_list, new_hash
run()
doWarmup(iterations: int)
crawl()

OutletCrawler: Thread

outlet_name : string
feeds : list
offset : int

run()
stop()
doWarmup()
crawl_outlet()
get_feed(feed_url): list

Scheduler

patterns : list
known_urls : dict
ap_scheduler : apscheduler.[..].BackgroundScheduler

schedule(article_link, feed_url, schedule_mode)
add_known_urls(urls)

Requester

request(url, timeout)

Throttle

request_velocity : int
domain_dict : dict

get_pass(url)

DownloadWorker: Thread

timeout : int

run()

Writer: Thread

open_files : dict

run()
write(path, line)

Figure 17: Class diagram12of the crawler

loop
[articles]

loop
[feeds]

:Scheduler:Requester:OutletCrawler:Crawler

response

request feed

crawl outlets 

schedule new article

Figure 18: Sequence diagram of feed crawling run

43



5 IMPLEMENTATION Max Lübbering, 21599173

:Throttle:DownloadWorker

Due Job Queue

:Writer:APScheduler

Writer Queue

:Requester

article

get article

get job

write 
to disc

put article

delay on
domain 
basis

response

HTTP request

get 
pass

request article

put article
download job

put article
download job

put article
download job

Figure 19: Sequence diagram of article retrieval

5.1.2 Storage

The Writer instance writes the downloaded press releases into a CSV file, that has the following
column structure:

1 timestamp_retrieved , feed_url , link_to_article , html_download

The unix time when the press release was downloaded is being stored in the first column.
The column feed_url stores the URL of the feed where the press release was found in and
link_to_article stores the URL where the press release was published on the outlet’s website.
The raw HTML content of the press release download is being dumped into the html_download
column.

5.2 Stock Price Mining

The stock price crawler is being passed a CSV file containing all companies traded at NASDAQ
and NYSE. The file has the format:

1 symbol ,company ,LastSale ,MarketCap ,IPOyear ,Sector ,industry , Summary
2 AAPL ,Apple Inc . ,163.65 , $830 .36B ,1980 , Technology , Computer Manufacturing ,https

:// www. nasdaq .com/ symbol /aapl
3 ...

Every week the crawler is being initiated by a cron job13. The crawler then iterates over all
stock symbols and for each iteration downloads last week’s stock prices from the Google stock
API endpoint https://finance.google.com/finance/getprices. The result is then dumped
into a CSV file.
13http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html

44

https://finance.google.com/finance/getprices
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html


5 IMPLEMENTATION Max Lübbering, 21599173

5.3 Preprocessing

Since we already covered the preprocessing of news article texts in [18], we adopted the text
with minor changes regarding press release preprocessing.

The press release crawler dumps plain HTML strings into the html_download column of the
CSV files enriched with further attributes (columns). Each row is being preprocessed, such that
it is in an appropriate shape to be passed to subsequent machine learning algorithms.

There are two stages in the preprocessing pipeline. In the first one, we extract the part that
is relevant for us i.e., the press release text and discard the rest (e.g., JavaScript, images or
comments). The second stage is about cleaning the texts that we previously extracted, by
applying the methods defined in Section 4.2.2.

5.3.1 Extraction Stage

For text extraction BeautifulSoup is being used to locate and extract the information we are
interested in.

Since every press release provider has a similar website structure, we developed an algorithm
that is parameterized by a JSON dictionary instead of implementing one algorithm per outlet
and company description provider. The algorithm works as follows:

1 Given:
2 entry points list
3 unwanted html tags list ([] allowed )
4 tags of interest list ([] allowed )
5 1)
6 a) find path in HTML tree that contains all entry points
7 b) keep HTML code at the node of lowest entry point
8 2) delete all HTML tags that are element of the unwanted html tags list
9 3) only keep HTML tags that are element of the tags of interest list

10 4) filter and return remaining text ( BeautifulSoup deletes tags
automatically )

Listing 1: Extraction algorithm

A representative parameterization of the algorithm is given below. The filter is defined in JSON
and does not only allow to define arbitrary HTML tags but also to specify their attributes and
attribute values as shown for the div tag in the entry point section.

1 abcd_outlet_filter =
2 {
3 " entrypoints ": [{" tag ": "div",
4 "attr ": "class",
5 "value ": "article -body "}],
6 " delete ": [
7 {" tag ": " script "},
8 {" tag ": "div", "attrs ":
9 [{" attr ": "class",

10 " values ": ["ad - container "]}]}
11 ]
12 ...
13 }

Listing 2: Exemplary parameterization of extraction algorithm

45



5 IMPLEMENTATION Max Lübbering, 21599173

5.3.2 Cleaning Stage

After the preceding stage has extracted the texts, we now perform the cleaning steps defined in
Section 4.2.2, as shown in Listing 3.

The method expects a DataFrame14 as input arguments, as well as, the name of the DataFrame’s
column, that contains the text. The first step in the cleaning process is to tokenize the text.
Next, all stop words are removed and all remaining tokens are POS tagged. The POS tags
and tokens are then passed to the lemmatizer. The lemmatized tokens, that are punctuation
symbols or contain digits are removed in the last step.

1 import nltk
2 from nltk. corpus import stopwords
3 from nltk import word_tokenize , pos_tag
4 import string
5

6 def pre_process_documents (df , column ="text"):
7 # Tokenization
8 df[ column ] = df[ column ]. astype (str)
9 df.loc [:," tokens "] = df[ column ]. transform ( lambda txt: nltk. word_tokenize

(txt.lower ()))
10

11 # stop words
12 stopwords_set = set( stopwords .words(’english ’))
13 df.loc [:," tokens "] = df[" tokens "]. apply( lambda words: [i for i in words

if i not in stopwords_set ])
14

15 # tagging and lemmatization
16 wnl = nltk.stem. WordNetLemmatizer ()
17 # if wnl. lemmatize (.) is only provided a token without POS it ALWAYS

lemmatizes it as a noun!
18 df.loc [:," tokens "] = df[" tokens "]. apply( lambda tokens :[ wnl. lemmatize (

token ,pos [0]. lower ()) if pos [0]. lower () in [’a’,’n’,’v’] else wnl.
lemmatize (token) for token ,pos in nltk. pos_tag ( tokens )])

19

20 # remove punctuation
21 df.loc [:," tokens "] = df[" tokens "]. apply( lambda tokens : [token for token

in tokens if token not in string . punctuation ])
22 # remove numbers
23 df.loc [:," tokens "] = df[" tokens "]. apply( lambda tokens : [token for token

in tokens if not any(c. isdigit () for c in token)])
24

25 return df

Listing 3: Text cleaning algorithm

In practice, we often deal with huge datasets, that cannot be preprocessed in a single thread
anymore from a temporal point of view. This is also the case for our datasets, which is why we
split up our original dataset into multiple data frames and create a preprocessing job for each
data frame. These preprocessing jobs are then passed to an ipyparallel computation cluster15.
The preprocessing results are aggregated after all preprocessing jobs are done.

The press releases usually contain the company’s ticker symbol and exchange in the format
(exchange:symbol). The code snippet in Listing 4 uses a regular expression to extract the ticker
symbol from the text, which is then used as the label of the press release.

1 def get_stock_symbol (text):
2 nasdaq_regex = re. compile ("\((?: Nasdaq | NASDAQ | nasdaq ):\s*([a-zA -Z]+) \)")

#TODO: bad performance

14https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
15https://ipyparallel.readthedocs.io/en/latest/

46

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://ipyparallel.readthedocs.io/en/latest/


5 IMPLEMENTATION Max Lübbering, 21599173

3 nyse_regex = re. compile ("\((?: Nyse|NYSE|nyse):\s*([a-zA -Z]+) \)") #TODO:
bad performance

4 nasdaq_result = nasdaq_regex . search (text)
5 nyse_result = nyse_regex . search (text)
6 if nasdaq_result :
7 return " nasdaq ", nasdaq_result .group (1).lower ()
8 elif nyse_result :
9 return "nyse", nyse_result .group (1).lower ()

10 else:
11 return None , None

Listing 4: Labeling process of press releases

5.4 Modeling

In this section, the concrete implementation of every approach is being shown. The naïve
Bayesian network and SVM model are part of two bigger pipelines which include count vector-
ization, feature scoring and selection and the respective machine learning model. We explain
the implementation of the two models in terms of their complete pipelines. For the trivial
classifier we only need to pass the count vectorized samples, which is why there was no need for
implementing a pipeline structure.

5.4.1 Trivial Classifier

The trivial classifier’s implementation according to the specification in Section 4.3.2 is shown
in Listing 5. The algorithm expects the number of features per class (top_feature_count) as
parameterization. For training, the method fit is called, thereby passing the count vectorized
press releases X and the corresponding labels as y to the algorithm.

For prediction, we call the method predict with the count vectorized press releases X as param-
eters. For every press release in X the method returns a prediction.

1 from sklearn .base import BaseEstimator , ClassifierMixin
2 import numpy as np
3

4 class TrivialTextClassifier ( BaseEstimator , ClassifierMixin ):
5 def __init__ (self , top_feature_count =2):
6 self. top_feature_count = top_feature_count
7

8 def fit(self , X, y=None):
9 if(X.shape [1] < self. top_feature_count ):

10 raise Exception (’X.shape [1] < top_feature_count ’)
11 y_series = pd. Series (y). reset_index (drop=True)
12 self.X = X
13 self. top_indices = y_series . groupby (by= y_series ).apply( lambda label:

self. get_top_feature_indices (X[label.index , :]))
14 return self
15

16 def get_top_feature_indices (self , X):
17 feature_counts = X.sum(axis =0)
18 top_features_indices = feature_counts . argsort () [:: -1][0 : self.

top_feature_count ]
19 return top_features_indices
20

21 def predict (self , X, y=None):
22 try:
23 getattr (self , " top_indices ")
24 except AttributeError :

47



5 IMPLEMENTATION Max Lübbering, 21599173

25 raise RuntimeError ("You must train classifer before predicting
data!")

26 labels = [self. determine_label (x, self. top_indices ) for x in X]
27 return labels
28

29 def determine_label (self , sample , indices ):
30 top_index = pd. Series ( indices .index)
31 indice = np. argmax (np.take(sample , indices . tolist ()).sum(axis =1))
32 return top_index [ indice ]

Listing 5: Implementation of trivial classifier

The instantiation of the trivial classifier, its training and prediction is shown in Listing 6.
1 classifier = TrivialTextClassifier ( top_feature_count = feature_count )
2 classifier .fit(X_train_cv , y_train )
3

4 y_hat = classifier . predict ( X_test )

Listing 6: Training and prediction of trivial classifier

5.4.2 Naïve Bayesian Network Pipeline

The instantiation of the naïve Bayesian network pipeline is shown in Listing 7. The pipeline
contains a count vectorizer, which transforms the raw text into its count vectorized represen-
tation. Then the SelectKBest model filters the best features according to a feature scoring
function. Finally, the count vectorized press releases with reduced features are passed to the
multinomial naïve Bayesian network.

1 from sklearn . feature_extraction .text import CountVectorizer
2 from sklearn . pipeline import Pipeline
3 from sklearn . feature_selection import SelectKBest
4 from sklearn . naive_bayes import MultinomialNB
5

6 pipe = Pipeline ([(" count_vectorizer ", CountVectorizer ()), ("
feature_selection ", SelectKBest ()), (" naive_bayes ", MultinomialNB ())])

Listing 7: Implementation of naïve Bayesian network pipeline

After the instantiation, the pipeline is completely unparameterized. During grid search we
iteratively set new parameters to find the best parameter settings.

5.4.3 Support Vector Machine Pipeline

The support vector machine pipeline has the same structure as naïve Bayesian network pipeline
apart from the naïve Bayesian network which we replaced by the support vector machine, as
shown in Listing 8.

1 from sklearn . feature_extraction .text import CountVectorizer
2 from sklearn . pipeline import Pipeline
3 from sklearn . feature_selection import SelectKBest
4 from sklearn import svm
5

6 pipe = Pipeline ([(" count_vectorizer ", CountVectorizer ()), ("
feature_selection ", SelectKBest ()), ("svm", svm.SVC ())])

Listing 8: Implementation of SVM pipeline

48



5 IMPLEMENTATION Max Lübbering, 21599173

5.4.4 Grid Search

This grid search implementation is inspired by GridSearchCV provided by scikit-learn. The idea
behind our implementation is to search for the best parameters for different datasets. The press
release set is labeled with continuous simple net opportunities as defined by Equation (104),
which need to be discretized for the classification problem we defined in Section 4.3.1. From a
scientific point of view, we have neither any prior knowledge nor reliable intuition of discretiza-
tion choices regarding the simple net opportunity. This is why we test for multiple discretization
thresholds to see how the model performances change.

Since finding the best model parameters on multiple datasets is computationally expensive, we
made our grid search algorithm embarrassingly parallel such that it can be easily run by Slurm16.
For every parameter combination Slurm starts a job on the high performance computing cluster
(HPC cluster) Bombus17 at the Hamburg University of Technology. Each job then runs the
algorithm specified in Listing 9.

At first, we define a list of discretization thresholds in which each tuple defines the discretization
settings for one dataset. The tuples in the class label list define the corresponding class labels.
For instance, the first dataset is generated by discretizing the simple net opportunity at the
thresholds -0.01 and 0.01. According to the first tuple in the class label list every sample having
simple net opportunity of less than -0.01 or greater than 0.01 is assigned 1 and 0 otherwise,
meaning impact and no impact, respectively. If we want to perform discretization for the sen-
timent dataset, the class would be (-1, 0, 1), which corresponds to (negative, neutral, positive)
and we would discard all samples having label 0.

Since we are dealing with small datasets, we want to maximize the utility of every sample. This
is why, we perform cross validation with 20 folds (cv_folds) for every parameter combination
on every dataset.

The pipe is parameterized by the dictionary params.

The model is then cross validated on every dataset using the pre-defined model parameters.
The cross validation results on the training and test set are each averaged, providing us with a
sound estimate on how good the model with the specified parameters would have performed on
every dataset if we deployed it in the field.

1 import numpy as np
2 from sklearn . model_selection import StratifiedKFold
3 from sklearn . pipeline import Pipeline
4 from sklearn . feature_selection import chi2 , mutual_info_classif , SelectKBest
5 from sklearn . model_selection import train_test_split
6 from sklearn . model_selection import cross_validate
7

8 discretizer_thresholds_list = [( -0.01 , 0.01) , ( -0.02 , 0.02) , ( -0.03 , 0.03) ,
( -0.04 , 0.04) , ( -0.05 , 0.05) , ( -0.08 , 0.08) , (-0.1, 0.1) , ( -0.15 , 0.15)]

9 class_labels_list = [(1, 0, 1), (1, 0, 1), (1, 0, 1), (1, 0, 1), (1, 0, 1),
(1, 0, 1), (1, 0, 1), (1, 0, 1)]

10 cv_folds = 20
11

12 pipe. set_params (** params ) # set hyperparameters passed by slurm
13

14 for i in range(len( discretizer_thresholds_list )):
15 thresholds = discretizer_thresholds_list [i]
16 class_labels = class_labels_list [i]
17

15https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
16https://slurm.schedmd.com/
17https://www.tuhh.de/rzt/services/hpc/hardware.html

49

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://slurm.schedmd.com/
https://www.tuhh.de/rzt/services/hpc/hardware.html


5 IMPLEMENTATION Max Lübbering, 21599173

18 target = press_releases ["go"]. apply( lambda value: value_discretizer (
value , thresholds , class_labels ))

19 indices_cv , indices_test = balanced_split (target , test_size =0.2)
20

21 X_cv = press_releases .loc[ indices_cv ][" tokens "]. apply( lambda l: ’ ’.join
(l))

22 y_cv = target .loc[ indices_cv ]
23

24 # perform cross validation
25 cv_results = cross_validate (pipe , X_cv , y_cv , cv=cv_folds ,

return_train_score =True , n_jobs =-1)
26

27 mean_train_score = np.mean( cv_results [’train_score ’])
28 mean_test_score = np.mean( cv_results [’test_score ’])

Listing 9: Evaluating the model performance for a given parameter on different datasets

50



6 RESULTS AND EVALUATION Max Lübbering, 21599173

6 Results and Evaluation

This section deals with the evaluation of the models’ performances. We shortly introduce the
datasets and explore their properties in Section 6.1. The impact models’ performances and
sentiment models’ performances are discussed in Section 6.2 and Section 6.3, respectively.

6.1 Data Sets Exploration

We first explore the stock prices dataset and the press release dataset individually and then
explore both datasets in an interrelative manner.

6.1.1 Stock Prices Data Set Exploration

From April 9, 2018 to July 27, 2018 the stock price crawler retrieved stock prices of NASDAQ
and NYSE listed companies.

As of Oct 16, 2018, the total number of companies listed at NASDAQ and NYSE are 3,307 and
3,144, respectively18. The total number of companies indexed by the S&P500 index amounts to
505. As shown in the first row of Table 6, we could only retrieve all companies for the S&P500
index and missed approx. 600 companies of NASDAQ and NYSE each. Since the S&P500
index represents the 505 biggest companies in the US, this indicates that the crawler primarily
missed smaller companies.

In order to check data coverage per symbol, we summed up the number of stock prices for
each stock symbol. Then, we calculated the average, median, maximum and minimum number
of stock prices per symbol. From this small evaluation displayed in Table 6, we can already
see that the S&P500 has by far the best data coverage. The average number of stock prices
per symbol is more than twice as high as the average number stock prices of the NASDAQ
companies. For the companies traded on NYSE this only looks slightly better.

Additionally, if we compare the minimum and maximum number of stock prices per symbol, it
is noticeable, that the spread is especially high for NASDAQ and NYSE. Taking the maximum
number of stock prices per symbol as ground truth,which is 30,318 stock prices, we have a data
coverage of 3% for the symbol with the least number of stock prices. For this symbol, we could
expect two stock prices per hour, assuming that Google provides stock prices for this symbol
in equidistant intervals.

With regard to the S&P500 index the data coverage looks far better. Here, the data coverage
is at least 60%, which means in general, that we can expect a stock price update every two
minutes in the worst case scenario, given again that Google provides stock prices in equidistant
intervals.

Next, we investigate how many stock prices we received for each company19. Our approach is to
count the number of stock prices for each company and then display these counts by histograms
in order to identify important properties in the stock prices datasets. Within the stock crawling
time frame there are in total 79 business days, where trading has taken place for 6.5 hours. As
we have a stock price resolution of one stock price per minute, we can expect up to 30,810 stock
prices per company.

18https://www.nasdaq.com/screening/company-list.aspx
19In the following exploration, we only consider companies for which we received at least one stock price and

discard those that we did not receive any stock prices for.

51

https://www.nasdaq.com/screening/company-list.aspx


6 RESULTS AND EVALUATION Max Lübbering, 21599173

NASDAQ NYSE S&P500

Retrieved companies 2,742 2,492 505
Total companies at exchange 3,307 3,144 505
No. stock prices 34,175,756 45,028,401 14,410,141
Avg. no. stock prices per symbol 12,463 18,069 28,534
Median. stock prices per symbol 10,438 19,795 29,594
Max. stock prices per symbol 30,318 30,307 30,318
Min. stock prices per symbol 501 514 11,222
Start 2018-04-09 2018-04-09 2018-04-09
End 2018-07-27 2018-07-27 2018-07-27

Table 6: Key figures of each dataset

For each of the NASDAQ, NYSE and S&P500 companies sets, we have plotted one histogram,
as shown in Figure 20. All histograms have the same axes scaling and bins.

In Figure 20a, we plotted the histogram of stock price counts of the companies traded at
NASDAQ. From 8,000 stock prices to 28,000 stock prices, company counts are almost constant.
At the limits, the company counts increase compared to the company counts in between, whereas
the companies having the least stock prices greatly exceed those having most stock prices.

The NYSE histogram, which is shown in Figure 20b, looks rather different from the previous one.
From approx. 800 stock prices to 26,000 stock prices the company counts are almost constant.
At the right boundary the company counts surge, having a maximum of 145 companies at
approx. 30,000 stock prices.

As shown in Figure 20c, the S&P500 index companies have by far the best data coverage. There
are almost no companies having less than 25,000 stock prices. The majority of companies is
located around 30,000 stock prices, which reflects a data coverage of almost 100%.

Again, we see, that the stock price crawler primarily retrieved larger companies in terms of
market capitalization20. The smaller a company, the less stock prices we can expect for this
company. The question remains for these companies, whether we retrieve stock prices only for
a few days and for the other days no stock prices at all or whether stock price data comes in
continuously but at a lower rate.

To check our concern on the data quality (i.e., holes of multiple days) of the smaller companies,
we count for each company the number of days, where we received at least one stock price.
With regard to Table 7, Table 8 and Table 9, we can conclude, that there are relatively few
companies for which we did not receive stock data every day.

Furthermore, proportionally there are less outliers for the S&P500 indexed companies compared
to NASDAQ and NYSE traded companies. This can be due to multiple reasons. There are
companies, which might have changed their ticker symbol, might have stopped or started being
traded at one of the exchanges or simply, Google just did not provide sufficient data for these
stocks. Due to the better data situation for the S&P500 indexed companies compared to the
sets of NASDAQ and NYSE companies, we can conclude that the issues mentioned above, do
not apply to the biggest American companies. Once a company is listed on the S&P500 index,
it is highly unlikely to be unlisted and obviously even unlikelier that it is taken down form the
exchange completely.

It is also notable, that the stock price crawler runs weekly for more than 24 hours straight.

20The S&P500 index lists the 505 biggest companies in terms of market capitalization in the USA.

52



6 RESULTS AND EVALUATION Max Lübbering, 21599173

0 5000 10000 15000 20000 25000 30000
No. stock prices

0

20

40

60

80

100

120

140

#c
om

pa
ni

es

(a) NASDAQ

0 5000 10000 15000 20000 25000 30000
No. stock prices

0

20

40

60

80

100

120

140

#c
om

pa
ni

es

(b) NYSE

0 5000 10000 15000 20000 25000 30000
No. stock prices

0

20

40

60

80

100

120

140

#c
om

pa
ni

es

(c) S&P 500

Figure 20: Histograms of stock prices count per company for NASDAQ, NYSE and S&P 500
companies

53



6 RESULTS AND EVALUATION Max Lübbering, 21599173

This is why, there are some stock symbols that have an additional day of stock prices and the
companies in the second last row of Table 7 to Table 9 are not necessarily lacking one day of
stock prices.

business days companies
13 4
14 2
18 1
19 1
22 1
23 4
24 1
25 1
28 3
29 1
32 1
33 2
34 1
38 3
39 2
42 1
46 1
47 1
48 2
49 1
50 1
51 1
53 2
54 2
58 3
59 1
63 4
64 1
65 1
69 3
70 4
71 3
72 3
73 2
74 2
75 3
76 3
77 13
78 2093
79 563

Table 7: Business day counts
for NASDAQ com-
panies

business days companies
14 4
15 2
17 2
18 1
19 1
21 1
23 3
28 2
33 3
36 1
37 1
38 3
39 2
40 1
41 2
42 1
44 2
47 2
48 1
50 1
53 4
57 1
58 5
62 1
63 2
68 4
70 2
71 3
73 2
76 1
77 5
78 1892
79 534

Table 8: Business day counts
for NYSE compa-
nies

business days companies
28 1
33 1
41 1
47 1
63 1
78 381
79 119

Table 9: Business day
counts for S&P500
indexed companies

Having shown that we are provided with stock data for almost every company on a daily basis,
we now calculate how many stock prices per minute on average we received for each company.
The Google API provides stock prices in minute intervals, which is why in the optimal case a
company would have exactly one stock price per minute on average. For every company we
determine the number of stock prices we received in total within the time frame given in Table 6
and divide them by the number of seconds of such time frame.

The result, which we from now on call stock price retrieval rate r, is the number of stock prices,
that we would expect per minute for a company. For clarity, we define r to be

r(pricesc, start, end) = |pricesc|
end− start , (118)

where pricesc are all stock prices of company c, that have been crawled within the time frame
end− start given in seconds.

Next, we consider NASDAQ, NYSE and S&P500 companies separately and calculate the general

54



6 RESULTS AND EVALUATION Max Lübbering, 21599173

descriptive statistics measures on the stock price retrieval rates in each group, as shown in
Table 10. Looking at the mean and standard deviation of the three groups, we see that the
stock price retrieval rates of NASDAQ and NYSE not only have a higher variance in terms of the
stock price retrieval rate, but also are generally way smaller. This observation is supported by
the interquartile range (IQR). NASDAQ and NYSE have a bigger spread compared to S&P500,
while the quartiles are also closer to 0.

NASDAQ NYSE S&P500

mean 40.5% 58.6% 92.6%
std 30.7% 31.6% 8.2%
min 1.6% 1.7% 36.4%
25% 11.8% 30.1% 91.6%
50% 33.9% 64.2% 96.1%
75% 65.9% 89.6% 97.0%
max 98.4% 98.4% 98.4%

Table 10: Descriptive statistics on the stock price retrieval rates of NASDAQ, NYSE and
S&P500 companies

To visualize the numbers, we plotted one boxplot for each of the three company sets in Figure 21.
At first glance, one can see that the median of the S&P500 stock price retrieval rate is close to
1.0. Nevertheless, not all companies provide stock price retrieval rates this high, which is why
there are some outliers to the left. These outliers, however, never reach retrieval rates smaller
than 0.3. Looking at the boxplots of NASDAQ and NYSE, we see that even the 75% quartiles
of both groups never surpass the 25% quartile of the S&P500 boxplot.

0.0 0.2 0.4 0.6 0.8 1.0

NYSE

NASDAQ

S&P500

Figure 21: NASDAQ, NYSE, S&P500 stock price retrieval rate boxplots

In summary, we have shown that many NASDAQ, NYSE and S&P500 companies are being
crawled every day with minor exceptions. Since the number of stock prices per company for
NASDAQ and NYSE were very much less compared to S&P500 indexed companies, our con-
cern was that we might be dealing with huge holes in the NASDAQ and NYSE datasets. By
calculating the number of business days with stock prices for each company separately, we had
proven that major holes were only the case for vanishingly few companies.

Then, we calculated the stock price retrieval rate for each company over the complete time
frame the crawler was running. Evaluating the stock price retrieval rates of NASDAQ, NYSE
and S&P500 separately revealed that the stock price retrieval rate of NASDAQ and NYSE

55



6 RESULTS AND EVALUATION Max Lübbering, 21599173

companies was on average much less than for companies indexed in the S&P500 index. Also,
the stock price retrieval rate of NASDAQ and NYSE companies highly varies in contrast to the
stock prices of S&P500 companies.

How do these insights bring us any further? Due to the occasionally sparsity of NASDAQ’s
and NYSE’s stock price data, labeling of press releases becomes more complicated. Usually,
we would calculate the simple net opportunity (SNO) at each point during trading hours by
cross correlating the stock prices with a [−1 | 0 | . . . | 0 | 1 ] kernel and then divide the new
time series by the original one. Since we have a lot of missing data and only stock data during
trading hours, we would have to find these holes in the stock price series and fill them up with
e.g., -infinity to be able to later identify these false values, that were calculated from the holes.
For labeling, we would have to merge the stock price dataset and the press release dataset on
the company name and the crawl timestamp and then check if we hit a hole. If we hit a hole, we
would have to look at the boundaries and decide if both are close enough such that interpolation
of the hole makes sense.

Since this approach is complex and error prone, we will follow another one: We will pick the
stock price, that is closest to the publish date of the press release and pick the stock price that
is closest to the publish date with the additional time offset of e.g., 30min to calculate the SNO
of the press release. However, since there are companies which lack stock prices of multiple
hours, we need to implement checks, to keep the integrity of our labeling process. If there is no
suitable stock price data available for a press release, we need to discard it. In a nutshell, we
do not preprocess all stock prices but only those that are relevant to the press releases.

6.1.2 Press Release Data Set Exploration

The press release crawler retrieves the press releases of all the 6,451 companies traded on
NASDAQ and NYSE. From April 17, 2018 to October 8, 2018 the press release crawler retrieved
a total of 26,379 press releases covering 3,567 companies traded at NASDAQ or NYSE. A total
of 6,637 press releases were published by 393 companies listed on the the S&P500 index.

All press releases were retrieved from three press release providers, which provided 19749, 3024,
and 3606 press releases, respectively.

In our first exploration of the press release dataset, we look at the number of press releases
published each day, as shown in Figure 22. The blue and red bars represent the number of
press releases published during business days and weekends, respectively. During the weekend
by far less press releases are being published compared to business days, thus leading to the 5-2
pattern.

Every three months a company that is traded on NASDAQ or NYSE is supposed to release
their quarter results. With an offset of about four to eight weeks to the quarters of a year, a
company usually provides their quarter results. During these times the number of press releases
spike, which can be also seen in Figure 22. The highest number of press releases per day is
reached between the end of April and the beginning of May. Then it continuously decreases to
a minimum in the middle of June. From that time on it increases until it spikes again in the
beginning of August.

56



6 RESULTS AND EVALUATION Max Lübbering, 21599173

20
18

-0
5

20
18

-0
6

20
18

-0
7

20
18

-0
8

20
18

-0
9

20
18

-1
0

Date crawled

0

100

200

300

400

500
No

. p
re

ss
 re

le
as

es

Figure 22: Number of press releases published each day

Next, we look at each day of the week separately and count the number of press releases for each
day of week. As shown in Figure 23, most press releases are published during the middle of the
week. Mondays and Fridays are the business days with the least press releases. On weekends,
there are almost no press releases being published at all.

Mo Tu We Th Fr Sa Su
Weekday

0

2000

4000

6000

No
. p

re
ss

 re
le

as
es

Figure 23: Number of press releases per weekday

Now, let us analyze the number of press releases published at specific hours of the day, as shown
in Figure 24. The orange bars represent the after hours and the blue bars show the trading
hours. Interestingly, during trading hours only few press releases are published. One reason
for this might be that the companies do not want their stock prices to overreact,due to a buy
order and sell order imbalance. In this scenario exchanges might even enforce a non-regulatory
halt21. Shortly, before and after the trading hours, there is a spike in press releases. Especially
at 8PMUTC a maximum of press releases is being published. From 12PMUTC to 9AMUTC
we receive almost no press releases.

21https://www.investopedia.com/terms/t/tradinghalt.asp

57

https://www.investopedia.com/terms/t/tradinghalt.asp


6 RESULTS AND EVALUATION Max Lübbering, 21599173

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour of day a press releases was crawled(UTC)

0

2000

4000

6000
No

. p
re

ss
 re

le
as

es

Figure 24: Number of press releases by hour of day

We now continue our exploration by looking at the minute of an hour a press releases is pub-
lished. Figure 25 shows that most press releases have been crawled within the first ten minutes.
From there it continuously decreases to a minimum at minute 60. Besides the downward trend,
every ten minutes there is a minimum. This repeating pattern stems from the fact that our
crawler checks for new press releases every 10 minutes plus a randomized offset.

0 10 20 30 40 50 60
Minute crawled

0

500

1000

1500

No
. p

re
ss

 re
le

as
es

Figure 25: Number of press releases per minute

The histogram in Figure 26 shows the distribution of the number of press releases for each
company. Most companies have one to four press releases. Interestingly, in this range only 11%
of the companies belong to the S&P500 index, whereas in the range of above ten press releases,
38% of the companies are indexed by the S&P500 index. In conclusion, this indicates a positive
correlation between the importance of a company (in terms of market capitalization) and the
number of press releases it publishes.

0 20 40 60 80 100 120 140 160
No. press releases

0

500

1000

No
. c

om
pa

ni
es

Figure 26: Histogram of number of press releases per company

Furthermore, six companies out of the top ten publishing companies are listed on the S&P500

58



6 RESULTS AND EVALUATION Max Lübbering, 21599173

index, as shown in Table 12. If all companies traded on NASDAQ or NYSE published the same
amount of press releases, we would have only expected 7% to be published by companies listed
on the S&P500 index.

Even when we look at the ten companies that have published the least, there are still two of
them in the S&P500 index. However it is noteworthy, that there are many companies having
only one press release. So in Table 11, we might have picked too many S&P500 companies by
chance. In the given dataset, the proportion of S&P500 companies having one press release
over all companies having one press release is 10%.

exchange symbol count in S&P500

nasdaq aaon 1 False
nyse cms 1 True
nyse cnp 1 True
nyse cnx 1 False
nyse cpe 1 False
nyse cuz 1 False
nyse cvi 1 False
nyse cvrr 1 False
nyse dac 1 False
nyse dcf 1 False

Table 11: Companies with least press releases

exchange symbol count in S&P500

nasdaq amzn 154 True
nyse acn 149 True
nasdaq rmni 132 False
nyse lrn 124 False
nyse mco 107 True
nyse ppg 105 True
nyse awk 103 True
nasdaq masi 101 False
nasdaq egov 101 False
nyse wfc 86 True

Table 12: Companies with most press releases

6.1.3 Joint Exploration

We now set the stock prices dataset and the press releases dataset in interrelation. Our objective
is to find out whether press releases influence the stock prices significantly and if so, how long
it takes a stock to fully map the information contained in a press release onto the stock price.
Answering both questions is critical for labeling press releases with the most accurate simple
net opportunity, thereby also directly affecting the model’s performance.

As previously shown by Figure 24 and also shown by Figure 27, the majority of press releases
are published during the after hours. The blue line in Figure 27 shows the number of press
releases being released by either a NASDAQ or NYSE company after the exchange had closed
for each day. The orange line shows the same but during trading hours. The green and red line
display the press releases published by companies listed on the S&P500 index and that were
released in the after hours and during trading hours, respectively.

Each line expresses a repeating pattern. During the weekend, we receive almost no press releases
resulting in a 5-2 pattern. Another pattern repeating on a larger scale, can be seen, when looking
at three months periods. Every three months, companies traded on exchanges are obliged to
present their quarterly report, which results to the quarterly peak of press releases counts.

Additionally, the majority of press releases are published by NASDAQ and NYSE companies
after the exchanges have been closed. On top of that, the number of S&P500 press releases
published during trading hours is similar to the NYSE and NASDAQ press releases published
during trading hours. Compared to the previous three lines, the S&P500 companies during
trading hours have the lowest daily press release frequency.

Not only are the press releases published during after hours being overrepresented, they also
might have a different effect on the stock market. Traders have plenty of time to react to these

59



6 RESULTS AND EVALUATION Max Lübbering, 21599173

stocks, since the time until the market opens again is usually far away. When the exchange
opens, the market might instantly overreact, since there are many traders who already have
seen the news and possibly came to the same conclusion. In contrast to this, we expect the
stock market to react to press releases published during trading hours not in such a drastic way,
because people need time to gather the news and read them.

Only 8% of the press releases are published during trading hours. Labeling of these press
releases is more difficult than the SNO, as defined in Equation (104), because it depends on
the release time. For after hours press releases we only have to take exchange open time and
exchange close time into account, which are constant. This is why, we limit the dataset to press
release published during after hours. This leaves us with the majority of the press releases and
a dataset that is in itself more consistent.

20
18

-0
4-

13

20
18

-0
4-

27

20
18

-0
5-

11

20
18

-0
5-

25

20
18

-0
6-

08

20
18

-0
6-

22

20
18

-0
7-

06

20
18

-0
7-

20

Date crawled

0

50

100

150

200

250

300

350

400

Co
un

t

NASDAQ, NYSE after hours
NASDAQ, NYSE trading hours
S&P 500 after hours
S&P 500 trading hours

Figure 27: Number of press releases of NASDAQ,NYSE and S&P500 companies during trading
and after hours over time

In order to evaluate the influence of press releases, we have to label each press release with
its simple net opportunity. Since we only consider after hours press releases, the calculation
depends only on exchange closing and opening time. Our approach, which is shown in Figure 28,
takes the last stock prices before the press release has been published i.e., those that are part
of window w1 and calculates the mean stock price. Under the assumption that a press release
had magnificent influence, we expect the stock price to diverge significantly from the original
stock price when the exchange closed. At this point we suppose for now that the influence will
have been reflected in the stock price at least after 5 hours after the exchange had opened. This
is why, we set a second window w2 from 6:30PM to 7:30PM and calculate its average stock
price.

Subtracting the average stock price of w2 from the average stock price of w1 and then dividing
by the average stock price of w1 provides an estimate for the true simple net opportunity of a
given press release. If we bought a stock before the press release had been published and sold
it five hours after the exchange had opened again, then we could expect this relative change in
the stock price.

Note, that the position of w2 was set arbitrarily by the offset and will be further optimized as
part of the joint exploration.

60



6 RESULTS AND EVALUATION Max Lübbering, 21599173

Exchange close
8:00PM

Exchange open
1:30PM 6:30PM 8:00PM

Press
release

published

w1
offset w2

Figure 28: Simple net opportunity calculation of press releases (time in UTC)

Having labeled all press releases accordingly, we plot a histogram of the press releases’ simple
net opportunity, which is shown by the blue bars in Figure 29. This Gaussian shaped histogram
around the origin reveals a general balance between positive and negative press releases.

To put the press releases’ SNOs into perspective, we calculate the SNO for every company for
each day, when there was no press release published. We call this dataset general SNO set.
Finally, we sample for every press release of a company 30 SNOs of this company from the
general SNO set and plot this sample set as another histogram. The result is displayed by the
orange histogram in Figure 29.

Similar to the previous SNO histogram, this one is also Gaussian shaped with its mean close
to the diagram origin. However, its variance is a little lower, thus leading to a narrower shape.
This is an important finding, as it clearly shows that for this specific window setting (w1, w2)
the press releases do, in fact, have an influence on the stock prices.

The SNO labels of the press releases are continuous and need to be discretized for classification.
This diagram reveals that the thresholds for such a discretization need to be chosen carefully.
For the impact model we have two thresholds (t1, t2), where t1 < t2. Every SNO smaller than t1
or greater than t2 is discretized to impact (I) and every other SNO is discretized to no impact
(¬I). Setting the thresholds to ±0.5% would lead to lots of noise among the samples labeled as
i. A reasonable choice would be ±8%, as the classes negative and positive would most likely not
contain any press releases that had a respective SNO due to usual stock price changes. On the
other hand, setting the thresholds far from 0 comes at the expense that samples that truly have
an impact end up being labeled ¬I and that the number of samples having class I, are greatly
reduced. Analogously, the dataset size problem also arises for the sentiment model.

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Simple net opportunity (SNO)

0

5

10

15

20

25

30

35

40

no
rm

liz
ed

 fr
eq

ue
nc

y

press releases' SNO
general SNO

Figure 29: Press releases’ simple net opportunity vs. general simple net opportunity with an
offset of 5 h

61



6 RESULTS AND EVALUATION Max Lübbering, 21599173

Next, we analyze the impact of the press releases on a per hour basis, as shown in Figure 30. We
compare the stock price before and half an hour after the press release was published. There is
a special case for press releases published during the after hours, as there are usually no stock
prices half an hour after the publishing. This is why we take the close price and the price half
an hour after the exchange opened as references. A simple net opportunity less than −3% is
considered negative, a simple net opportunity greater than 3% positive and all values in between
are considered neutral. Note, that the discretization thresholds have been chosen by the authors
best intuition and we will show later there are better discretization thresholds than (−3%, 3%),
as well as, a better offset than 0.5 h.

The diagram reveals that during trading hours almost all of the press releases have been labeled
neutral. At 8PMUTC press release numbers spike and also the total number of press releases
having an impact are highest for this hour. From 12PMUTC to 10AMUTC almost no press
releases are being published, while they spike again from 10AMUTC to 1PMUTC.

0 1 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time crawled (UTC)

0

500

1000

1500

2000

Nu
m

be
r o

f P
Rs

positive PRs (>0.03)
negative PRs (<-0.03)
neutral PRs

Figure 30: Number of NASDAQ and NYSE press releases published each hour and labeled as one
of {pos., neutral, neg.} after discretizing the 30min SNO on thresholds [−0.03, 0.03]

So far, only absolute numbers of press releases have been analyzed. Now, we put the focus on the
relative frequency of labels for each hour i.e., all bars of a specific hour sum up to 100%, which is
shown in Figure 31. This representation allows to compare the label proportions of every hour.
We see that during the after hours the proportions of the labels positive and negative vary a lot.
For instance at 7AMUTC the negative press releases outnumber the positive ones, whereas at
8PMUTC the relation is vice versa. This prior knowledge could be exploited as a feature for
our sentiment models. Also, if we compare the bars at 8PMUTC to the bars at 11PMUTC,
we see that it is by far likelier that a press release published at 8PMUTC has an impact than
one published at 11PMUTC. This is useful prior knowledge for impact prediction.

Unfortunately, these effects might just have arisen due to chance as there are only few press
releases with a positive or negative sentiment in each hour bin. Nevertheless, this will be inves-
tigated as part of our future work, once we gathered a bigger labeled press releases set.

62



6 RESULTS AND EVALUATION Max Lübbering, 21599173

0 1 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time crawled (UTC)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 P
Rs

positive PRs (>0.03)
negative PRs (<-0.03)
neutral PRs

Figure 31: Class proportions of labeled NASDAQ and NYSE press releases published each hour
after discretizing the 30min SNO on thresholds [−0.03, 0.03]

At this point, we recapitulate what we have found out so far and what we can infer:

• Almost all press releases are published during the after hours. This is why we decided to
limit the model building to this subset of press releases.

• Comparing the press releases’ simple net opportunity with a five hours offset to the general
simple net opportunity, revealed that press releases indeed show a significant influence
beyond normal stock price changes.

Moreover, in the second bullet point we assumed that five hours is a reasonable offset for simple
net opportunity calculation. To suffice academic requirements, we now perform an extensive
analysis of press release influence by varying the offset, as shown in Figure 32.

The left window w1 is fixed at 8PMUTC, while the other window w2 is being slided over the
interval 1:30PMUTC to 6:00PMUTC according to different offsets oi. For each position of w2,
we calculate the mean of each window. The values are then used to calculate the influence the
same way as done for the SNO in Figure 28.

Exchange close
8:00PM

Exchange open
1:30PM

Press
release

published

w1 o1 w2

o2 w2...

Figure 32: Press release SNO calculation for different windows w

Since we want to the offset after which the press releases’ influence is fully mapped onto the
stock price and are not interested in the direction of the influence, yet, we only consider the
absolute value fo the SNOs (short: ASNOs).

We calculated the mean and median ASNOs on two different press release sets for multiple

63



6 RESULTS AND EVALUATION Max Lübbering, 21599173

offsets. The first dataset (D1) contains all press releases that have been published during the
after hours. The second dataset (D2) contains only press releases that have an ASNO of more
than 3% five hours after the exchange opened. The lengths of window w1 and w2 was set to 1
hour and 10 minutes, respectively. The window w1 has been fixed to the exchange closing time,
while the position of w2 changes with different offsets oi.

The result is shown in Figure 33, in which the curves show highest slope in the beginning, which
then constantly reduces until it reaches almost 0 at 6PM,UTC thus leading to the logarithmic
shaped curves.

The green line shows the mean ASNO calculated on D2. It exceeds the median ASNO (red
line) of D2 for all offsets oi. This property suggests that there are few press releases which have
an unusually high impact. This insight also holds for the other dataset D1.

From the median ASNO of D1, which is at 1%, we can conclude that the majority of the press
releases have almost no impact whatsoever. Taking the daily variability of the stock prices into
account which has been addressed in Figure 29, assigning a positive or negative sentiment to
these press releases would lead to lots of noise. Note, that this finding is independent of the
position of window w2, which we had only shown for the specific offset of 5 h in Figure 29 so far
.

0:00:00 1:00:00 2:00:00 3:00:00 4:00:00 5:00:00 6:00:00
Offset o

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ab
so

lu
te

 si
m

pl
e 

ne
t o

pp
or

tu
ni

ty
 (A

SN
O)

mean ASNO of D1
median ASNO of D1
mean ASNO of D2
median ASNO of D2

Figure 33: Median and mean absolute simple net opportunity (ASNO) on the datasets D1 (all
press releases) and D2 (only press releases having ASNO of at least 3% after 5 h) for
different offsets o

Next, we put the ASNO graphs of the press releases datasets into perspective by calculating
the general ASNO that we would normally expect, when there was no press release published.
We apply exactly the same procedure from which we calculated the general SNO histogram in
Figure 29.

By plotting the general ASNO of companies in D1 and D2, we can visually compare them to
the mean ASNO of D1 and D2. Both general ASNO graphs increase minimally in the beginning
for one hour and then keep at a constant level. The general ASNO of companies that are listed
in D2 do not only vary more compared to the ones listed in D1 but are also twice as high, such
that they even exceed the mean ASNO of D1 for certain offsets. This again clearly shows that
if we discretized the ASNO with thresholds close to zero, then we would have to deal with lots
of noise in our dataset.

64



6 RESULTS AND EVALUATION Max Lübbering, 21599173

0:00:00 1:00:00 2:00:00 3:00:00 4:00:00 5:00:00 6:00:00
Offset o

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ab
so

lu
te

 si
m

pl
e 

ne
t o

pp
or

tu
ni

ty
 (A

SN
O)

mean ASNO of D1
mean general ASNO of companies D1
mean ASNO of D2
mean general ASNO of companies D2

Figure 34: Comparison of mean absolute simple net opportunity (ASNO) on the datasets D1
(all press releases) and D2 (only press releases having ASNO of at least 3% after 5 h)
for different offsets o to the general mean ASNO of companies in D1 and D2

The mean and median curves of Figure 33 and the general ASNO curves of Figure 34, show
that offsetting window w2 at five hours after exchange open is a valid choice as it maximizes the
ASNO. Additionally, general ASNO keeps at the same level over time, as shown by Figure 34,
which is why also the difference of the mean ASNO and mean general ASNO is maximized.

In Figure 29, we compared the SNO on D1 to the general SNO on D1, while w2 was positioned
at five hours after exchange opening in both cases. Our conclusion was that ±8% are reasonable
choices as discretization thresholds for the labels negative, neutral and positive.

Having labeled all the press releases respectively, we now analyze the expected stock price curve
for each class as follows:

1. Split the press release dataset by its labels

2. For each label:

a) For each press release filter the respective stock price series in the interval six hours
before exchange closed and six hours after exchange opened

b) Normalize each stock price series by dividing it by its maximum stock price

c) As the stock price dataset contains holes, as shown in Section 6.1.1, we fix these holes
by linear interpolation.

d) Average all stock price series to get one averaged curve.

e) Calculate the median stock price curve.

The average stock prices curves for classes positive and negative have been plotted in Figure 35
and Figure 36, respectively. In all three cases the normalized stock prices stay almost at a
constant level before the exchange closes. When the exchange opens again, the stock price
already jumped, leaving us with roughly half of the theoretical ASNO we would have had if we
had bought the stocks the day before. After the jump the information continues to be reflected
onto the stock price for about five hours.

In Section 2.1.2, we introduced Electronic Communication Networks (ECNs), which enable
traders to also trade during the after hours. As 50% of a press releases impact is already

65



6 RESULTS AND EVALUATION Max Lübbering, 21599173

represented in the stock price directly after the exchange opens, ECNs are worth considering to
increase profits.

Moreover, the diagrams reveal that being fast pays off. If we miss the first hour after the
exchange opened, we are only able to cash on a small portion of the profits that would have
been possible.

So far our data resolution was one minute. Having discovered that press releases’ impact is
mapped onto the stock price until the exchanges closes, allows us to reduce the data resolution
to the daily open, close, high and low stock price. These datasets come at a fraction of the price
of the intra-day stock prices with a minute resolution.

14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
time (hour of day)

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
ize

d 
st

oc
k 

pr
ice

s

market close
market open
average stock price development
median stock price development
spline smooothed average stock prices

Figure 35: Stock price development heat map of press releases with SNO of at least 8% after
an offset of 5 h after exchange opens

14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
time (hour of day)

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
ize

d 
st

oc
k 

pr
ice

s

market close
market open
average stock price development
median stock price development
spline smooothed average stock prices

Figure 36: Stock price development heat map of press releases with SNO of less than -8% after
an offset of 5 h after exchange opens

The stock prices curves for the neutral class vary within the interval [−0.08, 0.08]. For a final
exploration, we plotted the average and median curves for the intervals [0, 0.08] and [−0.08, 0],

66



6 RESULTS AND EVALUATION Max Lübbering, 21599173

as shown in Figure 37 and Figure 38. Due to many press releases having almost no influence at
all, these averaged curves show an SNO of ±1%.

14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
time (hour of day)

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
ize

d 
st

oc
k 

pr
ice

s

market close
market open
average stock price development
median stock price development
spline smooothed average stock prices

Figure 37: Stock price development heat map of press releases with SNO in [0, 8%] after an
offset of 5 h after exchange opens

14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
time (hour of day)

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
ize

d 
st

oc
k 

pr
ice

s

market close
market open
average stock price development
median stock price development
spline smooothed average stock prices

Figure 38: Stock price development heat map of press releases with SNO in [−8%, 0] after an
offset of 5 h after exchange opens

After the press releases’ SNO has been discretized by the thresholds ±0.08, the three resulting
class (positive, neutral, negative) have the following distribution:

• positive: 267

• neutral: 8178

• negative: 298

Therefore, press releases with no impact are 14 times more likely than press releases with an
impact. After having trained models on a balanced press releases set, the estimated accuracies
will not represent those once deployed. This is why, we have to compensate for the overrepre-
sentation of neutral press releases later in the evaluation as already stated in Section 4.4.

67



6 RESULTS AND EVALUATION Max Lübbering, 21599173

The low numbers of press releases with label positive and negative might also make the mod-
els learn noise and therefore not generalize well. For future work we will definitely consider
increasing the number of labeled press releases. As of this thesis submission date, the press
release crawlers are still mining press releases. However, since Google discontinued their stock
price API, as stated in Section 4.1, we will have to buy daily stock prices from a financial data
provider.

6.2 Performance Comparison of Impact Models

Previously, we have shown in Figure 34 that the offset placed at 5 hours after exchange open is
a reasonable choice for calculating the SNO of the press releases to which we will stick to.

We also showed in Figure 29, that the discretization threshold (−0.08, 0.08) is a well-chosen
trade-off between the unwanted downsizing of the press release dataset and avoiding noise due
to general stock price volatility in the impact class. However, this discretization threshold does
not necessarily maximize the models performance, since a discretization threshold that has
stronger constrains towards impact e.g., (−0.15, 0.15) contains most likely no noise among all
press releases labeled as having an impact. Since in general most press releases are distributed
closely around 0 SNO, this means that the two sample sets impact and no impact are more
different to each other than when discretized on e.g., (−0.01, 0.01).

These hidden effect are difficult to consider, which is why we decided to train the three classifiers
on press release sets with different discretization thresholds, as shown in Table 13. In total there
are 8,743 press releases labeled by the respective SNO. Based on the discretization thresholds
the press releases are assigned to one of the classes impact (I) or no impact (¬I). A press release
is labeled as I if its SNO is less than the left threshold or greater than the right threshold and
is labeled as ¬I otherwise.

Obviously, the wider the bin for neutral press releases gets, the smaller the number of samples
having assigned class impact become. Notably, the data situation becomes very poor for the
threshold (−0.15, 0.15). When we increase the threshold width, then for both classes the quarter
result rate rises. This means that quarter results generally have a higher impact than usual
press releases.

Threshold No impact (¬I); QR rate Impact (I); QR rate

(-0.01, 0.01) 3920; 0.14 4823; 0.29
(-0.02, 0.02) 5973; 0.15 2770; 0.38
(-0.03, 0.03) 6853; 0.16 1890; 0.45
(-0.04, 0.04) 7358; 0.18 1385; 0.49
(-0.05, 0.05) 7694; 0.18 1049; 0.52
(-0.08, 0.08) 8178; 0.20 565; 0.59
(-0.10, 0.10) 8369; 0.21 374; 0.63
(-0.15, 0.15) 8562; 0.22 181; 0.64

Table 13: Number of press releases and quarter result rates for each class (impact, no impact)
depending on the discretization threshold

Each dataset is split, such that 80% of the press releases are used for grid search and the
remaining 20% make up the holdout set. During grid search we perform a stratified 10 fold
cross-validation for each parameter combination.[24] This means that we split the grid search
dataset into 10 equally sized folds, each fold having the same number of samples per class

68



6 RESULTS AND EVALUATION Max Lübbering, 21599173

(stratification). In total we train and evaluate ten models for each parameter combination,
while each time using a different bin as the validation set and the other bins as training. The
models are trained on the training sets and evaluated on the validation sets. Thus, we get
10 accuracy measures per parameter combination, which we average. The averaged accuracy,
which is also called validation score, gives an estimate on how well a model would perform if
trained on the entire dataset.

For each dataset in Table 13 the hyperparameter combination yielding highest averaged accuracy
on the validation sets is being determined by grid search. In order to compare the approaches
to each other, we will finally train and evaluate each model with its best hyperparameters on
the dataset discretized on thresholds (−0.08, 0.08). In our previous analysis, we have shown
that this dataset provides enough samples with class impact and at the same time is affected
by too much noise.

6.2.1 Trivial Classifier

The trivial classifier’s performance is evaluated separately on the press release sets introduced
in Table 13. On each press release set we utilize grid search to find the best feature_count
among the ones defined in Listing 10. This parameter determines how many words we consider
per class as previously described in Section 4.3.2.

1 {
2 " feature_counts ": [1, 5, 10, 50, 100, 150, 200, 250, 300, 350, 400, 450,

500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 , 1500 , 2000 , 2500 ,
3000 , 3500 , 4000 , 4500 , 5000 , 5500 , 6000 , 6500 , 7000 , 7500 , 8000]

3 }

Listing 10: Best trivial classifier hyperparameters to test for during grid search

After having trained all the models, we determine for each press release set the feature_count
which provided the highest average validation score, as shown in Table 14. We see that the
optimal feature_count is at about 500 words per class and that the accuracy on the training set
as well as on the validation set grows with the distance of the two discretization thresholds.

thresholds feature_count train score val score

(-0.01, 0.01) 550 0.61 0.61
(-0.02, 0.02) 600 0.67 0.66
(-0.03, 0.03) 200 0.69 0.69
(-0.04, 0.04) 650 0.73 0.72
(-0.05, 0.05) 550 0.75 0.73
(-0.08, 0.08) 450 0.78 0.75
(-0.10, 0.10) 550 0.80 0.74
(-0.15, 0.15) 450 0.86 0.78

Table 14: Best trivial classifier for each dataset found by grid search

The averaged accuracies on the training set and the validation set for each dataset have been
plotted as lines in Figure 39. The graphs show that for closer discretization thresholds, the ac-
curacies are almost equal, while for wider discretization thresholds the accuracy on the training
set exceeds the validation set accuracy.

69



6 RESULTS AND EVALUATION Max Lübbering, 21599173

(-0.01, 0.01) (-0.02, 0.02) (-0.03, 0.03) (-0.04, 0.04) (-0.05, 0.05) (-0.08, 0.08) (-0.1, 0.1) (-0.15, 0.15)
discretization thresholds

0.60

0.65

0.70

0.75

0.80

0.85

ar
ith

m
et

ic 
m

ea
n 

of
 a

cc
ur

ac
y

training set
validation set

Figure 39: Best train and validation score of trivial classifier for different discretization thresh-
olds

Our final model was trained on the dataset discretized by (−0.08, 0.08) and parameterized by
a feature count of 450.

After having trained the model on the union of the training and the validation set, we evaluate
the model on the test set which has never been used during grid search, making thereby sure
that there are no information leaks. The resulting model has an accuracy of 77% on the test
set.

Figure 40 shows the evaluations results in form of two confusion matrices. The first one contains
the absolute counts in which bin the press releases ended up and the second confusion matrix is
the row-wise normalized version of the prior one. The result is a conditional probability table,
where the true label is given as evidence.

The model reaches for both classes very good results given the simplicity of the model. However,
when estimating the performance in the field with a major class imbalance as shown in Table 13,
then these good results are put into perspective.

We calculate the performance that we can expect in the field using Equation (116) and Equa-
tion (117). The probability of a press release having an impact given that it was predicted to
have an impact p(I|ŷ) amounts to only 22%, while the probability of a press release having no
impact given that it was predicted to have one p(¬I|ŷ) amounts to 78%. So in practice among
all press releases that have been predicted to have an impact approx. only one fifth do really
have one.

We also manually checked the press releases for reoccurring patterns in each bin of the confusion
matrix. Interestingly, we found out that most press releases in the TP bin are about quarter
results, which rises the question how the quarter results are generally distributed over the four
bins. We determined the rate of press releases having the key words quarter and result in
their title for each bin in the confusion matrix. The results of our investigation are plotted in
Figure 41. The quarter result rate for the TPs is 74%, while the quarter result rate for the TNs
is only 11%. Among all press releases having impact as the true label, 29% are quarter results,
compared to only 11% quarter results among all press releases having no impact. This means
that even for a simple model like this one, this edge can be learned.

70



6 RESULTS AND EVALUATION Max Lübbering, 21599173

¬I I
Predicted label

¬I

I

Tr
ue

 la
be

l

93 20

31 82

Confusion matrix w/o normalization

20

30

40

50

60

70

80

90

(a) Confusion matrix with absolute counts

¬I I
Predicted label

¬I

I

Tr
ue

 la
be

l

0.82 0.18

0.27 0.73

Normalized confusion matrix

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Confusion matrix normalized by true label
counts

Figure 40: Confusion matrix of best trivial classifier trained and evaluated on press release
dataset discretized by [−0.08, 0.08]

¬I I
Predicted label

¬I

I

Tr
ue

 la
be

l

0.11 0.50

0.23 0.74

Quarter result rates

0.2

0.3

0.4

0.5

0.6

0.7

Figure 41: Quarter result rates of each bin of the trivial classifier’s confusion matrix

Looking at the 50 most used terms in each class (impact, no impact), we see that both basically
deal with quarter results. This means that even though press releases make up only 29% and
11% of the press releases with impact and without impact, that the quarter results use a similar
vocabulary, while the other press releases are not that alike.

The intersection of the two lists contains 39 words, which as a consequence means that the most
used words are not suitable for classification. In fact, this is also the reason why all models
picked on average 500 words per class for model training and not much less, as previously shown
in Table 14.
million | company | quarter | result | financial | net | statement | first | include |
income | increase | revenue | measure | year | sale | share | adjust | business |
compare | may | expense | per | fiscal | operate | cash | information | product | cost |

loss | performance | period | tax | new | operation | report | end | risk | call | use
| expect | investor | release | provide | market | growth | future | management | second

71



6 RESULTS AND EVALUATION Max Lübbering, 21599173

| impact | continue

Listing 11: Top 50 words of class impact according to trivial classifier’s vocabulary ranking

company | million | quarter | statement | include | result | financial | business | may
| first | information | share | increase | new | net | service | income | security |
market | product | year | investor | risk | provide | report | measure | management |
adjust | release | time | per | sale | investment | cash | call | contact | use |
customer | solution | performance | end | operate | expense | available | technology |
revenue | compare | total | future | march

Listing 12: Top 50 words of class no impact according to trivial classifier’s vocabulary ranking

6.2.2 Naïve Bayesian Network

Grid search is performed on the naïve Bayesian network pipeline using the parameter combi-
nations defined in Listing 13. There are two different scoring functions for feature selection,
namely the χ2 test statistic and mutual information, which were introduced in Section 2.6. The
parameter k determines how many features are used for the model and the parameter α is the
Laplace smoothing factor introduced Equation (46) of Section 2.3.4.

1 {
2 " feature_selection__score_func ": [chi2 , mutual_info ],
3 " feature_selection__k ": [10, 50, 100, 200, 500, 1000 , 2000 , 3000 , 4000 ,

5000 , 6000 , 7000 , 8000 , 9000 , 10000 , "all "],
4 " naive_bayes__alpha ": [0.1 , 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
5 }

Listing 13: Naïve Bayesian network pipeline hyperparameters to test for during grid search

After having performed the grid search for each dataset, we determined for each dataset the
parameter combination that yielded the highest validation score. We see that for all datasets
the best model favored rather many features. For the other parameters (naive_bayes_alpha,
feature_selection_score), we cannot see any preferences.

thresholds val score train score nb_α fs_k fs_score_func

(-0.01, 0.01) 0.62 0.64 0.8 10000 mutual
(-0.02, 0.02) 0.66 0.69 0.4 10000 mutual
(-0.03, 0.03) 0.70 0.75 0.1 all chi2
(-0.04, 0.04) 0.72 0.75 0.3 7000 mutual
(-0.05, 0.05) 0.73 0.82 0.1 6000 chi2
(-0.08, 0.08) 0.75 0.86 0.3 7000 chi2
(-0.10, 0.10) 0.76 0.88 0.4 all chi2
(-0.15, 0.15) 0.79 0.95 0.1 6000 chi2

Table 15: Best hyperparameters of naïve Bayesian network pipeline found by grid search for
each dataset

The validation score and the train score, which as a reminder are the average accuracies for the
validation set and the training set, show a strong correlation with the distance of the two dis-
cretization thresholds, as shown in Figure 42. While the accuracies on both sets monotonically
increase with the width of the threshold pairs, the accuracy of the training set always exceeds
the one of the validation set. Even though the training set almost reaches 95% accuracy the
validation sets accuracy still increases, which means that we are not overfitting, yet.

72



6 RESULTS AND EVALUATION Max Lübbering, 21599173

(-0.01, 0.01) (-0.02, 0.02) (-0.03, 0.03) (-0.04, 0.04) (-0.05, 0.05) (-0.08, 0.08) (-0.1, 0.1) (-0.15, 0.15)
discretization thresholds

0.65

0.70

0.75

0.80

0.85

0.90

0.95

ar
ith

m
et

ic 
m

ea
n 

of
 a

cc
ur

ac
y

training set
validation set

Figure 42: Best train and validation score of naïve Bayesian network pipeline on each dataset

As for the trivial classifier, we trained the algorithm on the press release set discretized by
[−0.08, 0.08], while setting the hyperparameters to naive_bayes_alpha = 0.3, feature_selection_k
= 7,000 and feature_selection_score_function = chi2. The accuracy of this model on the hold-
out set is 78% according to Equation (115). Plotting the confusion matrix of the predictions
shows that 85% of the no impact press releases were correctly predicted, while press releases
with impact were predicted only in 72% of the cases correctly.

¬I I
Predicted label

¬I

I

Tr
ue

 la
be

l

96 17

32 81

Confusion matrix w/o normalization

20

30

40

50

60

70

80

90

(a) Confusion matrix with absolute counts

¬I I
Predicted label

¬I

I

Tr
ue

 la
be

l

0.85 0.15

0.28 0.72

Normalized confusion matrix

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Confusion matrix normalized by true label
counts

Figure 43: Confusion matrix of best naïve Bayesian network pipeline trained and evaluated on
press release dataset discretized by [−0.08, 0.08]

Next, we calculate the performance that we can expect in the field using Equation (116) and
Equation (117). The probability of a press release having an impact given that it was predicted
to have an impact p(I|ŷ) amounts to only 25%, while the probability of a press release having
no impact given that it was predicted to have one p(¬I|ŷ) amounts to 65%. So in practice,
among all press releases that have been predicted to have an impact, we expect only one quarter
to really have an impact.

73



6 RESULTS AND EVALUATION Max Lübbering, 21599173

We also manually checked the press releases for reoccurring patterns in each bin of the confusion
matrix. Interestingly, we found out that most press releases in the TP bin, were about quarter
results, which rises the question if we learned a dummy model. The model might be only
looking for the two key words quarter and result and then classify each press release based on
the presence of the two words. This is why we determined the rate of press releases having the
key words quarter and result in their title for each bin of the confusion matrix separately. The
results of our investigation are plotted in the Figure 44. The quarter result rate for the TPs
is 78%, while the one for the TNs is only 9%. Our first conclusion is that the model does not
apply such a dummy model, due to the 9% of quarter results among the TNs. However, the
65% quarter result rate in FP shows that the model indeed learns that quarter results usually
have a great impact, which is not per se false but also not a good rule on its own.

¬I I
Predicted label

¬I

I

Tr
ue

 la
be

l

0.09 0.65

0.16 0.78

Quarter result rates

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 44: Quarter result rates in each bin of the naïve Bayesian network pipeline’s confusion
matrix

We now look at the top 200 features according to the χ2 test statistic, as shown in Listing 14.
The selected features clearly deal with quarter results. The overrepresentation of quarter results
having class impact, as already shown in Table 13, therefore also reflects in the top features for
discrimination.
million :3594 | quarter :2643 | net :1928 | revenue :1800 | fiscal :1607 | result :1564 |
measure :1489 | income :1416 | company :1385 | sale :1366 | financial :1321 | compare :1315 |
first :1282 | year :1227 | adjust :1192 | increase :1122 | expense :1038 | statement :952 |
per :824 | operate :812 | tax :792 | cost :768 | loss :767 | margin :767 | share :761 | include
:758 | period :748 | cash :706 | dilute :705 | gross :596 | operation :596 | prior :577 |
performance :576 | expect :575 | impact :526 | operating :523 | exclude :515 | may :493 | end
:484 | comparable :446 | earnings :439 | due :436 | growth :415 | product :414 | use :411 |
second :408 | continue :394 | call :391 | rate :380 | business :379 | profit :377 | fourth :364

| future :364 | believe :362 | relate :354 | segment :350 | compensation :350 | report :345 |
de :343 | basis :337 | change :335 | ability :335 | item :327 | guidance :322 | approximately

:309 | flow :307 | factor :301 | adjusted :298 | reflect :293 | release :286 | reconciliation
:285 | primarily :284 | risk :281 | expectation :277 | decrease :276 | amortization :273 |
charge :272 | outlook :254 | percent :251 | customer :241 | certain :241 | conference :240 |
plan :227 | month :219 | management :217 | investor :213 | march :213 | information :211 |
benefit :208 | new :206 | provide :204 | press :202 | evaluate :196 | estimate :195 | related
:192 | currency :189 | range :185 | accordance :182 | consider :180 | intangible :179 |
exchange :178 | total :177 | lower :176 | last :175 | adjustment :173 | uncertainty :172 |
base :172 | market :169 | effect :169 | activity :169 | present :166 | condition :162 | three
:161 | foreign :160 | associate :159 | strong :157 | higher :156 | reduction :154 | price :154

| accounting :153 | attributable :152 | third :151 | drive :150 | could :149 | table :148 |
acquisition :148 | offset :148 | useful :148 | anticipate :145 | mix :144 | point :143 |
differ :142 | regard :141 | act :140 | depreciation :139 | ongoing :139 | actual :137 |
comparison :137 | account :136 | define :136 | initiative :135 | restructuring :135 | brand
:134 | make :134 | also :132 | contain :131 | decline :131 | potential :128 | calculate :128 |

74



6 RESULTS AND EVALUATION Max Lübbering, 21599173

limitation :127 | store :127 | diluted :127 | amount :125 | update :125 | transaction :124 |
cause :124 | form :123 | additional :122 | trend :122 | well :120 | expenditure :119 | current
:115 | impairment :115 | inventory :114 | addition :113 | consolidated :113 | improvement
:113 | time :112 | security :111 | december :111 | rite :111 | standard :110 | event :109 |
favorable :109 | capital :108 | versus :108 | materially :108 | international :107 | en :106 |

interest :104 | debt :103 | commission :102 | equivalent :102 | order :101 | subscription
:101 | section :101 | number :100 | obligation :100 | la :100 | percentage :99 | achieve :99 |

aid :98 | historical :97 | filing :97 | sec :96 | effective :96 | represent :95 | operational
:94 | available :93 | identify :90

Listing 14: Top 200 words for the impact models according to χ2 test statistic score

The top 200 words according to the mutual information score function are shown in Listing 15.
Again, the top words deal with quarter results. The intersection of both lists contains 165
words, which shows that both methods perform similarly.
result :0.16 | quarter :0.16 | statement :0.15 | million :0.15 | net :0.14 | compare :0.13 |
risk :0.13 | uncertainty :0.13 | company :0.13 | include :0.12 | factor :0.12 | measure :0.12
| expect :0.12 | increase :0.12 | expense :0.12 | end :0.11 | sale :0.11 | believe :0.11 |
release :0.11 | cash :0.11 | share :0.11 | differ :0.11 | financial :0.11 | actual :0.11 |
materially :0.11 | revenue :0.11 | margin :0.11 | period :0.11 | income :0.11 | may :0.11 |
year :0.1 | future :0.1 | per :0.1 | continue :0.1 | report :0.1 | cost :0.1 | expectation :0.1

| could :0.1 | update :0.1 | operating :0.1 | tax :0.1 | dilute :0.1 | performance :0.1 |
relate :0.1 | first :0.1 | adjust :0.1 | gross :0.09 | impact :0.09 | operate :0.09 | growth
:0.09 | exchange :0.09 | comparable :0.09 | security :0.09 | due :0.09 | certain :0.09 |
reconciliation :0.09 | reflect :0.09 | contain :0.09 | cause :0.09 | obligation :0.09 |
operation :0.08 | exclude :0.08 | loss :0.08 | change :0.08 | call :0.08 | form :0.08 | use
:0.08 | item :0.08 | prior :0.08 | outlook :0.07 | press :0.07 | commission :0.07 | plan :0.07

| table :0.07 | ability :0.07 | current :0.07 | rate :0.07 | strong :0.07 | business :0.07 |
accordance :0.07 | consider :0.07 | estimate :0.07 | evaluate :0.07 | act :0.07 | fiscal :0.07

| total :0.07 | compensation :0.07 | amortization :0.07 | conference :0.07 | base :0.07 |
earnings :0.06 | basis :0.06 | related :0.06 | march :0.06 | condition :0.06 | anticipate
:0.06 | capital :0.06 | highlight :0.06 | december :0.06 | primarily :0.06 | litigation :0.06

| investor :0.06 | adjusted :0.06 | filing :0.06 | flow :0.06 | date :0.06 | information
:0.06 | historical :0.06 | reform :0.06 | effect :0.06 | second :0.06 | well :0.06 | currency
:0.06 | amount :0.06 | profit :0.06 | approximately :0.06 | product :0.05 | guidance :0.05 |
event :0.05 | today :0.05 | trend :0.05 | also :0.05 | decrease :0.05 | benefit :0.05 |
additional :0.05 | useful :0.05 | limitation :0.05 | interest :0.05 | law :0.05 | substitute
:0.05 | drive :0.05 | intend :0.05 | market :0.05 | new :0.05 | calculate :0.05 | accounting
:0.05 | make :0.05 | involve :0.05 | depreciation :0.05 | regard :0.05 | present :0.05 |
percentage :0.05 | mean :0.05 | project :0.05 | management :0.05 | equivalent :0.05 |
potential :0.05 | annual :0.05 | acquisition :0.05 | comparison :0.05 | associate :0.05 |
activity :0.05 | charge :0.05 | segment :0.05 | development :0.05 | time :0.05 | file :0.04 |
addition :0.04 | price :0.04 | supplemental :0.04 | available :0.04 | reduction :0.04 |
subject :0.04 | adjustment :0.04 | month :0.04 | section :0.04 | offset :0.04 | range :0.04 |
identify :0.04 | similar :0.04 | sec :0.04 | successfully :0.04 | within :0.04 | provide :0.04

| quarterly :0.04 | affect :0.04 | require :0.04 | provision :0.04 | expand :0.04 | ongoing
:0.04 | initiative :0.04 | improvement :0.04 | mix :0.04 | revise :0.04 | debt :0.04 |
fluctuation :0.04 | average :0.04 | significant :0.04 | assumption :0.04 | exist :0.04 |
percent :0.04 | balance :0.04 | attributable :0.04 | private :0.04 | intangible :0.04 | live
:0.04 | limited :0.04 | higher :0.04 | inventory :0.04 | economic :0.04

Listing 15: Top words 200 for the impact models according to mutual information score

From the naïve Bayesian network it is possible to generate two word lists, which contain the
words whose presence is most important for each of the classes impact I and no impact ¬I.
Since naïve Bayesian networks treat all terms as random variables, we can formally define the
ith term in the vocabulary as Ti, where the value ti denotes presence and ¬ti denotes absence of
term i. The CPT of term i contains p(ti|I) and p(ti|¬I), which express the probability of term
i appearing in one of the respective classes. The two probabilities cannot be used directly to
produce the words list, as they do not add up to one. Thus, a term having p(t1|I) = p(t1|¬I) = 1
would be picked for both lists over p(t2|I) = 0.9 and p(t1|¬I) = 0.01, even though t2 would
definitely be a better fit for the word list of class I.

This is why, we need another approach. We calculate the probability of each class given term
ti instead. These probabilities p(I|ti) and p(¬I|ti) sum up to one, which means that we can
pick for each class the words that provide highest conditional probability. The probabilities are
derived from the probabilities in the CPTs as follows:

75



6 RESULTS AND EVALUATION Max Lübbering, 21599173

p(I|ti) = p(I, ti)
p(ti)

(119)

= p(ti|I)p(I)
p(ti)

(120)

= αp(ti|I), (121)

under the constraint that α(p(ti|I) + p(ti|¬I))) = 1. Since the dataset is balanced p(I) =
p(¬I) = 0.5 and since p(ti) is in the evidence part of p(I|ti), this means that both terms can be
replaced by the constant α. This constant has to be determined such that p(I|ti) and p(¬I|ti)
sum up to one, which is enforced by the constraint. In conclusion, we can generate our word
lists, by scaling the probabilities in the CPTs such that their sum adds up to one and pick for
each class the terms whose presence have the highest probabilities for this class.

The resulting word lists for the the classes impact and no impact class are shown in Listing 16
and Listing 17, respectively. For the top words of class I, we see that these words deal mostly
with words mentioned in quarter results: fiscal, gross, profit, revenue, margin. Therefore, words
that deal with real numbers i.e., measurable facts, have the most influence on stock prices. The
top word rite in word list of class I and the top words en, de, la of the other top words list
show signs of overfitting. These words have been only present in one of the classes by chance
and the model learned them falsely, due to the frequency approach. On a lager dataset their
appearance probability for each class should be equal.

It is also noteworthy, that the word order found by the χ2 test statistic and mutual information
for feature reduction is completely different from the word order of the top 50 words for each
class found by the naïve Bayesian network. On the one hand, this shows that the feature
selection scoring functions do not work as good as expected. This is also why the best models
on each dataset picked almost all features. On the other hand, we can already see, that the top
words stem from overfitting, which makes feature selection strategies an important mean.
rite :0.99 | fiscal :0.79 | subscription :0.77 | aid :0.76 | mix :0.73 | gross :0.72 | profit
:0.72 | dilute :0.7 | margin :0.68 | comparable :0.67 | compensation :0.67 | fourth :0.67 |
revenue :0.66 | favorable :0.66 | intangible :0.66 | restructuring :0.64 | comparison :0.64 |

adjusted :0.63 | expenditure :0.63 | compare :0.62 | versus :0.62 | diluted :0.61 |
reduction :0.61 | sale :0.61 | prior :0.6 | measure :0.6 | outlook :0.6 | inventory :0.6 | net
:0.6 | amortization :0.6 | limitation :0.59 | tax :0.59 | depreciation :0.59 | operating
:0.59 | reconciliation :0.59 | equivalent :0.59 | exclude :0.58 | expense :0.58 | initiative
:0.58 | useful :0.58 | impairment :0.58 | adjust :0.58 | percentage :0.58 | loss :0.58 |
period :0.57 | due :0.57 | evaluate :0.57 | accounting :0.57 | guidance :0.57 | income :0.57 |

ongoing :0.57 | million :0.56 | charge :0.56 | year :0.56 | cost :0.56 | adjustment :0.56 |
foreign :0.56 | segment :0.56 | quarter :0.56 | improvement :0.55 | define :0.55 |
attributable :0.55 | item :0.55 | operate :0.55 | impact :0.55 | consolidated :0.55 | last
:0.55 | table :0.55 | point :0.54 | lower :0.54 | consider :0.54 | account :0.54 | decline
:0.54 | per :0.54 | trend :0.54 | expect :0.54 | primarily :0.54 | order :0.54 | calculate
:0.54 | accordance :0.53 | reflect :0.53 | relate :0.53 | first :0.53 | standard :0.53 |
expectation :0.53 | operation :0.53 | flow :0.53 | cash :0.53 | offset :0.53 | increase :0.53
| result :0.52 | range :0.52 | basis :0.52 | decrease :0.52 | earnings :0.51 | performance
:0.51 | strong :0.51 | third :0.51 | believe :0.51 | effect :0.51

Listing 16: The top 50 words for class I ranked by probability p(I|ti) out of 200 features

en :0.98 | de :0.96 | la :0.95 | security :0.64 | available :0.63 | time :0.63 | information
:0.62 | market :0.62 | new :0.62 | capital :0.61 | interest :0.6 | provide :0.6 | also :0.6 |
investor :0.6 | business :0.6 | make :0.6 | management :0.59 | event :0.59 | total :0.59 |
well :0.59 | risk :0.58 | current :0.58 | additional :0.58 | march :0.57 | acquisition :0.57 |

customer :0.57 | store :0.57 | form :0.57 | release :0.57 | may :0.57 | materially :0.57 |
base :0.57 | debt :0.57 | number :0.57 | sec :0.56 | international :0.56 | company :0.56 |
report :0.56 | represent :0.56 | could :0.56 | contain :0.56 | exchange :0.56 | conference
:0.56 | update :0.56 | include :0.56 | uncertainty :0.56 | product :0.55 | addition :0.55 |
actual :0.55 | obligation :0.55 | act :0.55 | section :0.55 | plan :0.55 | commission :0.54 |
statement :0.54 | press :0.54 | identify :0.54 | condition :0.54 | brand :0.54 | cause :0.54 |

percent :0.54 | transaction :0.54 | call :0.54 | potential :0.54 | regard :0.53 | differ

76



6 RESULTS AND EVALUATION Max Lübbering, 21599173

:0.53 | future :0.53 | effective :0.53 | use :0.53 | month :0.53 | amount :0.52 | factor :0.52
| price :0.52 | drive :0.52 | share :0.52 | three :0.52 | higher :0.52 | approximately :0.52

| historical :0.52 | present :0.51 | activity :0.51 | filing :0.51 | change :0.51 | estimate
:0.51 | related :0.51 | growth :0.51 | associate :0.51 | continue :0.51 | second :0.51 |
december :0.51 | end :0.51 | certain :0.5 | currency :0.5 | benefit :0.5 | anticipate :0.5 |
operational :0.5 | achieve :0.5 | financial :0.5 | rate :0.49 | ability :0.49

Listing 17: The top 50 words for class ¬I ranked by p(¬I|ti) out of 200 features

6.2.3 Support Vector Machine

As for the naïve Bayesian network pipeline and the trivial classifier pipeline, we perform grid
search on the support vector machine pipeline for each press release set defined in Table 13.
The dictionary in Listing 18 defines all the hyperparameter combinations that we test for. The
features selection parameters are the same as the ones used for the naïve Bayes classifier pipeline.
This support vector machine always uses a polynomial kernel having degrees between 1 and 5.
The hyperparameter C is a penalty factor multiplied by the slack for all constraints not being
fulfilled, as explained at the end of Section 2.5. The higher the penalty factor the more we try
to fit all data points including noise.

1 {
2 " feature_selection__score_func ": [chi2 , mutual_info ],
3 " feature_selection__k ": [10, 50, 100, 200, 500, 1000 , 2000 , 3000 , 5000 ,

8000 , 10000 , "all "],
4 " svm__kernel " : [" poly "],
5 " svm__degree ": [1, 2, 3, 4, 5],
6 " svm__C ": [0.1 , 0.3, 0.5, 0.7, 0.9, 1]
7 }

Listing 18: Support vector machine pipeline hyperparameters to test for during grid search

Table 16 shows the best hyperparameterization for each press release set and the resulting
averaged validation accuracy and averaged train accuracy. Interestingly, except for the last
press release set, the best SVM had a linear kernel. The last press release set contains only few
press releases but the model has the highest complexity with its quadratic kernel, which could
be a hint for overfitting. And in fact, if we compare the accuracy of this model with the best
model trained on the preceding press release sets, we see that the accuracy on the validation
set decreased while the accuracy on the training set spiked. This is a strong indicator that our
model was overfitting and should rather be trained on a bigger training set.

The number of features for this model leads to another interesting observation. It is at least
half the size of the other ones. Being able to greatly reduce the feature space, while having a
big slack penalty C in place, means that the data is rather easy to split. This effect is amplified
the quadratic kernel and the small dataset size.

thresholds val score train score fs_k fs_score_func svm_C svm_degree svm_kernel

(-0.01, 0.01) 0.62 0.66 5000 mutual 0.9 1 poly
(-0.02, 0.02) 0.67 0.72 2000 chi2 0.9 1 poly
(-0.03, 0.03) 0.71 0.75 1000 chi2 0.5 1 poly
(-0.04, 0.04) 0.71 0.76 1000 chi2 0.5 1 poly
(-0.05, 0.05) 0.74 0.80 1000 mutual 0.5 1 poly
(-0.08, 0.08) 0.77 0.82 1000 chi2 0.3 1 poly
(-0.10, 0.10) 0.77 0.82 5000 chi2 0.7 1 poly
(-0.15, 0.15) 0.76 0.93 500 mutual 0.9 2 poly

Table 16: Best hyperparameters of support vector machine pipeline for each dataset found by
grid search

77



6 RESULTS AND EVALUATION Max Lübbering, 21599173

The effect of overfitting can also be recognized in Figure 45, which shows the averaged accuracy
on the training set as well as on the validation set for the different datasets (denoted by the
discretization thresholds). For the thresholds with largest width, the train accuracy escalates
while the validation score drops, a strong indicator for overfitting.

(-0.01, 0.01) (-0.02, 0.02) (-0.03, 0.03) (-0.04, 0.04) (-0.05, 0.05) (-0.08, 0.08) (-0.1, 0.1) (-0.15, 0.15)
discretization thresholds

0.65

0.70

0.75

0.80

0.85

0.90

ar
ith

m
et

ic 
m

ea
n 

of
 a

cc
ur

ac
y

training set
validation set

Figure 45: Best train and validation score of support vector machine pipeline on each dataset

As for the previous algorithms, we train the support vector machine pipeline on the dataset
discretized by (−0.08, 0.08) and parameterize it with the best hyperparameters we found for
this dataset, as listed in Table 16. The accuracy of this model on the holdout set is 76%. The
confusion matrices in Figure 46 show that the model performs slightly better on classifying press
releases without influence. In general, the model works well when provided with a balanced
dataset.

As for the other models, this quickly changes when deployed to the field, where press releases
with an impact greater than 8% SNO make up only 6%. Then, the probability of a press release
to actually have an impact given the prediction to have an impact p(I|ŷ) amounts to 0.19 as per
Equation (116) and the probability p(¬I|ŷ) amounts to 0.81. Thus, a press release predicted as
having an impact is still 4

5 times more likely to have no impact.

As for the previous algorithms, we also take a look at the quarter results rates for each bin in
the confusion matrix. In Figure 47, we see that for the TPs the quarter result ratio is highest
among all bins. At the same time many quarter results which truly have no impact have been
falsely classified as having an impact, which can be deduced from the 40% quarter result rate in
the FP bin. This means that similar to the other algorithms the SVM algorithm learned that
quarter results usually have a high impact.

6.2.4 Discussion

In this section, we compare the three algorithms with regard to the feature selection process
(number of features, scoring function) and to their performances in terms of accuracy. Through-
out this discussion, we draw conclusions on the models, as well as, on the dataset and derive
possible improvements.

For each of the three algorithms, grid search determined the best hyperparameterization on each
of the eight stratified data sets. The trivial classifier used between 200 and 650 features per class
on each dataset, while the naïve Bayesian network pipeline used at least 6000 features. The total

78



6 RESULTS AND EVALUATION Max Lübbering, 21599173

¬I I
Predicted label

¬I

I

Tr
ue

 la
be

l

88 25

30 83

Confusion matrix w/o normalization

30

40

50

60

70

80

(a) Confusion matrix with absolute counts

¬I I
Predicted label

¬I

I

Tr
ue

 la
be

l

0.78 0.22

0.27 0.73

Normalized confusion matrix

0.3

0.4

0.5

0.6

0.7

(b) Confusion matrix normalized by true label
counts

Figure 46: Confusion matrix of best support vector machine pipeline trained and evaluated on
press release dataset discretized by [−0.08, 0.08]

¬I I
Predicted label

¬I

I

Tr
ue

 la
be

l

0.11 0.40

0.27 0.72

Quarter result rates

0.2

0.3

0.4

0.5

0.6

0.7

Figure 47: Quarter result rates in each bin of the support vector machine pipeline’s confusion
matrix

79



6 RESULTS AND EVALUATION Max Lübbering, 21599173

number of features working best for the SVM pipeline ranged between 500 and 5000 features.
This makes the trivial classifier superior in this regard, even though the scoring function for
the trivial classifier is rather simple. It just takes the k most used words for every class into
account, thus not favoring words for discrimination. If we applied proper features selection
strategies to the trivial classifier, we expect its accuracy to improve further while reducing its
feature space.

The χ2 test statistic and the mutual information function try to retrieve only words occurring
either in press releases with impact or in press releases without impact. We have shown that
the top 200 words found by these two scoring functions intersected 165 times, which means that
in the end the choice between those does not have a major influence on the model performance.
This is why, the best models for each of the two algorithms picked one of the scoring methods
without any reoccurring pattern. The top 200 words found by the two features selection strate-
gies dealt with quarter results, which is expected as for class impact 59% of the press releases
were quarter results and for class no impact only 20% were quarter results.

After we intersected the top 50 words found by χ2 test statistic, the top 50 words found by
mutual information and the two top 50 words lists determined by the trivial scoring function,
the intersection still had a size of 32. In conclusion, the most used words in each class had
discrimination abilities, even though they appeared as most used words in both classes.

For a final evaluation, the three algorithms were trained on the stratified press release set
discretized by thresholds (−0.08, 0.08). The accuracies for the trivial model, naïve Bayes model
and the SVM model were 77%, 78% and 76%, respectively. Unexpectedly, the trivial model was
as good as the more sophisticated ones. Even though we disproved that the two sophisticated
models learned plain word counts like the trivial model, it is clear that the two models have
a need for improvement. All three models failed many times on the prediction of quarter
results which had truly no impact. The count vectorization in each pipeline might not have
been the best way of representing an article, as the structure of the text gets lost. One simple
improvement would be to use n-gram models at the expense that the feature space might become
intractable for larger n.

In the field, all models showed performances, that were a lot worse than on the balanced dataset.
Press releases with impact only appear in about 6% of all press releases. This prior probability
had a huge influence for classification. For p(I)� p(¬I), the probability p(I|ŷ) might become
less than p(¬I|ŷ), such that even though our model predicted a press release to have an impact,
it is still likelier that it did not have one. Hence, for our models we estimated that it is four to
five times likelier to have a false positive (press release truly having no impact but predicted to
have an impact) than having a true positive (press release truly having an impact and predicted
to have an impact).

As a final conclusion, it is generally possible for all models to predict the impact of press
releases. Based on its low feature space, competitive accuracies and good interpretability, the
trivial classifier outperformed the more sophisticated approaches and most likely can even be
improved further. Nevertheless, in the field, where press releases make up only 6%, impact
prediction becomes unreliable and at the very most might be used as another indicator.

6.3 Performance Comparison of Sentiment Models

After having evaluated the impact models, we now do the same for the sentiment models. The
models are based on the same algorithms as the impact models and are also evaluated on the
same hyperparameter grid. However, the models are evaluated on a different press release set.
We took the previous press release set, discarded the press releases with no impact and assigned

80



6 RESULTS AND EVALUATION Max Lübbering, 21599173

the remaining press releases a negative or positive sentiment. The assignment is based on two
discretization thresholds. The lower one determines the maximal boundary up to which press
releases are considered as negative in terms of SNO and the upper one takes all press releases
with a SNO greater than this threshold as positives.

As for the impact model, the models are evaluated on multiple press release sets each time
discretized by a different threshold, as shown in Table 17. We see that for thresholds with a
wider spread the number of press releases in each class greatly reduce making it difficult to
build reliable models.

Threshold Neg. sent. (¬S); QR rate Pos. sent. (S); QR rate

(-0.01, 0.01) 2189; 0.32 2634; 0.28
(-0.02, 0.02) 1259; 0.40 1511; 0.35
(-0.03, 0.03) 881; 0.47 1009; 0.43
(-0.04, 0.04) 650; 0.52 735; 0.47
(-0.05, 0.05) 495; 0.55 554; 0.50
(-0.08, 0.08) 267; 0.60 298; 0.57
(-0.10, 0.10) 171; 0.65 203; 0.61
(-0.15, 0.15) 81; 0.64 100; 0.63

Table 17: Number of press releases and quarter result rates for each class (negative sentiment
¬S, positive sentiment S) depending on the discretization threshold

For comparison we also train and evaluate every model on the dataset discretized by (−0.08, 0.08)
using its best hyperparameters, as done before for the impact models.

6.3.1 Trivial Classifier

For each press release set, the trivial classifier performed grid search with the same hyperpa-
rameters as defined in Listing 10. The hyperparameters of the best performing models for each
press release set are shown in Table 18. For datasets with a small threshold width the accuracy
on the training set as well as on the validation set is even worse than random guessing. With
bigger threshold spreads the accuracies rise to up to 97% on the training set and 58% on the
validation set. The feature counts vary between 150 and 2000 while the median is at around
400.

thresholds feature_count train score val score

(-0.01, 0.01) 550 0.44 0.41
(-0.02, 0.02) 700 0.50 0.45
(-0.03, 0.03) 200 0.51 0.48
(-0.04, 0.04) 700 0.56 0.48
(-0.05, 0.05) 350 0.54 0.51
(-0.08, 0.08) 150 0.60 0.55
(-0.10, 0.10) 250 0.68 0.57
(-0.15, 0.15) 2000 0.97 0.58

Table 18: Best trivial classifier for each dataset after applying grid search

Figure 48 shows the score on the training set and validation set for the different thresholds.
At a threshold of (−0.05, 0.05) the accuracy on the validation set surpasses random guessing

81



6 RESULTS AND EVALUATION Max Lübbering, 21599173

and peaks at (−0.15, 0.15) reaching a maximum of 58%. In contrast to the accuracy of the
validation, which increases rather linearly, the accuracy on the training set spikes for thresholds
(-0.1, 0.1) and (-0.15, 0.15) overproportionally.

(-0.01, 0.01) (-0.02, 0.02) (-0.03, 0.03) (-0.04, 0.04) (-0.05, 0.05) (-0.08, 0.08) (-0.1, 0.1) (-0.15, 0.15)
discretization thresholds

0.4

0.5

0.6

0.7

0.8

0.9

ar
ith

m
et

ic 
m

ea
n 

of
 a

cc
ur

ac
y

training set
validation set

Figure 48: Best train and test score of trivial classifier for different datasets

We trained and evaluated the final model on the press release set discretized by (-0.08, 0.08)
using the best hyperparameters for this dataset according to Table 18. The accuracy of this
model is 53%, while the predictions are distributed as shown in Figure 49. The prediction of
press releases with negative sentiment yields high accuracies, whereas for press releases with
positive sentiment we see rather poor results.

¬S S
Predicted label

¬S

S

Tr
ue

 la
be

l

35 19

32 22

Confusion matrix w/o normalization

20

22

24

26

28

30

32

34

(a) Confusion matrix with absolute counts

¬S S
Predicted label

¬S

S

Tr
ue

 la
be

l

0.65 0.35

0.59 0.41

Normalized confusion matrix

0.40

0.45

0.50

0.55

0.60

(b) Confusion matrix normalized by true label
counts

Figure 49: Confusion matrix of best trivial classifier trained and evaluated on press release
dataset discretized by [−0.08, 0.08]

Taking into account that the quarter result rates are almost balanced at approx. 60% for both
classes, as shown in Table 17, we see in Figure 50 that the quarter result in the FP bin to be
peculiar high. This means that the model learned that if there is a quarter result it is likely to
be of positive sentiment.

82



6 RESULTS AND EVALUATION Max Lübbering, 21599173

¬S S
Predicted label

¬S

S
Tr

ue
 la

be
l

0.49 0.74

0.59 0.59

Quarter result rates

0.50

0.55

0.60

0.65

0.70

Figure 50: Quarter result rates in each confusion matrix bin of best trivial classifier

As the quarter result rates are at around 60% in both classes, it is not surprising, that the
top words in both classes all stem from the quarter result domain, as shown by Listing 19 and
Listing 20.
million | company | quarter | result | statement | financial | net | first | include |
income | increase | measure | revenue | adjust | year | sale | business | may | share |
expense | compare | operate | cash | per | product | information | end | period | cost |

performance | fiscal | new | expect | report | call | loss | operation | use | risk |
investor | provide | tax | growth | release | future | market | management | earnings |
security | continue

Listing 19: Top 50 words of class sentiment (S) according to trivial classifier’s ranking

million | company | quarter | result | net | statement | financial | include | first |
income | year | increase | revenue | measure | share | sale | adjust | compare |
business | may | expense | fiscal | per | operate | cash | cost | product | information
| tax | report | period | loss | risk | performance | operation | end | new | expect |
call | market | release | impact | use | investor | security | future | margin | growth
| management | provide

Listing 20: Top 50 words of class no sentiment (¬S) according to trivial classifier’s ranking

6.3.2 Naïve Bayesian Network

The naïve Bayesian network pipeline, which we performed grid search on using the same hyper-
parameters as for the impact pipeline, yielded the results shown in Table 19. Interestingly, this
time the algorithm always favored the χ2 test statistic as the better scoring function and also
the number of features have been halved compared to the corresponding impact model.

As shown in Figure 51, the accuracies on the different training and test sets again rise with
the width of the two thresholds. An accuracy on the training set of close to 100% means
that it is very well possible to learn the training set, however the applicability of this knowl-
edge to unseen data is limited as shown by the accuracies on the test sets (low generalization
performance).

Having again trained the model on the press release set discretized on the thresholds (-0.08,
0.08) and plotted its performance on the test set in form the confusion matrix as shown in
Figure 52, we see that the distributions are exactly the same as for the trivial model. However,
this is only up to chance as there is no complete overlap but many correspondences which we
checked manually. As the trivial model, this model has an overall accuracy of 53% on the test
set.

83



6 RESULTS AND EVALUATION Max Lübbering, 21599173

val score train score nb_α fs_k fs_score_func thresholds

0.55 0.72 1.0 2000 chi2 (-0.01, 0.01)
0.56 0.84 0.2 10000 chi2 (-0.02, 0.02)
0.58 0.82 0.1 2000 chi2 (-0.03, 0.03)
0.59 0.79 0.7 1000 chi2 (-0.04, 0.04)
0.58 0.86 1.0 3000 chi2 (-0.05, 0.05)
0.63 0.96 0.1 6000 chi2 (-0.08, 0.08)
0.59 0.94 0.8 5000 chi2 (-0.10, 0.10)
0.63 0.98 0.2 3000 chi2 (-0.15, 0.15)

Table 19: Best naïve Bayesian network pipeline for each threshold after applying grid search

(-0.01, 0.01) (-0.02, 0.02) (-0.03, 0.03) (-0.04, 0.04) (-0.05, 0.05) (-0.08, 0.08) (-0.1, 0.1) (-0.15, 0.15)
discretization thresholds

0.6

0.7

0.8

0.9

1.0

ar
ith

m
et

ic 
m

ea
n 

of
 a

cc
ur

ac
y

training set
validation set

Figure 51: Best train and validation score of naïve Bayesian network pipeline on each dataset

¬S S
Predicted label

¬S

S

Tr
ue

 la
be

l

35 19

32 22

Confusion matrix w/o normalization

20

22

24

26

28

30

32

34

(a) Confusion matrix with absolute counts

¬S S
Predicted label

¬S

S

Tr
ue

 la
be

l

0.65 0.35

0.59 0.41

Normalized confusion matrix

0.40

0.45

0.50

0.55

0.60

(b) Confusion matrix normalized by true label
counts

Figure 52: Confusion matrix of best naïve Bayesian network pipeline trained and evaluated on
the press release dataset discretized by [−0.08, 0.08]

84



6 RESULTS AND EVALUATION Max Lübbering, 21599173

In the quarter results plots of Figure 53 we see that the quarter results appear more frequently
in the misclassification bins. Since the true quarter result rates are at approx. 60% we would
expect them to be equally represented in each bin, which however is not the case. Thus, this
model has difficulties interpreting quarter results.

¬S S
Predicted label

¬S

S

Tr
ue

 la
be

l
0.49 0.74

0.62 0.55

Quarter result rates

0.50

0.55

0.60

0.65

0.70

Figure 53: Quarter result rates in each confusion matrix bin of best naïve Bayesian network
pipeline

Earlier we stated that the naïve Bayes classifier always picked the χ2 test statistic as the favored
feature selection scoring function. If we look at the top 200 words according to each scoring
function as shown in Listing 21 and Listing 22, we see that both are completely different and
intersect only in 45 elements. The χ2 test statistic list does not deal with any specific topic,
whereas in comparison especially the top words in the mutual information list deal with quarter
results.

Even though the literature states that both scoring functions should provide the same results
in practice, here we clearly have an example where this is not the case. In fact, the χ2 test
statistic is superior, as it was used as the scoring function for every best model.

If we compare the scores themselves to the scores in the impact words lists, we see that here
the scores are much lower. This indicates that it is more difficult to assign words to the classes
S ,¬S than to the classes I, ¬I.
rite :111 | der :92 | store :91 | offer :79 | relic :77 | aid :76 | shack :75 | offering :69 |
die :66 | retail :61 | switch :60 | western :60 | frontier :57 | cadence :57 | company :56 |
beauty :56 | decrease :55 | rh :55 | aircraft :55 | prospectus :54 | system :52 | tenet :50 |
pivotal :49 | window :48 | coal :45 | signet :45 | stock :43 | axon :43 | limelight :42 | sec
:41 | fourth :41 | fiscal :41 | de :40 | deposit :40 | mainly :39 | gallery :37 | due :37 |
share :36 | color :35 | partly :35 | corn :34 | impact :34 | registration :34 | pump :33 |
compare :33 | polaris :33 | bank :33 | solicitation :32 | lower :32 | receivables :32 |
elizabeth :32 | merger :32 | total :32 | trading :31 | griffon :31 | airline :31 | diabetes :30

| partnership :30 | video :29 | horizon :29 | constant :29 | division :28 | pharmacy :28 |
luna :28 | automation :28 | global :27 | module :27 | agency :27 | insulin :27 | distributor
:27 | net :27 | fabric :26 | ore :26 | intercept :26 | shipment :26 | billing :26 | currency
:26 | fragrance :25 | propose :25 | flex :25 | slim :25 | glucose :25 | year :25 | billion :25
| carrier :25 | three :25 | third :24 | import :24 | quarter :24 | motorcycle :24 | von :24 |
cigarette :24 | rpm :24 | stellar :24 | print :24 | mail :24 | leaf :23 | coronary :23 | shake
:23 | architectural :23 | medical :23 | federate :23 | crc :23 | connecticut :22 | drop :22 |
subscription :22 | sleep :22 | water :22 | nutrition :21 | psychosis :21 | cosmetic :21 | skin
:21 | sensor :21 | ovarian :21 | proxy :20 | basin :20 | month :20 | tandem :20 | morgan :20 |
borrower :20 | group :20 | michael :20 | placebo :20 | finance :20 | steel :20 | exceed :19 |
dividend :19 | parkinson :19 | dental :19 | hormone :19 | disability :19 | cliff :19 |
gibraltar :19 | mattress :19 | artery :19 | favorable :19 | strong :19 | vessel :19 | ca :19 |
technology :18 | marketing :18 | client :18 | hair :18 | tender :18 | charter :18 | hearing :18

| nielsen :18 | renal :18 | wheat :18 | nut :18 | adjusted :18 | camera :18 | buy :18 | gogo

85



6 RESULTS AND EVALUATION Max Lübbering, 21599173

:18 | taco :18 | kid :18 | ratio :18 | brazil :18 | jurisdiction :18 | charge :18 | tax :18 |
challenge :17 | drilling :17 | merchandise :17 | entertainment :17 | mass :17 | tropical :17 |

drill :17 | rig :17 | auf :17 | paramount :17 | kitchen :17 | hear :17 | shall :17 | case :17 |
strategic :17 | modern :16 | central :16 | auto :16 | ralph :16 | swap :16 | cantaloupe :16 |

tomato :16 | zebra :16 | blink :16 | reviewer :16 | den :16 | hedge :16 | center :16 | split :16
| unfavorable :16 | diluted :16 | joint :15 | satellite :15 | organic :15 | margin :15 |

sixteen :15 | variance :15 | immunotherapy :15 | notably :15

Listing 21: Top 200 words according to χ2 test statistic score

quarter :0.1 | million :0.09 | company :0.07 | revenue :0.07 | result :0.06 | income :0.06 |
increase :0.06 | fiscal :0.06 | adjust :0.06 | financial :0.06 | loss :0.06 | measure :0.06 |
include :0.06 | store :0.05 | year :0.05 | cash :0.05 | prior :0.05 | first :0.05 | net :0.05 |

business :0.05 | march :0.05 | end :0.05 | share :0.04 | period :0.04 | total :0.04 | new
:0.04 | sale :0.04 | guidance :0.04 | compare :0.04 | percent :0.04 | security :0.04 |
product :0.04 | operate :0.04 | sec :0.04 | billion :0.04 | relate :0.04 | second :0.04 |
expense :0.04 | service :0.04 | decrease :0.04 | currency :0.04 | stock :0.04 | cost :0.04 |
tax :0.04 | june :0.04 | patient :0.04 | study :0.03 | customer :0.03 | network :0.03 | report
:0.03 | growth :0.03 | offering :0.03 | credit :0.03 | fourth :0.03 | file :0.03 | special
:0.03 | common :0.03 | jurisdiction :0.03 | offer :0.03 | impact :0.03 | trial :0.03 | use
:0.03 | know :0.03 | approximately :0.03 | record :0.03 | capital :0.03 | performance :0.03 |

may :0.03 | per :0.03 | addition :0.03 | lower :0.03 | flow :0.03 | volume :0.03 | accordance
:0.03 | operation :0.03 | buy :0.03 | segment :0.03 | rate :0.03 | plan :0.03 | target :0.03 |

interest :0.03 | development :0.03 | approval :0.03 | treatment :0.03 | point :0.03 |
acquisition :0.03 | item :0.03 | statement :0.03 | available :0.03 | gross :0.03 | expect
:0.03 | phase :0.03 | data :0.03 | earnings :0.02 | america :0.02 | exchange :0.02 | number
:0.02 | group :0.02 | change :0.02 | asset :0.02 | constant :0.02 | primarily :0.02 | market
:0.02 | risk :0.02 | margin :0.02 | solicitation :0.02 | free :0.02 | software :0.02 | ratio
:0.02 | potential :0.02 | comparable :0.02 | last :0.02 | prospectus :0.02 | technology :0.02

| equipment :0.02 | video :0.02 | month :0.02 | basis :0.02 | third :0.02 | price :0.02 |
exclude :0.02 | continue :0.02 | respectively :0.02 | associate :0.02 | operating :0.02 |
system :0.02 | gain :0.02 | global :0.02 | document :0.02 | mobile :0.02 | retail :0.02 |
organic :0.02 | six :0.02 | lease :0.02 | order :0.02 | purchase :0.02 | information :0.02 |
center :0.02 | platform :0.02 | offset :0.02 | close :0.02 | higher :0.02 | combination :0.02
| research :0.02 | international :0.02 | additional :0.02 | cancer :0.02 | ability :0.02 |
program :0.02 | general :0.02 | incur :0.02 | level :0.02 | care :0.02 | contract :0.02 |
foreign :0.02 | three :0.02 | value :0.02 | unlawful :0.02 | brand :0.02 | registration :0.02
| health :0.02 | make :0.02 | expand :0.02 | due :0.02 | generally :0.02 | transaction :0.02 |

production :0.02 | disease :0.02 | standard :0.02 | therapy :0.02 | pension :0.02 |
automotive :0.02 | ago :0.02 | condition :0.02 | reconciliation :0.02 | benefit :0.02 |
represent :0.02 | qualification :0.02 | executive :0.02 | subsidiary :0.02 | portfolio :0.02
| estimate :0.02 | useful :0.02 | life :0.02 | distribution :0.02 | activity :0.02 | exceed
:0.02 | strategic :0.02 | strong :0.02 | news :0.02 | april :0.02 | reflect :0.02 | set :0.02
| average :0.02 | recent :0.02 | marketing :0.02 | describe :0.02 | medical :0.02 | rise :0.02

| repurchase :0.02

Listing 22: Top 200 words according to mutual information score

In Section 6.2.2, we synthesized two word lists from the naïve Bayesian network that contained
the words whose presence was the best indicator for one of the classes I or ¬I. We have seen
that especially terms out of quarter result domain are good predictors for impact.

Analogously, we created a word lists for each of the classes S and ¬S as shown in Listing 23
and Listing 24, respectively. The two lists do not contain any words that a human being would
characterize as especially positive or negative. In the two lists there are two signs for overfitting.
First, there are many words in each list having probability close or equal to 1. Since Bayesian
networks only learn the frequencies of the samples, this shows that some words just did not
appear in the other class, thus leading to these high probabilities. Secondly, in Listing 23 there
are terms like parkinson, hormone, placebo, diabetes, insulin and immunotherapy, which possibly
indicate successful clinical studies causing some pharmaceutical stocks to rise. Unfortunately,
these words are not applicable to the car manufacturing industry nor do they express any strong
sentiment. In conclusion, these word lists do not provide any insights, as could be already seen
when evaluating the naïve Bayesian model on the holdout set.
der :1.0 | relic :1.0 | shack :1.0 | die :1.0 | western :1.0 | frontier :1.0 | cadence :1.0 |
rh :1.0 | tenet :1.0 | signet :1.0 | axon :1.0 | limelight :1.0 | gallery :1.0 | insulin :1.0 |

ore :1.0 | intercept :1.0 | glucose :1.0 | slim :1.0 | von :1.0 | rpm :1.0 | architectural
:1.0 | shake :1.0 | coronary :1.0 | psychosis :1.0 | tandem :1.0 | borrower :1.0 | cliff :1.0
| parkinson :1.0 | artery :1.0 | gibraltar :1.0 | hormone :1.0 | camera :1.0 | nut :1.0 | taco

86



6 RESULTS AND EVALUATION Max Lübbering, 21599173

:1.0 | rig :1.0 | auf :1.0 | tropical :1.0 | drill :1.0 | den :0.99 | ralph :0.99 | zebra :0.99
| blink :0.99 | cantaloupe :0.99 | tomato :0.99 | leaf :0.97 | drop :0.97 | connecticut :0.97
| de :0.96 | pump :0.96 | drilling :0.96 | crc :0.94 | sensor :0.94 | ovarian :0.94 |

diabetes :0.94 | automation :0.93 | pivotal :0.92 | basin :0.92 | receivables :0.91 | window
:0.91 | hearing :0.91 | modern :0.9 | hear :0.87 | placebo :0.87 | ca :0.86 | swap :0.86 |
immunotherapy :0.85 | steel :0.85 | agency :0.82 | stellar :0.81 | video :0.8 | entertainment
:0.8 | subscription :0.8 | exceed :0.79 | water :0.79 | central :0.78 | hedge :0.77 | finance
:0.75 | case :0.72 | medical :0.7 | system :0.7 | organic :0.69 | third :0.67 | group :0.66 |
three :0.65 | strong :0.65 | charge :0.63 | month :0.63 | technology :0.63 | quarter :0.52 |
net :0.51 | year :0.5 | company :0.5 | tax :0.5 | margin :0.49 | compare :0.49 | share :0.49 |
fiscal :0.47 | impact :0.47 | total :0.46 | adjusted :0.45 | due :0.45 | currency :0.44 |
billion :0.44 | global :0.44 | strategic :0.43 | diluted :0.42 | lower :0.41 | decrease :0.41
| center :0.41 | stock :0.4 | sec :0.4 | dividend :0.4 | fourth :0.4 | marketing :0.4 |
constant :0.39 | favorable :0.39 | joint :0.38 | ratio :0.37 | challenge :0.35 | client :0.34

Listing 23: The top 50 words for class S ranked by probability p(S|ti) out of 200 features

rite :1.0 | polaris :1.0 | elizabeth :1.0 | airline :1.0 | griffon :1.0 | luna :1.0 | pharmacy
:1.0 | flex :1.0 | motorcycle :0.99 | cigarette :0.99 | sleep :0.99 | cosmetic :0.99 | morgan
:0.99 | dental :0.99 | disability :0.99 | mattress :0.99 | gogo :0.99 | kid :0.99 | paramount
:0.99 | kitchen :0.99 | reviewer :0.99 | color :0.97 | corn :0.97 | beauty :0.96 | horizon
:0.96 | module :0.96 | switch :0.95 | deposit :0.95 | nutrition :0.95 | aircraft :0.94 |
wheat :0.94 | renal :0.94 | nielsen :0.94 | sixteen :0.93 | variance :0.93 | fabric :0.93 |
fragrance :0.92 | mail :0.92 | import :0.9 | split :0.89 | coal :0.89 | partly :0.89 | hair
:0.87 | tender :0.87 | charter :0.87 | print :0.87 | federate :0.87 | satellite :0.86 | aid
:0.85 | mass :0.84 | skin :0.84 | auto :0.84 | billing :0.82 | division :0.82 | carrier :0.82
| brazil :0.81 | vessel :0.8 | notably :0.8 | mainly :0.8 | trading :0.78 | prospectus :0.78 |

bank :0.76 | merchandise :0.76 | solicitation :0.74 | distributor :0.74 | michael :0.74 |
registration :0.74 | shall :0.73 | buy :0.71 | offering :0.7 | shipment :0.7 | unfavorable
:0.69 | partnership :0.68 | offer :0.68 | propose :0.68 | jurisdiction :0.67 | proxy :0.67 |
retail :0.67 | store :0.67 | merger :0.66 | client :0.66 | challenge :0.65 | ratio :0.63 |
joint :0.62 | favorable :0.61 | constant :0.61 | marketing :0.6 | fourth :0.6 | dividend :0.6
| sec :0.6 | stock :0.6 | center :0.59 | decrease :0.59 | lower :0.59 | diluted :0.58 |
strategic :0.57 | global :0.56 | billion :0.56 | currency :0.56 | due :0.55 | adjusted :0.55 |

total :0.54 | impact :0.53 | fiscal :0.53 | share :0.51 | compare :0.51 | margin :0.51 | tax
:0.5 | company :0.5 | year :0.5 | net :0.49 | quarter :0.48 | technology :0.37 | month :0.37 |

charge :0.37 | strong :0.35 | three :0.35 | group :0.34 | third :0.33 | organic :0.31

Listing 24: The top 50 words for class ¬S ranked by probability p(¬S|ti) out of 200 features

6.3.3 Support Vector Machine

The support vector machine pipeline for sentiment prediction has been evaluated on the same
hyperparameters as the support vector machine pipeline for impact prediction using grid search
and provided the results shown in Table 20. In contrast to the naïve Bayes pipeline, the SVM
model has primarily chosen the mutual information as the scoring function. If the model picked
the χ2 test statistic, then it was always combined with a high penalty C and a low polynomial
degree. If the model picked mutual information as the scoring function then there is no such
pattern present. However, we see that a higher polynomial degree is often connected to lower
penalty C. Which means, that we allow the model to be complex due to the higher degree of
the kernel. At the same time we, allow the model to be more inaccurate using a lower penalty.
This adversary parameter combination enables the model to be complex without fitting to much
noise.

If we plot the best performance for each dataset, we see that the maximum accuracy of 62% is
being achieved for the (-0.08, 0.08) validation press release set, as shown in Figure 54. For bigger
discretization spreads the validation accuracy decreases while the training accuracy approaches
close to 100%. As training and validation set become smaller with higher discretization spreads,
we deal with overfitting here.

We trained and evaluated the SVM pipeline on the press release set discretized by (-0.08, 0.08)
and achieved an accuracy of only 47% making this classifier worse than random guessing. On
the validation set we achieved earlier an accuracy of 62%, which shows that the prediction
results are not stable.

87



6 RESULTS AND EVALUATION Max Lübbering, 21599173

val score train score fs_k fs_score_func svm_C svm_degree svm_kernel thresholds

0.56 0.67 1000 chi2 1.0 1 poly (-0.01, 0.01)
0.56 0.71 1000 mutual 0.7 1 poly (-0.02, 0.02)
0.56 0.88 100 mutual 0.1 4 poly (-0.03, 0.03)
0.60 0.78 1000 chi2 1.0 1 poly (-0.04, 0.04)
0.58 0.78 2000 mutual 0.9 1 poly (-0.05, 0.05)
0.62 0.87 200 mutual 0.1 2 poly (-0.08, 0.08)
0.60 0.88 1000 mutual 1.0 1 poly (-0.10, 0.10)
0.58 0.93 50 mutual 0.1 4 poly (-0.15, 0.15)

Table 20: Best support vector machine pipeline for each threshold after applying grid search

(-0.01, 0.01) (-0.02, 0.02) (-0.03, 0.03) (-0.04, 0.04) (-0.05, 0.05) (-0.08, 0.08) (-0.1, 0.1) (-0.15, 0.15)
thresholds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

ar
ith

m
et

ic 
m

ea
n 

of
 a

cc
ur

ac
y

training set
validation set

Figure 54: Best train and validation score of support vector machine pipeline on each dataset

88



6 RESULTS AND EVALUATION Max Lübbering, 21599173

As shown in Figure 55, the SVM classifier’s low performance stems mostly from the negative sen-
timent samples. A percentage of 59% of truly negative samples are classified as positive.

¬S S
Predicted label

¬S

S

Tr
ue

 la
be

l

22 32

25 29

Confusion matrix w/o normalization

22

24

26

28

30

32

(a) Confusion matrix with absolute counts

¬S S
Predicted label

¬S

S

Tr
ue

 la
be

l

0.41 0.59

0.46 0.54

Normalized confusion matrix

0.425

0.450

0.475

0.500

0.525

0.550

0.575

(b) Confusion matrix normalized by true label
counts

Figure 55: Confusion matrix of best support vector machine classifier trained and evaluated on
press release dataset discretized by [−0.08, 0.08]

The performance issues also cannot be explained, taking the quarter result rates for each con-
fusion matrix bin into account. In fact, they would suggest that the performance especially on
truly positive press releases is weak as the quarter result rate on the misclassifications is highest
with 76%. Finally, one would have to investigate whether the size of the dataset could be the
origin of the poor performance.

¬S S
Predicted label

¬S

S

Tr
ue

 la
be

l

0.59 0.56

0.76 0.45

Quarter result rates

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Figure 56: Quarter result rates for each true label and predicted label combination

6.3.4 Discussion

In this section, we compare the three algorithms on their sentiment prediction performance.
Our main finding is that sentiment prediction is impossible due to the count vectorization of

89



6 RESULTS AND EVALUATION Max Lübbering, 21599173

the press releases. The sentiment in a text relies on the semantics, which gets lost completely
when applying count vectorization.

For each of the three algorithms we performed grid search on each of the eight stratified press
release sets. The accuracy of the best models on each data set increased with the width of the
discretization thresholds. This result is expected, as the samples in each class become more and
more dissimilar as we increase the width of the discretization threshold.

The feature count of the trivial classifier amounted to about 500, while the naïve Bayes classifier
used about 10 times as many. The SVM classifier lay in between having about 1000 features,
however varying between 50 and 2000 features. This relation was also seen for the impact mod-
els. Apparently, the SVM models generally needed less features than naïve Bayesian networks.
The naïve Bayesian network chose the χ2 test statistic exclusively, while the SVM classifier
picked the χ2 test statistic only in combination with a high penalty and mutual information
otherwise.

We have shown, that the features themselves provided by χ2 test statistic and mutual informa-
tion contained almost no common terms. Surprisingly, none of the top 200 terms in both lists
contained words with real sentiments even though we had two classes which are supposed to
contain strong sentiments.

On the other hand, this shows that press release sentiment is more complicated and cannot
be captured by counting frequencies (count vectorization). One major reason is that texts lose
their entire structure, thus missing important aspects like negations, irony or the conjunction
of words, which as a whole provide sentiment.

For a final evaluation each algorithm was trained on the stratified press release set discretized
by (−0.08, 0.08). Following the GIGO axiom “garbage in garbage out”, the three algorithms
provided poor results. The trivial classifier and the naïve Bayesian network both had an accuracy
of 53%. The SVM classifier was even worse having an accuracy of 47%.

At first glance our weak results contradict with Koppel’s in [15]. Koppel demonstrated that
sentiment prediction based on news articles with an average length of 100 words is possible. He
labeled the news articles by discretizing the SNO on (-0.078, 0.1). The binary vectorized news
articles were used to train a linear SVM, naïve Bayesian network and a decision tree. These
models provided all an accuracy of approximately 70%.

This rises the question, why do his models yield such high accuracies, while ours are a complete
failure. First of all, the data sets are not the same. In contrast to the companies publishing
a negative press release, journalists do not tend to beat around the bush, especially in shorter
news. This is why, we can expect stronger words in the news articles than in press releases.

However, switching to sentiment prediction based on news articles is not an option. Koppel
showed that the approach was not practical in the field, as the stock price had already adapted,
when an article was published. This means that the information must have been available to the
traders beforehand. Since the SNO of the news articles had been discretized on thresholds with
a large width , we are confident that these news articles were referring to corporate news which
had been already published in form of press releases. In our experience news with such a strong
sentiment almost always stem from quarter results, earnings warnings or company acquisitions.
This renders news article analysis useless and makes press release analysis mandatory.

To sum up, we have shown, that sentiment prediction is a difficult task – more difficult than
impact prediction. None of our models showed a performance that was significantly better
than random guessing. As it has been pointed out, news articles are not a solution switch
to and improving the models on press releases is the way to go. The crucial part here is to

90



6 RESULTS AND EVALUATION Max Lübbering, 21599173

find a representation that keeps the sentiment and can also be understood by machine learning
algorithms.

91



7 SUMMARY Max Lübbering, 21599173

7 Summary

In this research project, we developed and evaluated two models, namely a naïve Bayesian
network and a support vector machine, to predict stock price trends based on press releases.
Additionally, we introduced the trivial classifier in order to put the results of the two more
sophisticated models into perspective. Furthermore, we investigated if despite the efficient
market hypothesis, the market expresses any inefficiencies due to press releases that we could
leverage.

As part of the data mining process, we deployed the infrastructure to retrieve after hours
press releases and stock prices with one minute resolution covering all companies traded on
the NASDAQ and NYSE. In the preprocessing, the press releases were extracted from the
HTML and cleaned (tokenization, stop word removal, POS tagging, lemmatization and count
vectorization). Using a regular expression, every cleaned press release was assigned to the
company, whose stock symbol appeared in the text. This assignment made it possible to label the
press releases with the relative stock prices changes from exchange closing to exchange opening
plus an offset. We called the relative stock price change simple net opportunity (SNO).

In order to capture the influence of press releases, it was important to determine the correct
offset. In our analysis, we compared the general stock price volatility over night to the stock
price changes over night, when a press release was published. According to our analysis the
press releases’ influence was fully reflected on the stock price 5 h after exchange opening. Using
this window, we plotted a histogram of the general SNO when there was no press release and
another histogram of the SNO when there was a press release published. The former one was
narrower than the latter one, thereby showing that press releases have an influence which is not
immediately reflected on the stock price. As a consequence, the market is de facto not always
efficient and thereby contradicting with the efficient market hypothesis.

The Gaussian shaped histogram of the press releases also revealed that most of the press releases
had no influence. This is why, we proposed a two step solution: In the first step, we trained a
model to predict, whether a press has an impact on the stock prices or not, regardless of the
direction. For the second step, we only considered the press releases with an impact and built
another model to predict the direction i.e., the sentiment, of the press releases.

Since the models in each step solve classification tasks, the continuous SNO values assigned to
the press releases needed to be discretized. The two histograms revealed that the discretization
threshold (−0.08, 0.08), was a well-chosen trade-off between shrinking the stratified and balanced
dataset and allowing too much noise due to regular stock price volatility. In the context of
datasets balanced means that every class is represented equally. The balanced impact data set
contained 565 press releases with impact and the sentiment data set contained 267 press releases
with positive sentiment.

Having trained and evaluated the three impact models of the first step on the discretized data
set, the trivial model had an accuracy of 77% which is competitive to the SVM classifier and
naïve Bayesian network which had an accuracy of 76% and 78%, respectively. Even though the
high accuracies seem to be promising, a press release predicted to have an impact is still five
times more likely to be of class no impact. This stems from the distribution of press releases,
where high impact press releases make up only 6% of the press releases.

From the CPTs in the naïve Bayesian network, we derived the words whose presence are the
best predictors for each class. Here, we saw that for class impact the model learned that terms
related to quarter results are the best predictor. For the no impact class we could not detect
any topic.

92



7 SUMMARY Max Lübbering, 21599173

The three sentiment models, trained by trivial classifier, naïve Bayesian network and the support
vector machine, reached accuracies of 53%, 53% and 47% on the holdout set, respectively. In
conclusion these three models did not learn anything that generalizes well. Again, we generated
sentiment word lists from the CPTs in the naïve Bayesian network. These words also did not
provide any useful information and no sentiment whatsoever.

The reasons why the sentiment models have such a bad performance are diverse. On the one
hand, a company always wants to avoid bad news and keep its reputation. This is why, they
do their best to hide bad news behind positive words. On the other hand, our methodological
approach has its limitations. The sentiment cannot be expressed by the frequency of words
in a document (count vectorization). All the context goes missing along with the semantics.
A negation, for instance, would never be recognized by a model that was trained on count
vectorized press releases. This insight is really important, since this gives us a starting point
to begin with. In Section 8, we will present a novel idea how to enhance impact and sentiment
prediction.

In summary, it is generally possible to reliably predict press release impact if the data sets are
balanced. Also, for a trader it is a useful information if among five press releases there is one
having an impact of at least 8%. This saves lots of manual filtering time. At the same time, we
are confident that we can further push the accuracy, if we have more data available and rethink
the representation of press releases.

93



References Max Lübbering, 21599173

8 Appendix

References

[1] C.M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statis-
tics. Springer, 2006. isbn: 9780387310732.

[2] William B Cavnar, John M Trenkle, et al. “N-gram-based text categorization.” In: Ann
arbor mi 48113.2 (1994), pp. 161–175.

[3] Stanley F Chen and Joshua Goodman. “An empirical study of smoothing techniques for
language modeling.” In: Computer Speech & Language 13.4 (1999), pp. 359–394.

[4] The Association for Computational Linguistics. POS Tagging (State of the art). https:
//aclweb.org/aclwiki/POS_Tagging_(State_of_the_art)/. Accessed: 2018-02-23.
July 2016.

[5] STEFANO DELLAVIGNA and JOSHUA M. POLLET. “Investor Inattention and Friday
Earnings Announcements.” In: The Journal of Finance 64.2 (), pp. 709–749. doi: 10.
1111/j.1540-6261.2009.01447.x. url: https://onlinelibrary.wiley.com/doi/
abs/10.1111/j.1540-6261.2009.01447.x.

[6] Sanjiv R Das and Mike Y Chen. “Yahoo! for Amazon: Sentiment extraction from small
talk on the web.” In: Management science 53.9 (2007), pp. 1375–1388.

[7] Eugene F Fama. “The behavior of stock-market prices.” In: The journal of Business 38.1
(1965), pp. 34–105.

[8] George Forman. “An extensive empirical study of feature selection metrics for text clas-
sification.” In: Journal of machine learning research 3.Mar (2003), pp. 1289–1305.

[9] A. Gelman et al. Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts
in Statistical Science. Taylor & Francis, 2013.

[10] Michel Généreux, Thierry Poibeau, and Moshe Koppel. “Sentiment analysis using au-
tomatically labelled financial news.” In: LREC 2008 Workshop on Sentiment Analysis:
Emotion, Metaphor, Ontology and Terminology. 2008.

[11] Gyozo Gidofalvi and Charles Elkan. “Using news articles to predict stock price move-
ments.” In: Department of Computer Science and Engineering, University of California,
San Diego (2001).

[12] Terrence Hendershott. “Electronic trading in financial markets.” In: IT professional 4
(2003), pp. 10–14.

[13] Thorsten Joachims. “Text categorization with Support Vector Machines: Learning with
many relevant features.” In: Machine Learning: ECML-98. Ed. by Claire Nédellec and
Céline Rouveirol. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 137–142.

[14] Armand Joulin et al. “Bag of tricks for efficient text classification.” In: arXiv preprint
arXiv:1607.01759 (2016).

[15] Moshe Koppel and Itai Shtrimberg. “Good news or bad news? let the market decide.” In:
Computing attitude and affect in text: Theory and applications. Springer, 2006, pp. 297–
301.

[16] Huma Lodhi et al. “Text classification using string kernels.” In: Journal of Machine Learn-
ing Research 2.Feb (2002), pp. 419–444.

[17] Ann C Logue. Day trading for dummies. John Wiley & Sons, 2014, p. 158.
[18] Max Lübbering. “Predicting Companies Mentioned in News Articles, a Comparison of Two

Approaches: Latent Dirichlet Allocation with k-Nearest Neighbor versus Bag of Words
with k-Nearest Neighbor.” In: (May 2018). url: https://hps.vi4io.org/_media/
research/labs/2018/2018-04-max_l_bbering-predicting_companies_mentioned_
in_news_articles_a_comparison_of_two_approaches_latent_dirichlet_allocation_

94

https://aclweb.org/aclwiki/POS_Tagging_(State_of_the_art)/
https://aclweb.org/aclwiki/POS_Tagging_(State_of_the_art)/
http://dx.doi.org/10.1111/j.1540-6261.2009.01447.x
http://dx.doi.org/10.1111/j.1540-6261.2009.01447.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.2009.01447.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.2009.01447.x
https://hps.vi4io.org/_media/research/labs/2018/2018-04-max_l_bbering-predicting_companies_mentioned_in_news_articles_a_comparison_of_two_approaches_latent_dirichlet_allocation_with_k_nearest_neighbor_versus_bag_of_words_with_k_nearest_neighbor-report.pdf
https://hps.vi4io.org/_media/research/labs/2018/2018-04-max_l_bbering-predicting_companies_mentioned_in_news_articles_a_comparison_of_two_approaches_latent_dirichlet_allocation_with_k_nearest_neighbor_versus_bag_of_words_with_k_nearest_neighbor-report.pdf
https://hps.vi4io.org/_media/research/labs/2018/2018-04-max_l_bbering-predicting_companies_mentioned_in_news_articles_a_comparison_of_two_approaches_latent_dirichlet_allocation_with_k_nearest_neighbor_versus_bag_of_words_with_k_nearest_neighbor-report.pdf
https://hps.vi4io.org/_media/research/labs/2018/2018-04-max_l_bbering-predicting_companies_mentioned_in_news_articles_a_comparison_of_two_approaches_latent_dirichlet_allocation_with_k_nearest_neighbor_versus_bag_of_words_with_k_nearest_neighbor-report.pdf


References Max Lübbering, 21599173

with_k_nearest_neighbor_versus_bag_of_words_with_k_nearest_neighbor-
report.pdf.

[19] Burton GMalkiel. “The efficient market hypothesis and its critics.” In: Journal of economic
perspectives 17.1 (2003), pp. 59–82.

[20] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. New York, NY, USA: Cambridge University Press, 2008. isbn:
0521865719, 9780521865715.

[21] Andrew McCallum, Kamal Nigam, et al. “A comparison of event models for naive bayes
text classification.” In: AAAI-98 workshop on learning for text categorization. Vol. 752. 1.
Citeseer. 1998, pp. 41–48.

[22] Tomas Mikolov et al. “Distributed representations of words and phrases and their compo-
sitionality.” In: Advances in neural information processing systems. 2013, pp. 3111–3119.

[23] M. A. Mittermayer. “Forecasting Intraday stock price trends with text mining techniques.”
In: 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings
of the. 2004. doi: 10.1109/HICSS.2004.1265201.

[24] A.C. Müller, M.A. C, and S. Guido. Introduction to Machine Learning with Python: A
Guide for Data Scientists. O’Reilly Media, 2016.

[25] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited, 2016.

[26] Mehran Sahami et al. “A Bayesian approach to filtering junk e-mail.” In: Learning for
Text Categorization: Papers from the 1998 workshop. Vol. 62. Madison, Wisconsin. 1998,
pp. 98–105.

[27] Robert P. Schumaker and Hsinchun Chen. “Textual Analysis of Stock Market Prediction
Using Breaking Financial News: The AZFin Text System.” In: ACM Trans. Inf. Syst.
27.2 (Mar. 2009), 12:1–12:19. issn: 1046-8188. doi: 10.1145/1462198.1462204. url:
http://doi.acm.org/10.1145/1462198.1462204.

[28] Paul C Tetlock. “Giving content to investor sentiment: The role of media in the stock
market.” In: The Journal of finance 62.3 (2007), pp. 1139–1168.

[29] Paul C Tetlock, Maytal Saar-Tsechansky, and Sofus Macskassy. “More than words: Quan-
tifying language to measure firms’ fundamentals.” In: The Journal of Finance 63.3 (2008),
pp. 1437–1467.

[30] Ruey S Tsay. Analysis of financial time series. Vol. 543. John Wiley & Sons, 2005.

95

https://hps.vi4io.org/_media/research/labs/2018/2018-04-max_l_bbering-predicting_companies_mentioned_in_news_articles_a_comparison_of_two_approaches_latent_dirichlet_allocation_with_k_nearest_neighbor_versus_bag_of_words_with_k_nearest_neighbor-report.pdf
https://hps.vi4io.org/_media/research/labs/2018/2018-04-max_l_bbering-predicting_companies_mentioned_in_news_articles_a_comparison_of_two_approaches_latent_dirichlet_allocation_with_k_nearest_neighbor_versus_bag_of_words_with_k_nearest_neighbor-report.pdf
https://hps.vi4io.org/_media/research/labs/2018/2018-04-max_l_bbering-predicting_companies_mentioned_in_news_articles_a_comparison_of_two_approaches_latent_dirichlet_allocation_with_k_nearest_neighbor_versus_bag_of_words_with_k_nearest_neighbor-report.pdf
http://dx.doi.org/10.1109/HICSS.2004.1265201
http://dx.doi.org/10.1145/1462198.1462204
http://doi.acm.org/10.1145/1462198.1462204


Eidesstattliche Erklärung
Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig sowie ohne un-
zulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt
habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind
unter Angabe der Quelle gekennzeichnet.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit nicht
beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs- bzw.
Beratungsdiensten in Anspruch genommen. Niemand hat von mir unmittelbar oder mittel-
bar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der
vorgelegten Masterarbeit stehen. Die Arbeit wurde bisher weder im In- noch im Ausland in
gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Ich versichere an Eides Statt, dass ich nach bestem Wissen die reine Wahrheit gesagt und
nichts verschwiegen habe.

Vor Aufnahme der obigen Versicherung an Eides Statt wurde ich über die Bedeutung der ei-
desstattlichen Versicherung und die strafrechtlichen Folgen einer unrichtigen oder unvollständi-
gen eidesstattlichen Versicherung belehrt.

Hamburg, 3. Dezember 2018 _____________
Max Lübbering

96


	Introduction
	Motivation
	Goals
	Approaches
	Outline

	Background
	Introduction to Stock Trading
	Efficient Market Hypothesis
	Entities
	Reading Stock Charts

	Introduction to Bayesian Statistics
	Bayesian Networks
	Motivation by the Full Joint Distribution
	Introduction to Bayesian Networks
	Exact Inference by Enumeration
	Parameter learning

	Naïve Bayesian Networks
	Support Vector Machines
	Feature Selection Strategies
	Mutual Information
	2 Test Statistic


	State of the Art and Related Work
	Text Classification
	Influence of the Media on Stock Prices

	Methodology
	Data Acquisition
	Preprocessing
	Text Extraction
	Text Cleaning
	Count Vectorization
	Feature Selection
	Stock Prices Preprocessing

	Modeling
	Formal Description of the Machine Learning Problem
	Trivial Classifier
	Naïve Bayesian Networks for Text Classification
	Support Vector Machines for Text Classification

	Performance Measures

	Implementation
	Press Release Mining
	Crawling
	Storage

	Stock Price Mining
	Preprocessing
	Extraction Stage
	Cleaning Stage

	Modeling
	Trivial Classifier
	Naïve Bayesian Network Pipeline
	Support Vector Machine Pipeline
	Grid Search


	Results and Evaluation
	Data Sets Exploration
	Stock Prices Data Set Exploration
	Press Release Data Set Exploration
	Joint Exploration

	Performance Comparison of Impact Models
	Trivial Classifier
	Naïve Bayesian Network
	Support Vector Machine
	Discussion

	Performance Comparison of Sentiment Models
	Trivial Classifier
	Naïve Bayesian Network
	Support Vector Machine
	Discussion


	Summary
	Future Work
	Appendix

