
Crossmedia File System MetaFS

Exploiting Performance Characteristics

from Flash Storage and HDD

Bachelor Thesis

Leszek Kattinger

12. November 2009 – 23. März 2010

Betreuer: Prof. Dr. Thomas Ludwig
Julian M. Kunkel
Olga Mordvinova

Leszek Kattinger
Hans-Sachs-Ring 110
68199 Mannheim

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbstständig
verfasst habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig
angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und
Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach ent-
nommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Mannheim, den 22. März 2010

Leszek Kattinger

Abstract

Until recently, the decision which storage device is most suitable, in aspects of costs, capacity,
performance and reliability has been an easy choice. Only hard disk devices offered requested
properties. Nowadays rapid development of flash storage technology, makes these devices
competitive or even more attractive. The great advantage of flash storage is, apart from lower
energy consumption and insensitivity against mechanical shocks, the much lower access time.
Compared with hard disks, flash devices can access data about a hundred times faster. This
feature enables a significant performance benefit for random I/O operations. Unfortunately,
the situation at present is that HDDs provide a much bigger capacity at considerable lower
prices than flash storage devices, and this fact does not seem to be changing in the near future.
Considering also the wide-spread use of HDDs, the continuing increase of storage density
and the associated increase of sequential I/O performance, the incentive to use HDDs will
continue. For this reason, a way to combine both storage technologies seems beneficial. From
the view of a file system, meta data is often accessed randomly and very small, in contrast
a logical file might be large and is often accessed sequentially. Therefore, in this thesis a
file system is designed and implemented which places meta data on an USB-flash device and
data on an HDD. The design also considers, how meta data operations can be optimized for
a cheep low-end USB flash device, which provide flash media like fast access times but also
characteristic low write rates, caused by the block-wise erase-before-write operating principle.
All measured file systems show a performance drop for meta data updates on this kind of
flash devices, compared with their behavior on HDD. Therefore the design focused on the
possibility to map coherent logical name space structures (directories) close to physical media
characteristics (blocks). To also check impacts by writes of data sizes equal or smaller then
the selected block size, the option to write only full blocks or current block fill rates was
given. The file system was implemented in the user space and operate through the FUSE
interface. Despite of the overhead caused by this fact, the performance of write associated
meta data operations (like create/remove) was better or equal than of those file systems used
for benchmark comparison.

3

4

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 State-of-the-Art and Related Work . 8
1.3 Goals . 10
1.4 Structure of the Thesis . 10

2 Background 11
2.1 Storage Media Characteristics . 11

2.1.1 Memory Hierarchy . 11
2.1.2 Main Memory . 11
2.1.3 Flash Memory . 12
2.1.4 Magnetic Disks . 14

2.2 Information Representation . 16
2.2.1 Data Structures . 16
2.2.2 Data Semantics . 17

2.3 File System Concepts . 17
2.3.1 File System Object . 18
2.3.2 File Name . 18
2.3.3 File Attributes . 18
2.3.4 Directory . 21
2.3.5 Hierarchical Name Space . 21
2.3.6 Path - Name and Lookup . 22

2.4 File System Environment . 22
2.4.1 POSIX API and System Calls . 23
2.4.2 Virtual File System Switch . 24
2.4.3 File System in User Space . 25

3 Design and Implementation 27
3.1 General Aspects . 27
3.2 Persistent Data Structures . 29

3.2.1 Super Block . 29
3.2.2 Block Bitmap . 30
3.2.3 Block . 30
3.2.4 Entry . 31

3.3 Logical-to-Physical Address Mapping . 31
3.4 Cache . 31
3.5 Journal . 33

5

3.6 File System Operations . 33
3.6.1 High-Level . 33
3.6.2 Path-Lookup . 34
3.6.3 Low-Level . 34
3.6.4 I/O-Operations . 35
3.6.5 Algorithm for Creating a File . 35
3.6.6 Algorithm for Creating a Directory . 35
3.6.7 Algorithm for Removing a File . 36
3.6.8 Algorithm for Removing a Directory 36

3.7 File System Creation . 36
3.8 Mount Procedure . 36

4 Evaluation 41
4.1 General Evaluation Aspects . 41
4.2 Benchmark Environment . 41
4.3 Benchmarks and Results . 42
4.4 Analysis and Interpretation . 44

5 Conclusion 45

6 Future Work 47

A Block Fill Rates 49

B Banchmarks 53

Table of Figures 59

List of Tables 61

Bibliography 61

6

Chapter 1

Introduction

A computer system is primarily designed to store, retrieve and process data. Before and after
data is manipulated in the main memory (RAM) by the central processing unit (CPU), it
has to be retrieved from and stored on a persistent storage device. These input and output
devices (collectively termed I/O) can keep huge amount of data over a long period of time.
In a modern computer system the CPU can process data much faster then the I/O subsystem
can deliver it. While storage capacity and the amount of data increases, this performance
gap tends to be more and more significant and forms a bottleneck for applications associated
with data storage.

1.1 Motivation

Today persistent data storage is commonly based on magnetic disks (platters), of which a so
called hard disk device (HDD) is composed. These devices have a long history in computer
data storage, and are therefore widespread. It is also fair to say that they are well-engineered,
durable and much cheaper in comparison to other other storage devices, like flash storage.
Furthermore they show better I/O performance, e.g. in sequential writes, than average flash
storage devices. But their performance is limited by the fact that they consist of several
mechanical parts, which have to be moved during I/O operations. The process of moving the
read/write head from one position of the disk to another, an operation known as a seek, is
time-consuming. This seek, or more general access time, keeps nearly constant over the last
years, and it seems to be not possible to decrease this delay without disproportional effort of
electrical power and risks of pushing things to the limit, like speedup disk rotation or head
acceleration. Nowadays a single disk access can take about 10 milliseconds (10−2 s) – still a
small number, but about 1 million times longer than a single RAM cycle, which takes about
10 nanoseconds (10−8 s).
Given the disparity in performance, it would be inefficient to send all I/O requests to the
disk in the order in which they are issued. Therefore, operating systems and disk controllers
implement caches and I/O scheduling algorithms, which try to minimize the number and size
of disk seeks by manipulating the order in which I/O requests are serviced. These hard- and
software schedulers lessen the performance penalties associated with disk access, but their
capabilities are restricted by combinations of unpredictable demands and various physical
data layouts.

7

In the last few years flash devices became more and more popular as persistent storage
components in computer systems. They offer currently much lower access time than hard
disks drives, but also often lower write performance. Today USB flash storage devices with
low capacity are quite affordable. Furthermore they have a linear access time of approximately
0.1 ms 1, which is one hundred times faster than average disk access time. Flash storage
also provides good read performance, some solid state drives outperform hard disks in several
factors 2. Write throughput on flash media differs and is up to the technology and model.
Some SSD models can compete with HDDs or outperform them. Others, e.g. the commodity
SSDs, show less performance in this case. The cost/capacity ratio decreases in the meantime,
but from the vantage point of the present, it will take some time to replace hard disks
entirely [1].
To achieve better overall I/O performance and cost benefits, a combination of both storage
media types seems to be encouraging. One way to exploit the advantages and reduce penalties
of flash and disk storage is to split data by request patterns. Two basic data access types fit
the characteristic distinctions: random and sequential. This kind of data usage is for a multi
purpose, multi user data system is hardly predictable, but some file system statistics say:

Most files are read, not written and the ratio of reads to writes is often 4-6. The most popular
file system operation is stat, which results in a file lookup and lookups account for 40-50%
of all file system operations3.

Technically spoken a lookup of a file system’s object results, if not found in cache, in a
random read operation on the storage device. The amount of meta data associated with a
single file object is small and limited, seldom over 100 Bytes. On the contrary, file objects
content is often big and (in newer file systems) only limited by the storage device capacity.
Furthermore, rather sequential read/write operations on regular files are usual. To speedup
file access and data access as well, it would be beneficial to store meta data on a flash device
and data on a hard disk.

Since I/O requests themselves are complex operations, in which many different soft- and
hardware systems and their interfaces are involved, general performance optimization is often
a difficult task and the impact is generally difficult to predict, especially when data safety is
also an issue. Assumed, benchmark environment stays the same, two major factors determine
I/O performance: file systems and their underlaying storage devices. To validate this concept
a flash-optimized meta data file system needs to be created.

1.2 State-of-the-Art and Related Work

There are various different file system approaches to store data. In the following are mentioned
the most common. Popular file systems are especially designed to map data on hard disks.
These are for example: NTFS, FAT32, XFS and the Ext-family. It is also possible to use them
with flash storage devices, but the performance is in some cases, like meta data updates, not
adequate. Especially the FAT32 file system comes along with every new USB-flash device,
but this is more due to market dominance than suitability. The main performance problem
for this class of file systems is that they do not consider flash specific technology. As flash

1http://www.storagesearch.com/easyco-flashperformance-art.pdf
2http://www.intel.com/design/flash/nand/extreme
3http://www.filesystems.org/docs/sca/node4.html

8

storage becomes more available in the recent years, it is deployed by many systems. Flash
storage is mainly made of NAND-Gates, which requires to erase a whole block before writing
any data to it. This slows down the process of writing data that fits in one block but is
written in two or more, by the same factor. To exploit NAND properly, specific flash file
systems exist [2, 3, 4, 5] that are designed to use blocks, a unit the same size as the erase
segment of the flash medium. Flash file system differs from regular file systems by operating
directly on a flash device (e.g. MTD in Linux) instead of an intermediate block device.

JFFS2 (Journalling Flash File System version 2) [2] is a log-structured file system. All
changes to files and directories are ”logged” to flash in nodes, which can be either inodes and
direntry nodes. Inodes contain a header with file meta data followed by file data. Direntry
nodes contain directory entries, each holding a name and an inode number. JFFS2 does not
guarantee 100% optimal use of flash space due to its journalling nature, and the granularity
of flash blocks. It is possible for it to fill up even when not all file space appears to have
been used, especially if files have had many small operations performed on them and the flash
partition is small compared to the size of the flash blocks.

LogFS (Scalable Flash File System) [5] has a log structure based on a tree. Aims to replace
JFFS2 for most uses, but focuses more on large devices. Wandering trees are used to allow
out-of-place writes.

UBIFS (Unsorted Block Image File System) [3] is a successor to JFFS2, and competitor to
LogFS, as a file system for use with raw flash memory media, it works on top of UBI devices,
which are themselves on top of MTD devices. UBIFS supports write caching.

YAFFS2 (Yet Another Flash File System version 2) [4] is the latest of this file systems. Like
the others it uses journaling, error correction, and verification techniques tuned to the way
NAND typically fails to enhance robustness.

There are also several approaches that try to exploit beneficial features of different storage
devices and data semantics. The Ext3 FS has the facility to store the Journal on a separate
volume or device what discharged the I/O load of the file system volume4.

Another approach of using advantages of flash storage, apart from file system implementa-
tion, and follow more a cache concept, is “Ready Boost” invented by Microsoft to improve
performance without having to add additional memory 5. It supposes a USB flash drive, to
access data much more quickly than it can access data on the hard drive.

USB flash drives and SSDs consist of NAND flash storage accessed through a device controller.
This Controller takes care about wear leveling and bad blocks. This technology provides a
more convenient way to store data on a flash media. This work tries to use this advantage of
a cheap and easy to handle USB flash storage device to combine following approaches.

4http://e2fsprogs.sourceforge.net/journal-design.pdf
5http://www.microsoft.com/windows/windows-vista/features/readyboost.aspx

9

1.3 Goals

The goal of this work is to design and implement a fast and secure data management system
with a standard Unix file system interface (defined by POSIX6 and provided by FUSE7), by
exploiting the combination of data semantics and storage media characteristics in a useful
manner. More precisely, to use a common USB flash storage device for storing file systems
meta data. From a user perspective, every common file operation, like create, delete,
readdir, should be possible and persistent with the exception of storing file content. Addi-
tional implementation and linkage of a data storage subsystem should be flexible and easy to
add to existing code base.

1.4 Structure of the Thesis

This thesis is structured as follows. After the introduction to the topic and motivation of
this work in chapter 1.1 we gave a short overview over the state-of-the-art on the field of
the file systems relevant for our development. Subsequently, in chapter 2, we introduce some
fundamental details necessary for a better understanding of the developed concept. Chapter 3
describes design and implementation details, followed by a description and discussion of test
cases and benchmark results, of the developed file system, in chapter 4. Finally, chapter 5
summarize and conclude this work, and chapter 6 provides an outlook on future development.

6http://www.pasc.org/whatispasc.html
7http://fuse.sourceforge.net

10

Chapter 2

Background

This chapter gives a short overview about the background knowledge needed to design and
implement this file system. It covers four major aspects: storage media, information repre-
sentation, file system concepts and environment.

2.1 Storage Media Characteristics

Many different forms of storage, based on various natural phenomena, have been invented.
Multiple storage devices can be generally divided in primary and secondary storage, each
with an individual purpose. Primary storage (also referred to as main memory) contains
actual processed data. It builds the short-term memory, where data can be easy and fast
manipulated by reasons of a homogeneous address space with low latency and a high data
bandwidth connection. Secondary storage devices are, by reason of efficiency and handling,
accessible to an operating system via primary storage. They appear in contrast as long-term
memory and are located in the peripheries of a computer system and connected through
external buses. I/O refers mainly to data transfers to or from them. On many systems, main
memory acts as an I/O buffer. Figure 2.1 shows the I/O component layout. All available
storage media builds, concerning data accessibility, a memory hierarchy.

2.1.1 Memory Hierarchy

Memory hierarchy refers to a CPU-centric latency. The primary criterion for designing a
placement in storage is a memory hierarchy, that fits the storage device into the design
considerations. Most computers have a memory hierarchy, with a small amount of very
fast, expensive, volatile cache memory, gigabytes of medium-speed, medium-price, volatile
main memory, and hundreds or thousands of gigabytes of slow, cheap, nonvolatile storage on
various devices.

2.1.2 Main Memory

The main memory also called random access memory (RAM) is constructed from integrated
circuits and needs to have electrical power in order to maintain its information. When power

11

Figure 2.1: A typical interface of I/O devices and an I/O bus to the CPU-memory bus [6]

Figure 2.2: Memory Hierarchie

is lost, the information is lost too. It can be directly accessed by the CPU. The access time
to read or write any particular byte are independent of whereabouts in the memory that
byte is, and currently is approximately 10 nanoseconds (a thousand millionth of a second).
This is broadly comparable with the speed at which the CPU will need to access data. Main
memory is, compared to external memory, expensive and has limited capacity.

2.1.3 Flash Memory

Flash memory is a non-volatile computer storage that can be electrically erased and repro-
grammed. It is a technology that is primarily used in memory cards, USB flash drives or
solid state disks (SSDs) for general storage and transfer of data between computers and other
digital products. It is a specific type of EEPROM (Electrically Erasable Programmable Read-
Only Memory). It has a grid of columns and rows with a cell that has two transistors at each
intersection.

The two transistors are separated from each other by a thin oxide layer. One of the transistors
is known as a floating gate, and the other one is the control gate. The floating gate’s only
link to the row, or wordline, is through the control gate. As long as this link is in place, the
cell has a value of 1. To change the value to a 0 requires a process called Fowler-Nordheim
tunneling. The difference between Flash Memory and EEPROM are, EEPROM erases and

12

Figure 2.3: Flash cell structure([7], NOR cell structure)

rewrite its content one byte at a time, Flash Memory is erased and programmed in large
blocks, which makes it a very fast memory compared to EEPROM.
Flash memory stores information in an array of memory cells made from floating-gate transis-
tors. In traditional single-level cell (SLC) devices, each cell stores only one bit of information.
Some newer flash memory, known as multi-level cell (MLC) devices, can store more than one
bit per cell by choosing between multiple levels of electrical charge to apply to the floating
gates of its cells.

Two different flash memory types exist - NOR and NAND. They can be distinguished by
connections of the individual memory cells and interface provided for reading and writing as
shown in figure 2.4 and 2.5.

Figure 2.4: NOR Flash Layout ([7], NOR Flash Layout)

While NOR memory provides an external address bus for read and program operations (and
thus supports random-access), unlocking and erasing NOR memory must proceed on a block-
by-block basis. With NAND flash memory, read and programming operations must be per-
formed page-at-a-time while unlocking and erasing must happen block-wise.

This type of flash architecture offers higher densities and larger capacities at lower cost
with faster erase, sequential write, and sequential read speeds, what makes it the dominant
technology for non-volatile solid-state storage.

13

Figure 2.5: NAND Flash Layout ([7], NAND Flash Layout)

Figure 2.6: NAND Flash Map ([7], NAND Flash Map)

2.1.4 Magnetic Disks

Magnetic storage is also a form of non-volatile memory. It uses different patterns of magne-
tization in a magnetizable material to store data. Two methods of magnetic recording exist:
longitudinal and perpendicular magnetic recording. Perpendicular recording can deliver more
than three times the storage density of traditional longitudinal recording. Differences of both
recording techniques as shown in figure 2.7.

All hard disks are organized into cylinders, each one containing as many tracks as there are
heads stacked vertically. The schematic buildup is shown in figure 2.9.

The tracks are divided into sectors as shown in figure 2.9.

On a modern disk the surface is divided into zones. Zones closer to the center of the disk have
fewer sectors per track than zones nearer the periphery. Thus sectors have approximately the
same physical length no matter where they are located on the disk, making more efficient use
of the disk surface. Internally, the integrated controller addresses the disk by calculating the
zone, cylinder, head, and sector. But this is never visible to the user or file system developer.

Data is written to the drive in concentric circles, called tracks, starting from the outer diam-
eter of the bottom platter, disc 0, and the first read/write head, head 0. When one complete
circle on one side of the disc, track 0 on head 0, is complete the drive starts writing to the
next head on the other side of the disc, track 0 and head 1. When the track is complete

14

Figure 2.7: Modifying Information on magnetic media ([7], Perpendicuar recordig).

Figure 2.8: HDD Buildup [8]

on head 1 the drive starts writing to the next head, track 0 and head 2, on the second disc.
This process continues until the last head on the last side of the final disc has completed
the first track. The drive then will start writing the second track, track 1, with head 0 and
continues with the same process as it did when writing track 0. This process results in a
concentric circles where as writing continues the data moves closer and closer to the inner
diameter of the discs. A particular track on all heads, or sides of the discs, is collectively
called a cylinder. Thus, data is laid out across the discs sequentially in cylinders starting
from the outer diameter of the drive.

The raw disk performance is physically determined by three major factors:

1. The seek time (time to move the arm to the proper cylinder).

15

Figure 2.9: HDD Data Track [8]

2. The rotational delay (time for the proper sector to rotate under the head).

3. The actual data transfer time (time the data is transfered from read head to cache)

For most disks, the seek time dominates the other two times, so reducing the mean seek time
can improve system performance substantially. Particularly with hard disks, the transfer
time for consecutive sectors within a track can be very fast. Thus reading more data than
requested and caching it in memory can be very effective in speeding disk access. Disk devices
are prone to errors. Some kind of error check, a checksum or a cyclic redundancy check, is
always recorded along with the data in each sector on a disk. Even the sector addresses,
recorded when the disk is formatted, have check data.

2.2 Information Representation

After discussing how data can be physically stored, a closer look at how data can be structured
to represent information is useful, to introduce a file system concept described in the next
chapter. In general humans deal with information in form of symbols, computers with data
in form of bits. To make them work together requires a mapping between this two distinct
systems.

2.2.1 Data Structures

As already mentioned, the smallest base unit of data is called a Bit, physically represented
by two distinguishable conditions of the same object or position. A bit of data can logically
represent various kinds of information, depending on interpretation of his current status. For
Example: Yes/No, 0/1, True/False, Blue/Green. To manage more complex information
content more Bits and an arrangement are needed. Bits are grouped together in bit patterns to
represent all information items of interest. There are 2n possible bit patterns for a sequence
of n bits. The next data unit is called a Byte, which is, by convention, a collection of 8
Bits, and has the power to distinguish 256 information items (symbols). It is often used to
represent a standardized character set like ASCII (American Standard Code for Information
Interchange) or numbers in e.g. two’s complement. By the similar procedure, of grouping

16

smaller units, a byte filed can be defined by the number of bytes. This structure is now able
to represent names, so called strings, with (theoretical) unlimited length and numbers with
a greater precision or size. Finally the last data structure hierarchy level, at which every
kind of formalized information can be stored, is often called a record. This structure consists
of a number of fields and has the advantage to link data about quantity and quality of an
information item, by means of represent strings and numbers simultaneously. For example
personal data of an employee: first name, last name, salary and working time. To manage
this records, or data in general, additional management information, also in form of data,
needs to be stored and distinguished. This distinction is made at the semantic level.

2.2.2 Data Semantics

Data semantics deal with the ”meaning and the use of data”. Data turns to information by
interpretation and interpretation depends on the current context. Because the context can
change and often do so, it can be seen as an additional data description level above physical
storage techniques. A semantic data model define the meaning of data within the context of
its interrelationships with other data. Often, only the binary distinction between “Data” and
“Meta data” is used. Data, which is also called user data, represents the content – the data
itself. User programs know how to interpret this data stream in a very specific manner, and
the bit pattern may represent any kind of information like pictures, text documents, music,
etc. and also nothing at all as well. Meta (from Greek: µετα) means: after, beyond, with,
adjacent, self. Meta data describes data or can be explained as data about data. It provides
information about a content. For example, an image may include meta data, which describes
how large the picture is, the color depth, the image resolution, when the image was created,
and any other attributes. Many levels of meta information can exist, and their content or
meaning can change in time and space, without affect the original data content they refer to.
Meta data can also be used to describe and manage other meta data. With this preliminary
considerations about different aspects of data, we can go on with the description of a system
to store and manage data.

2.3 File System Concepts

A system describes abstractly a functionally related group of elements and a set of methods
for organizing something. An operating system (OS) provides a uniform view of information
storage and abstracts from the physical storage by defining a logical storage unit, the file.
To handle this objects the OS defines a standard set of operations. The specific physical
representation and organization is the job of a file system (FS). Since a file system is normally
used as a subsystem of a operating system it has to provide operations on file system objects,
or at least, implement a subset of these. Various file systems exist, like pseudo, virtual, read-
only or network file systems, each with a specific application and usage restriction. Apart
from that, real file systems build a class of systems for permanent storage. These kind of
file systems will be, in the following, referred to simply as file systems. File systems turn
a vast homogenous array of bytes on a storage medium into a highly organized hierarchical
structure more akin to humans categorically oriented thinking. They are expected to be fast
and efficient, making good use of the underlying technology to provide rapid responses to

17

user requests. File systems access block devices through the block driver interface for which
the device driver exports a strategy function that is called by the operating system.

To provide data storage and access, a file systems must fulfill two main objectives:

1. Data Management

2. Meta Data Management

The first organize physical data storage and implement functions to store and receive file
content. The second is responsible for maintaining the logical name space, what means to
perform a logical to physical mapping, and build structures or rebuild them, if they have been
modified. This distinction is not always that clear and both have to keep track of free space,
block allocation, data consistency and so on. The linking of data and meta data (content
and description) is achieved by a file.

2.3.1 File System Object

A file system object, or just abbreviated as file, can be considered as a universal package
of information with a name attached to it. Universal in the sense that it is used on many
system for various purposes like: store and organizing data, program execution, communica-
tion, access restriction, configuration, and many more. Nearly any aspect and feature of an
operating system can be associated with a file. Unix like systems follow up the idea “every-
thing is a file”, and provide the same access semantic for a device as for a any other file. But
that is only partly true. Files are distinct objects, and can be distinguished and described
not only by file name, but also by file attributes. Only the storage structure and possible
content of this additional information (called meta data) is uniformly defined for every file
object. Therefor various file types exist. Regular files the most common case. They act as
information container structured as a sequence of bytes and the OS does not interpret their
content [9]. A regular file needs data blocks only when it starts to have data.

2.3.2 File Name

A file name is an arbitrary, directory wide unique, character string, with an implementation
dependent maximum length. It provides therefore the identification of a file object inside a
directory name space. On Unix systems the file name may consist of any characters (sup-
ported by the used character set), except the slash character, which is used to separate file
name components in a path name (as described later in2.3.6). While specifying file names,
the notations “.” and “..” are also already in use, to denote the current working directory
and its parent directory, respectively. If the current working directory is the root directory,
”.” and ”..” coincide. File names together with the file type attribute (described in the next
subsection) build the file system name space structure.

2.3.3 File Attributes

File Attributes (also called regular attributes) define the standard part of files meta data.
They have a uniform and general structure for every file system object to provide adminis-
trative information for high level file management (at operating system level and above). A

18

typical command line listing of the most common information about a file on a Unix system
is shown in figure 2.10

Figure 2.10: File name and attributes shown by typing ls -l in a shell [10]

File systems may implement, in principle, any kind of file attributes but need, to make them
available, a correspondent caller function and structure in the interface, they are accessed
through. A method to access not strictly predefined attribute types is, to use the extended file
attributes feature. Extended attributes (xattrs) can be set in different name spaces. Linux
uses security, system, trusted, and user 1. This is a flexible extension to the restricted,
but regular attributes, and many systems use them for different reasons but also in different
ways2. With the user attribute space the distinction between data and meta data begins
to blur. Perhaps in some circumstances it would be of interest to store weather information
along with each file, and sort them by sunshine, but the coverage of file attributes is always
a compromise between space consumption and the amount of useful information about a file.

This selection contains only a standard set of attributes but enables nearly all common meta
data operations.

Mode

The file mode stores file types and permissions compactly in a bitmap.
File type describes the kind of file usage and how the data stream is handled. Common file
types in Unix are:

• Regular file - data container

• Directory - file index

• Symbolic link - reference to another file

• Socket - interprocess communication

• Device file - character or block device

1http://www.freedesktop.org/wiki/CommonExtendedAttributes
2http://en.wikipedia.org/wiki/Extended file attributes

19

• and some more ...

File permissions describe access and modification rights of a file. They have names like:

• r = read permission

• w = write and modify permission

• x = execute permission

Permissions take a different meaning for directories

• r = read - determines if a user can view (ls) the directory’s contents

• w = write - determines if a user can create new files or delete file in the directory

• x = execute - determines if the user can enter (cd) the directory.

Various combinations of following file permissions are possible:

• read, write, execute permission for user (owner)

• read, write, execute permission for group

• read, write, execute permission for other

Ownership

Every user on a Unix system has a unique user name, and is a member of at least one group.
To provide permissions every directory and file on the system has a field to store this user
and group ID. This ID is represented by an integer number, and their size determines the
maximum number of system users.

Time Stamps

Each file has fields where main historical data manipulation event dates are saved. This
dates are important for differentiation of obviously same files or any other applications which
operates on this informations (like compilers or synchronization programs). Beside this they
also provide convenience for users.

Three different timestamps are used:

• Creation time - when was the file created.

• Access time - last access for read.

• Modification time - last access for write, even if no writes were actually performed.

Size

Physical on-disk size occupied by file data. Some file systems stores meta data, like file names
as data, or preallocate storage space.

20

2.3.4 Directory

Directories (also called folders) provide a logical file organization structure. The content of a
directory are files (and so directories too). It can also be described as a file index file, because
the distinction between directories and other file system objects, is in the first instance, made
by interpretation of the file type attribute. This model gives rise to a hierarchical name space.

2.3.5 Hierarchical Name Space

From the user’s point of view, files are organized in a tree-structured name space. The
hierarchical directory system concept linked directory name spaces together in a way files
are not only identified by names, but also by position. The logical position is defined by the
parent directory position relative to the root directory (measured in names). This extends
the name space for finite file names, and provides a better possibility of data organization
and administration.

The structure looks like a tree with a root directory, sub directories as inner nodes and
directories or files as its leaves.

Figure 2.11: Hierarchical Name Space

21

2.3.6 Path - Name and Lookup

A path name is a sequence of names separated by a separator character (in Unix Systems a
slash “/”). This well-ordered string describes the path to, and the position of a particular
file system object in the hierarchical file system name space. The path name itself consist
logically of two parts a path and a name, also known as dir name and base name. For a
path name like: /fbi/home/scully/xfile the dir name would be /fbi/home/scully, the
base name xfile If the path name starts with a separator character, it is called absolute
otherwise relative path name. The Unix file name convention forbids the use of the slash
character, because otherwise the path lookup algorithm will misinterpret the path string. To
find a file position in this system and so the file itself, the path name must be processed name
component by name component, comparing current file name with file names indexed in the
directory with the last preceding component name. If the path name is absolute the lookup
starts in the root directory if is relative, at the current directory position.

2.4 File System Environment

Unix-like operating systems are built from a collection of libraries, applications and developer
tools, plus a kernel to allocate resources and talk to the hardware 3. Figure 2.12 illustrates
this composition.

Figure 2.12: Abstract OS Layers

The operating system communicates natively with file systems through a well defined set of
functions and structures. Every OS can integrate and manage a file systems name space in
various ways, and access the stored data through it. Therefore standards for general-purpose
concepts and interfaces had been introduced.

3http://www.gnu.org

22

2.4.1 POSIX API and System Calls

The Portable Operating System Interface for Unix (POSIX) defines standard application
programming interface (API), along with shell and utilities interfaces for software compatible
with variants of the Unix operating system. The difference between an API and a system
call is, that the former is a function definition that specifies how to obtain a given service,
while the latter is an explicit request to the kernel made via a software interrupt. Unix
systems include several libraries of functions that provide APIs to programmers. Some of the
APIs defined by the standard C library (libc) refer to wrapper routines (routines whose only
purpose is to issue a system call). Usually, each system call has a corresponding wrapper
routine, which defines the API that application programs should employ. POSIX.1 Core
Services define standard file and directory operations which are itself standard libraries and
system calls and provide complete control over the creation and maintenance of files and
directories.

Figure 2.13: The System Call Interface [11]

23

2.4.2 Virtual File System Switch

A virtual file system (VFS) or virtual file system switch is an abstraction layer on top of a
more concrete file system or layer. It is used to manage logically various file system types
mounted to the OS, as shown in 2.14 .

Figure 2.14: Architectural view of the Linux file system components [12]

The VFS accomplishes this abstraction by providing a common file model, which is the basis
for all file systems in Linux. Via function pointers and various object-oriented practices,
the common file model provides a framework to which file systems in the Linux kernel must
adhere. This allows the VFS to generically make requests of the file system, but contains for
this reason only a minimal subset of possible capabilities of a file management system.

The framework provides hooks to support reading, creating links, synchronizing, and so on.
Each file system then registers functions to handle the operations of which it is capable and
the VFS-API defines. The VFS knows about file system types supported in the kernel. It
uses a table defined during the kernel configuration. Each entry in this table describes a file
system type. It contains the name of the file system type and a pointer on a function called
during the mount operation. When a file system is to be mounted, the appropriate mount
function is called. This function is responsible for reading the super block from the disk,
initializing its internal variables, and returning a mounted file system descriptor to the VFS.
After the file system is mounted, the VFS functions can use this descriptor to access the
physical file system routines. Two other types of descriptors are used by the VFS: an inode
descriptor and an open file descriptor. Each descriptor contains informations related to files
in use and a set of operations provided by the physical file system code. While the inode
descriptor contains pointers to functions that can be used to act on any file (e.g. create,
unlink), the file descriptors contains pointer to functions which can only act on open files
(e.g. read, write).

24

2.4.3 File System in User Space

FUSE is a further abstract file systems layer. It provides a framework for building user
space file system servers, i.e. implement file systems with user space code. The basic
idea is to integrate information behind the file system name space. From a programmer’s
perspective FUSE provides a library and defines a standard and a low-level interface to use
it. FUSE implements a library which manages communications with the kernel module. A
FUSE-supported system integrates kernel and user level components. Attach an in-kernel file
system (component/module) to the kernel’s virtual file system layer. These functions have
names like open(), read(), write(), rename(), symlink(), etc. The FUSE kernel
module and the FUSE library communicate via a special file descriptor which is obtained by
opening /dev/fuse. This file can be opened multiple times, and the obtained file descriptor
is passed to the mount system call, to match up the descriptor with the mounted file system.

Short description of how it works:

• accepts file system requests from the FUSE device, prepares incoming requests for
delivery to user space

• translates them into a set of function calls which look similar (but not identical) to the
kernel’s VFS interface

• sends the request to user space

• waits for a response

• interprets the answers

• feeds the results back to the caller in the kernel

Figure 2.15: FUSE structure

The sections of this chapter deal with complex issues and some books are necessary to explain
them in detail. So the goal was to put the most focal issues together and point out the key

25

details for practical application and basic understanding of soft- and hardware components
of the I/O subsystem. It should becomes clear how information, in form of digital data,
is stored and retrieved, and what the particular tasks of a file system are. Furthermore, a
possible embedding of a file system in an operation system is described.

26

Chapter 3

Design and Implementation

This chapter describes the design and implementation aspects of the implemented file system
(metafs), the media usage, on-disk layout, data structures and algorithms.

3.1 General Aspects

Design and implementation decide about the performance of a system, which can be measured
as the time it will take to complete an operation (e.g. create/remove or lookup/stat a file).
System design decisions, determine general data flow and structure. They can not be changed
easily afterwards, so they have to be considered carefully for all possible application cases.
Implementation on the other hand, can be improved in details over time. Some details can
have a negative performance impact for frequently called functions (e.g. loopup or readdir)
and in application scenarios with lots of files, small delays may accumulate to a significant
latency. To put it pointedly: “implementation wins battles, design wins wars”.

In this case, the design consideration refers to a persistent file system, dedicated to store
meta data – therefore named “metafs”. To implement this, we need first to specify basic
system properties and provided features:

• file system environment and interface

• coverage of file attributes and operations

• storage media usage

• data flow and mapping

To keep the implementation effort low, the file system code will reside in the user-space and
use the file system interface provided by FUSE (see section2.4.3), to communicate via POSIX
compliant meta data operations. This has obviously the disadvantage of lower performance
caused by numerous context switches, but should be acceptable to verify the basic concept.
Portability between 32/64 Bit systems, which is critical for address operations on persistent
data structures, is accomplished by using fixed size variables. The coverage of file attributes
complies with the regular file attributes described in subsection 2.3.3, and the file name length
is restricted to 255 characters. A possibility to log meta data transactions should be given to
avoid file system corruption, which can occur by aspects of a removable flash storage device.

27

File system performance depends on the exploitation of storage media specific performance
characteristics, mainly data throughput and access time. As described in the section 2.1
HDDs perform well in sequential, and flash devices in random I/O operations. Well, not the
device alone decides about I/O operation patterns, but the data layout, in combination with
application, defines them for the most part. At the file system level, three different types of
data can be distinguished:

• meta data

• data

• journal data

The file system should therefore have the ability to use (transparently) three storage locations
(files/devices). The data storage will be left unimplemented but prepared to be added later.

For the meta data part of a file system, the I/O requests are often random and have small
size, e.g during a lookup. File attributes take about 50 Byte and a filename is seldom over
255 Bytes in size, mostly smaller. In this case the access time is the deciding factor and
indicates the use of a flash storage device, but only for a read operation. During creation or
modification of files, write operations on meta data are performed, which are not emphatic
fast, due to the need to erase an entire block before writing to it. So, if the meta data
throughput should be reasonable in average, the write operation has to be accelerated. The
assumption made here is that writing blocks of a device specific block size (called erasure
block size) is the optimal strategy. Different devices may have different erasure block sizes, so
the block size needs to be variable to support a wide range of devices. To pass this physical
storage property to the logical file system name space level and benefit from it, all entries of a
directory are stored in the same block, or if the amount of them exceeds the block capacity, an
additional extend block will be allocated and so automatically associated with the directory.

The data (content) and the journal part are mostly bigger in size and rather sequentially
requested.

In overview, the decision of what to store and where tends to be as follows:

• meta data on flash storage (random)

• data on hard disk (most sequential, seldom random)

• journal on hard disk (strictly sequential)

This is only a proposal for a storage division, which is provided by metafs. It is also possible
to store everything on one device, by partitioning the available address space into volumes or
using files (stored on other file systems). Besides this, it should also be possible to store just
meta data on a single device or file, which is the current implementation focus. The concrete
media usage decision is made during file system creation.

After discussing basic aspects, we need to define persistent data structures which build the
so called on-disk file system.

28

3.2 Persistent Data Structures

The linear byte address space of the media is logically divided into blocks, (as mentioned
above) ideally with the controller specific “erasure block” size. File system management
structures (super block and bitmap) reside at the beginning of the address space followed
by blocks containing meta data of file system objects. The block layout schema 3.1 gives an
overview.

Figure 3.1: Block layout.

3.2.1 Super Block

This is the entry point to the file system when the volume is mounted (see subsection 2.4.2)
The information within the super block is used to maintain the file system as a whole. It
contains the description and shape of metafs, like position and size of main data structures,
selected volume and block size and the status in which the file system has been disconnected
the last time. Whenever the file system has not been proper unmounted (e.g. system crash,
device removal), some meta data inconsistencies, or structure corruptions may occur.

Figure 3.2: Super block structure.

29

3.2.2 Block Bitmap

A bitmap stores compactly individual logical (boolean) values represented by bits. Block
allocation is performed by setting a bit in the bitmap at the according position to the block
number. Setting a bit to 1 means a block is used and 0 indicates a free block. The bitmap
must have, at least, the same number of bits as the volume has blocks, to manage the block
address space. While the volume size and block size are variable parameters, in the file system
creation process, the bitmap varies in size, but occupies at least on block.

3.2.3 Block

The block is, in this case, an abstraction of the file system, not of the physical media on
which the file system resides, but for a flash media they should correspond as described
in section 2.1. An entry block is a physical directory representation structure. The block
number multiplied with the block size results in the offset to which the file pointer seeks in
a read/write operation. Every directory allocates at least one block. It is a container for
contents of directories. Directories can contain subdirectories and other file entries. Every
block has a header, which contains his current fill position, measured in bytes, to keep track
of how much of the block space is occupied by entries, and a pointer to the next extent block,
which is a block number, or 0 if no further block is allocated for this directory.

Figure 3.3: Fields of the block header

Figure 3.4: Block with entries

30

3.2.4 Entry

An entry is a file system object representation structure. It stores file attributes (as described
in subsection 2.3.3) and file names. The file name length is variable, so the size of each entry
is variable too. To catch this variability an additional variable which stores the name length
is used. Another possibility, which is a little bit more complex but also more flexible, would
be to test the string for an “end of string character” - but this then needs to be saved as well,
and the string parsing would not speed up the operation. Each entry has a pointer, which
points (file type dependent) to an additional address. This address has a 64 Bit range and
represents for a directory a block address, where entries of this directory are stored. For any
other file type this pointer can be used as a multi purpose link to any kind of data, and is
left for this reasons undefined. Figure 3.5 shows the fields of an entry in detail.

Figure 3.5: Fields of an entry.

3.3 Logical-to-Physical Address Mapping

From the user view a path string is the logical address of a file in the hierarchical file system
name space. This string consists, as described previously, of path components (names) sep-
arated by “/”. This logical address can be translated to a physical address by parsing the
path-name and loading each block of each directory path component into the cache. It can
be simply described as a directory-to-block mapping. Only the last component of the path
could be a non directory file object, then the decision on the next step depends on the file
type (as described in 2.3.3). For a regular file this could be a read or write data request or for
a link a new path-name lookup. When the last path component is a directory, the content is
loaded into the cache. For a path name like: “/usr/local/bin/file” the lookup on persistent
storage looks as illustrated in figure 3.6.

When the directory is already cached, the storage device is not involved and the lookup runs
only in the main memory. The cache has a different structure to hold the meta data and is
optimized for faster access and operations, as described in the next section.

3.4 Cache

All data has to be present in main memory to be visible to the CPU. When the data is kept
there longer than really needed we refer to it as a cache. Cache is a very important I/O

31

Figure 3.6: Simplified path-lookup (without extended blocks).

performance feature. It can speedup a repeated request nearly by the factor of access time
or throughput difference between storage media types. For slow write operations on flash
a write-back-cache type is advisable. It delays the write-back-block operation to a specific
point in time when a write-back-thread starts to process the list with modified blocks. The
right write-back-time is a compromise between data safety and performance aspects. The
longer data is kept unwritten (from main memory to storage device) the greater is the risk
of data loss. But on the other side, when a block is modified twice and not written back in
the meantime, this would safe one write for example. For file systems with high meta data
modification rates, this is a big performance issue, because during the write-back-process the
content needs to be locked, to avoid inconstancy. Without locking, it may happen that only
partially modified entries are stored. A reasonable default time for multi purpose application
would be for example a time range of 5 to 10 seconds. Not to fail to mention for the sake
of completeness is that the durability of a flash device will also benefit from fewer write
operations, because they outwear the flash cells and reduce so the lifetime of a block.

Besides theoretical aspects there are two points in time when dirty blocks must be written
back immediately: when the file system is unmounted, and when the cache runs full (reached
defined maximum size). The second point leads to the question of how much memory should
be designated for caching, and which entries should be unloaded first and when. This question
has, like the previous, not a single answer and can be discussed from many points. Possible
strategies could be: last recently used (LRU), first in first out (FIFO), the biggest or deepest
directory first, and so on. The easiest way would surely be to unload the whole cache at once
and let it grow again from the root directory. In some cases this is not as bad as it looks at the
first glance, and has the advantage of low implementation and processing overhead. It takes
only one giant lock, write back and unload all - no comparisons or elaborate bookkeeping.

The cache as a temporary file system needs, like the persistent one, a structure layout in the
main memory. This layout must map the data layout on disk on the one hand and provide
the name space and operations on the other hand – in best case efficiently in terms of space
and time complexity.

A file system provides many different operations on a variable number of elements, what
makes it difficult to find the best suitable data structure for all. Lists are better for adding

32

and deleting elements, trees are advantageous for searching big data sets. In the first place
we need a structure which keeps track of the loaded directories. Assumed more lookups and
fewer adds or removes run on it, a tree structure is fitting – a binary tree with directory
block numbers as keys and pointers to the directory content. The directory numbers, which
correspond to the first block occupied by a directory, tend to be more and more random during
file system usage. A directory structure has to manage entries and keep their association to
blocks. Since a directory can have a variable number of blocks allocated, and a block can
store a variable number of entries we need two lists, one for blocks and one for the entries of
each block. Whenever an entry inside a directory is modified (created or removed as well)
only the corresponding block, in which it resides, is marked for write-back. To speedup
lookups and provide native directory listing in alphabetic order, a directory wide tree with
entry names as keys and pointers to the attributes is used. The schematic structure of an
into memory loaded directory is shown in figure 3.7

3.5 Journal

Journaling is a compromise between reliability and performance which stores only meta data
changes in a log. Due to the fact metafs stores only meta data, logging is equivalent to
journaling. Since all meta data I/O is block oriented, the recording of changes is also carried
out block wise. The whole block content is (first) written to the log and (then) written to
the storage device. Broadly spoken, a copy of the modified content is made. After the write
operation (to the meta data storage device) is completed successfully, the data in the log will
be deleted and the recording starts from the beginning. The only overhead that has to be
added, is the block number, which maps the data part in the log space, to the position on the
storage media. This is needed to implement a recovery function that writes back outstanding
blocks after unclean unmounts. File system status is indicated in the super block, and is
set from clean to dirty at mount time. As the write-back super block operation is the last
one performed during an unmount procedure, the resetting back to clean assures correct file
system state indication.

3.6 File System Operations

The description of file system operations in this section can be subdivided into four major
categories: high-level, path-lookup, low-level and I/O-operations.

3.6.1 High-Level

At the High-Level we have functions, which perform operations invoked directly by the user or
application decisions. They are defined in all file system layers above. These functions build
the standard interface, through which the file system is used. Shell commands/programs,
like for example ls, cp, rm, mv, find, provide a convenient way to manage file system
objects, by calling these functions, according to desired operations.

These are the standard file system meta data operations known as:

• create, unlink - create/delate regular file

33

• mkdir, rmdir - create/delate directory

• readdir - read directory content

• rename - change file name and position in the name space

• getattr - get file attributes

• chmod - set file permissions

• chown - set owner and/or group

• utimes - set file timestamp

• statfs - get file system parameters

• destroy, release - unmount file system

3.6.2 Path-Lookup

Functions, which provide path-lookup, act as a mediator between functions at High- and
Low-Level. As the path name parameter is passed along with (almost) each of the above
listed functions, it has to be parsed and the data for each disassembled component has to be
located in the cache structure or, if not found there, loaded into it. Each file system object
resides in a directory (called the parent directory - except the root directory), so the lookup
for each path component consist mainly of two functions:

• lookupDirectory

• lookupEntry

A recursively called ls shell command (ls -Rl) at the top directory would, for example, load
all file system meta data into the cache (assumed the cache size can hold it).

3.6.3 Low-Level

At the Low-Level are functions, which perform all needed operations automatically in the
background - not visible or directly accessibly to the user.

Generalized they are responsible for the following operations:

• File system (un)loading - during mount and unmount

• Directory loading - during lookups

• Bitmap manipulation - block (de)allocation

• Caching - insert or remove nodes in cache structure

• Locking - secures modification consistency

• Syncing - starts write operations to persistent meta data storage

• Journaling - log meta data transactions for recovery

34

3.6.4 I/O-Operations

Last but not least we have functions which perform concrete data input and output operations
from and to storage devices. All read and write operations are buffered, which means, before
I/O can take place, an appropriate main memory space amount needs to be allocated, to
accommodate the binary data. The procedure of reading or writing a block at once reduces
the amount of system calls (software interrupts due to context switching from user to kernel
mode) and the penalty of device access operations (hardware interrupts and access time).
Reading and writing a whole block, can also be wasteful, especially when the block size is big
and the block space is barely used (by entries). Imagine a block size of 500 KB and a block
occupation of 500 Byte, which is not an unusual situation and would cause, in this case, a
data overhead of 99.9 %. For this reason, we can break down the read operation in two parts.
First we read the block header, which contains the block fill position, and allocate, according
to this, the buffer space for block entries. Then we read all entries into the buffer. This
has obviously the disadvantage of double access times, and would surely be not advisable
for a hard disk device, but since flash devices offers linear access times (lower than 1 ms)
and (connected to USB2.1) low bandwidth, this strategy seems to be faster. For the write
operation, the situation is the same but needs a different consideration. Flash devices need
to erase a whole block before writing to it. If only a small amount of data is written (smaller
then the erasure block size), and old data in a block should be kept (the device does not know
what data is only garbage), it has to be copied to a temporary place and then written back
with the new data (this is the assumption made in section 3.1). In this case, writing a whole
block seems to be more efficient, to avoid copy on write. To test the performance impact the
option to write back just the current block load, we implement this option as well.

To give an overview of how metafs works, some simplified algorithms are described in the
following:

3.6.5 Algorithm for Creating a File

1. lookup parent directory

2. find free block in the parent directory block space

3. create a file entry in this block

4. increase the fill position of the entry block

5. append block to dirty block list

3.6.6 Algorithm for Creating a Directory

1. lookup parent directory

2. get free block from bitmap - allocate block

3. create a file entry in the parent directory block space

4. insert allocated block number in the data field

5. increase the fill position of parent directory block

35

6. append new and parent block dirty block list

3.6.7 Algorithm for Removing a File

1. lookup parent directory

2. lookup file entry

3. remove file entry in parent directory block

4. decrease the fill position of parent directory block

5. append block to dirty block list

3.6.8 Algorithm for Removing a Directory

1. lookup parent directory

2. lookup directory entry

3. set block free in bitmap

4. remove file entry in parent directory block

5. decrease the fill position of parent directory block

6. append parent block to dirty block list

3.7 File System Creation

Before a file system can be used for the first time, it has to be created. This requires an
external program, which writes file system specific management structures (super block and
bitmap) to the meta data storage device. The program, named create metafs, expects at
least 3 parameters:

1. meta data space

2. volume size

3. block size

These parameters define the location and shape of metafs. The definition of the location for
the log is optional. According to them, the super block entries and the bitmap are calculated
and initialized. An optional parameter to format the meta data storage device (overwrite all
blocks with zeros) and check for errors is also provided. This can also be used to benchmark
block I/O of the device.

3.8 Mount Procedure

When the file system is mounted, three automatic I/O operations are performed to make the
file system ready to use.

36

1. read Super Block - get file system parameter

2. set file system status flag - from clean to dirty

3. read Bitmap - load address space management

4. read Root Directory content - enable lookup and file operations

The last step could also be executed when the first lookup is performed, but assuming the
file system is mounted for using and the root directory should not have too many entries,
this procedure is used and the data flow is illustrated in figurure 3.8

The unmount procedure is analogous but inverted. First all loaded directories get unloaded
(modified blocks, including bitmap, are written back to storage), the file system status flag
is set to clean and written back with the super block.

37

Tree

Block
List

Block Nr1

Entry1 Entry2 Entry3

Block Nr2

Entry4 Entry5 Entry6

Block Nr3

Entry7 Entry8 Entry9

Directory structure

Figure 3.7: In-Memory directory structure.

38

Figure 3.8: Mount procedure

39

40

Chapter 4

Evaluation

This chapter describes the evaluation for the implemented file system. After discussing some
general file system performance evaluation aspects, we describe used benchmark procedures
and environment, followed by a study and comparison of the results.

4.1 General Evaluation Aspects

File system performance depends on various factors such as:

• operations e.g. create, remove

• access patterns e.g. random or seqential

• selected file system create/mount parameters

• used name space structure

• active caches and buffers

• and some more

To decide, if the measured times for a particular operation are high or low, they have to be
compared with some other file systems. The comparison is only useful, if the test environment
for all tested systems, is exactly the same. To reduce measurement errors, each test has to
be run several times, and calculated as the average of the results. All this circumstances,
and a the amount of benchmark results makes performance analysis time consuming and
often difficult to summarize. The correct interpretation of measured differences requires
some knowledge about used file system concepts, and data layouts. Configuration of the test
environment (like used OS and device models), are also factors, which influence the results.

4.2 Benchmark Environment

All tests were made using Fedora-12 Linux Distribution with kernel 2.6.32. Testmachine was
an Intel Core 2 Duo (T7200) at 2000 MHz with 2GB RAM at 667 MHz. Testmedia was a

41

16 GB flash storage device (SanDisk - micro cruzer SDCZ6-016G)1 and, for comparison, a
160 GB HDD (Samsung - SP1614C)2 with 8 MB internal buffer and 7200 rpm. Both devices
were connected via an USB-2.0 bus.

4.3 Benchmarks and Results

To measure the (meta data) file system performance, we selected some basic and common
shell commands, used for file management on Unix like operating systems. These commands
execute standard programs for file manipulation (included in the GNU/Coreutils package3),
which provide, via parameter selection, a convenient way to perform complex operations on
file system objects. They navigate and manipulate the name space, by calling appropriate
file system functions listed in subsection 3.6.1.

The meta data content from the linux-kernel-2.6.32.2 source archive, was used as test data
and template for the name space structure. To extract the meta data, it was copied to metafs,
which act as data content filter and stores only meta data informations (directories and empty
files). This version of the linux-kernel sources contains 30468 entries, which represent a (more
or less common) hierarchical name space with 28590 files in 1878 folders, of various name
lengths and nesting. To avoid temporary effects from other file systems or devices, the test
data was placed on tmpfs in RAM and copied from there, to the file system on the tested
device. The call to mount metafs can be described generally as follows:

fuse_metafs <optional FUSE options> <mount point> <device>

The concrete example is:

fuse_metafs /media/flash/metafs /dev/sdb

there metafs is mounted under /media/flash/metafs and meta data is stored on device referred
to as /dev/sdb.

To create, list and remove file system objects, the shell commands (cp, ls, rm) were used
as follows:

1. Create files and directories - copy recursively from tmpfs to FS fs y on device dev x
cp -r /media/tmpfs/linux-2.6.32.2 /media/dev_x/fs_y

2. Lookup and stat all file system objects recursively
ls -lR /media/dev_x/fs_y/linux-2.6.32.2 > /dev/null

3. Remove files and directories recursively
rm -rf /media/dev_x/fs_y/linux-2.6.32.2

Each particular test was run 10 times under same conditions, to improve validity of the results.
The tested file systems were created before each test series and empty, that no previous
fragmentation took place. To eliminate impacts from caches, all file systems were mounted,
before each test case, and no other operation, except the measured one, was executed. The

1http://sandisk.de/Products/Item%282660%29-SDCZ6-016G-E11-SanDisk Cruzer Micro 16GB Black.aspx
2http://www.samsung.com/me/products/hdd/sata/sp1614c.asp?page=Specifications
3http://www.gnu.org/software/coreutils

42

time for the unmount was counted to the measurement of execution time, because a file
system might defer write operation. By unmounting the file system write back is enforced.

Metafs was created with block sizes of 32 KB and 64 KB. The general representation of the
call is:

create_metafs <device> <volume_size in MB> <block_size in KB>

and in concrete (for a 4 GB volume with 32 KB blocks on a device referred to as /dev/sdb):

create_metafs /dev/sdb 4000 32

Two different block-write-back strategies were measured: full block and fill rate. In the
first case only the used block space was written back (free block space was filled with zeros),
and in the second the data size corresponded to the block size.

Reference file systems were: ext24, ext45, vfat6, ntfs7 ; all created with default parameters.
This are some common used file systems for block devices. The ext2 and ext4 are native
Linux file systems and ext2 and vfat do not use a journal.

The evaluation of the test cases led to the following overview of averaged execution times.
Tables 2.1 and 2.2 summarize the results.

Times in [s] File System

Operation ext2 ext4 vfat ntfs metafs(1) metafs(2) metafs(3) metafs(4)

cp 2.1 2.6 3.4 10.3 5.1 5.6 5.7 5.4
ls 5.7 4.7 10.8 22.2 3.0 2.8 3.2 3
rm 3.4 4.9 9 26.7 5.4 5.4 5.3 5

Table 4.1: Meta data performance on HDD.

Times in [s] File System

Operation ext2 ext4 vfat ntfs metafs(1) metafs(2) metafs(3) metafs(4)

cp 22.3 10.9 7 167.6 5.1 9.3 12.3 10.3
ls 4.3 4 12 10.6 7.4 11.3 19.2 15.3
rm 14.4 10.1 31.7 167.7 10.4 8.8 17.7 8.9

Table 4.2: Meta data performance on flash storage.

(1)block-size = 32 KB, write-back = full block (2)block-size = 32 KB, write-back = fill rate
(3)block-size = 64 KB, write-back = full block (4)block-size = 64 KB, write-back = fill rate

The benchmark results show a significant performance drop for meta data updates (write
operations performed by the cp and rm commands), on the flash device compared to the
behavior on HDD. The referenced file systems, except vfat, execute the lookup of all file
system objects (with full attribute stat performed by the ls command) a little faster on flash
storage. Metafs performs better on HDD in all test cases, but shows also better or comparable

4http://e2fsprogs.sourceforge.net/ext2.html
5http://ext4.wiki.kernel.org
6http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
7http://www.linux-ntfs.org/doku.php

43

times for meta data updates in the metafs(1),(2),(4) configurations. The times for lookups on
flash, in the metafs(1) configurations, are averaged between those of the native file systems
(ext2, ext4) and those of the non-native (vfat, ntfs). To enable a better interpretation of the
measured times for metafs, a closer look at their composition, for each test case, is needed.

4.4 Analysis and Interpretation

Each of this three test cases acts in different ways, so we have to consider each one separately,
to find out what happens and why it consumes the measured amount of time. All test
cases operate at the same name space name space structure, which results (for the selected
block sizes of 32/64 KB) in near the same number of allocated blocks (1880 and 1881) with
block fill rates as shown in appendix A. This output was generated with an additionally
implemented utility named check metafs to test the file system and benchmark the storage
device according to selected parameters and current block utilization – data distribution. It
can be run with the following options:
check metafs <device> <test case>. Four test cases, selectable by number (1, 2, 3, 4),
are are available, and perform following actions on used blocks:

1. show block fill rates and block-header read-times

2. show read-times for full blocks in turn

3. show read-time for block-headers + block-content

4. show read-times for full blocks in random order

The detailed output is shown in apendix A and B.

To test the block-write performance, the file system creation program can be run with the
f option as follows: create metafs <device> <volume size in MB> <block size in KB>
<f> Then the selected volume space is overwritten, block by block, with zeros, and the write-
times for each are printed and summarized. Some interesting plots of the generated output
are shown in appendix B. With this raw read/write performance benchmarks we can better
evaluate the benchmarks. As the shell commands perform the same operations (read/write)
on all file system objects (all blocks), the summarized times for the I/O are sufficiently
meaningful. These are in best case (for 32 KB blocks):

1. min 1.5 s to read all block-headers and contents (in turn)

2. min 1.4 s to write all blocks (for this amount of data they all fit in the OS buffer cache)

and in worst case:

1. min 4.8 s to read all block-headers and contents (randomly)

2. min 8.4 s to write all blocks (they do not fit in the OS buffer cache)

44

Chapter 5

Conclusion

Optimizing I/O by implementing a file system is an interesting, but sometimes also a difficult
and time consuming task. Apart from the fact that user-space implementation, provided
by the FUSE interface, reduces the effort, many aspects need to be considered. Depending
on previous knowledge in used operating systems I/O concepts and how a file systems can
manage the physical and logical space by bit patterns and abstract objects, the induction
overhead can be higher than in the case of a comparable stand-alone application. But once
these obstacles are overcome, and the set of standard file operations is implemented, you
will be able to use a whole “GNU Herd” of existing file utilities. Well, the improvement
of reliability and performance is, in principle, a never ending process. Especially for the
I/O subsystem there are many different ways, methods and parameters, which can be used
or changed to speedup the process of storing and retrieving data. One of the difficulties,
according to efficient data mapping to persistent storage, is that storage devices often act as
“black boxes”. Especially flash devices represent in this case a difficult to handle storage.
The build-in controllers often uses different strategies to internally organize received data.
So it can be pointless to exploit their advantages, without having detailed information about
the device-specific features. The attempt, which was made in this work, to test the concept
of a file system with “erasure block” oriented I/O, shows some benefits, compared to some
other file systems on the tested flash device. To appraise the whole performance increase, by
splitting file systems data and meta data storage, synergetic performance effects, caused by
the reduced number of disk seeks, need also to be taken into account.

45

46

Chapter 6

Future Work

To use the implemented metafs for purposes other than those associated with file system name
space manipulation, the code needs a corresponding extension. This can be accomplished by
defining the pointer, which is stored in each regular file and left undefined for individual
purpose. It can represent, in the simplest case, a 64 Bit address of a data content block,
or a key to a more sophisticated data management. This could be an existing file systems
data management or a new written one. It is also possible, to use the already implemented
(meta data) address space management, for data storage. In this case, a second bitmap would
manage free data blocks, and the block-header would indicate block fill-level and extent-block
usage. The possibilities to implement various read/write functions are unlimited.

Apart from application aspects there is some work left to improve basic procedures like file
system creation and maintenance. To provide the best possible write performance on flash
media, an automatic benchmark which detects the optimal device-specific block size, could
be executed during file system creation. An implementation of a recovery function would
also be useful.

47

48

Appendix A

Block Fill Rates

All percentages are integer rounded and if the percentage of used block space is fewer 1 % –
1 is indicated (to avoid confusion).

49

[root@duo metafs]# ./check_metafs /dev/sdb 1
--
<displaySuper> File System Parameter: status = clean
volume_size: 4194304000 Byte = 4000 MB
block_size : 32768 Byte = 32 KB
blocks : 128000 | free : 126117 | used : 1883

Start read allocated block-header (according to bitmap): block load in [%] on: /dev/sdb

 1 4 36 1 2 1 1 1 3 2 1 1 1 2 1 1 9 1 1 1 1 2 1 1 3 1 1 1 1 1 2 1
 1 9 1 1 2 1 1 1 1 1 1 1 1 12 1 1 1 1 4 2 3 10 1 1 1 1 2 1 1 1 7 1
 1 1 1 1 1 1 1 2 1 1 1 2 1 1 3 3 1 5 2 1 1 1 1 1 1 6 2 20 2 1 18 1
 1 1 1 1 1 1 1 1 1 3 1 1 1 1 2 4 1 1 1 1 1 3 1 1 1 1 1 1 4 1 1 1
 2 7 1 20 2 20 1 1 1 4 1 1 1 5 1 1 1 1 1 1 3 1 3 1 8 1 1 2 6 14 4 1
 1 1 1 2 1 1 99 1 1 4 3 1 1 1 1 1 5 1 1 11 1 1 1 1 1 1 1 64 5 2 1 3
 1 1 1 1 1 1 1 1 3 2 1 1 3 8 2 1 1 1 1 2 1 4 2 1 4 3 1 8 1 4 10 1
 1 3 2 1 1 1 15 4 7 4 1 1 1 1 1 1 3 1 13 8 5 3 4 1 3 1 1 1 2 1 4 1
 1 1 2 1 1 1 7 1 2 8 3 1 2 13 1 1 1 3 1 1 6 1 1 36 2 1 2 1 2 1 1 1
 2 1 1 4 1 1 1 1 15 2 1 1 1 1 1 5 1 1 1 1 2 1 1 1 1 1 7 1 3 2 5 2
 3 1 6 1 1 8 1 1 7 1 1 1 2 15 1 1 1 6 1 1 1 6 1 15 1 56 4 2 2 1 1 1
 2 8 8 2 9 3 3 4 1 1 3 2 5 6 5 3 5 2 3 2 2 1 1 4 5 2 3 1 1 2 1 2
 5 1 8 3 1 1 3 1 1 3 7 1 3 1 1 1 1 1 2 3 3 1 2 2 1 1 2 1 7 15 2 3
 1 1 21 1 1 1 1 1 2 3 1 4 6 1 1 1 7 3 3 5 5 2 5 1 1 1 1 13 2 1 1 1
 2 14 1 1 1 1 4 13 1 1 12 3 1 4 1 1 7 2 1 11 1 1 14 1 7 1 4 2 13 4 2 1
 4 1 3 3 24 9 1 1 10 1 1 5 6 12 1 1 1 1 1 1 5 4 2 2 3 4 5 3 1 1 1 1
 1 1 1 1 4 3 5 3 13 4 1 1 1 2 2 1 1 1 1 1 1 4 1 3 1 4 4 7 6 15 1 1
 3 1 2 1 1 1 3 1 1 7 22 1 4 1 2 1 1 11 2 3 1 3 1 1 1 28 3 1 26 1 3 1
 6 1 3 1 7 1 3 3 1 2 2 1 1 2 1 2 5 2 3 1 2 1 8 3 2 1 7 1 1 1 2 1
 27 3 1 2 5 3 1 4 1 1 4 5 1 2 1 1 1 1 1 3 1 2 1 3 2 1 1 1 4 1 11 1
 7 1 1 1 7 1 4 13 5 1 1 7 1 2 9 3 2 1 1 7 1 2 5 8 6 2 3 1 1 1 2 3
 1 2 1 2 2 1 1 6 1 2 1 1 3 3 1 2 2 3 1 1 1 1 1 2 2 3 1 16 2 1 2 1
 1 2 5 1 1 13 3 1 3 1 1 1 17 1 6 3 1 4 1 2 1 1 3 6 6 1 4 1 5 6 1 4
 1 1 4 1 1 1 1 3 1 13 1 22 1 4 1 1 1 12 3 3 2 1 1 1 2 7 2 1 1 1 3 2
 18 2 6 1 1 7 1 2 1 1 1 7 1 2 3 1 1 1 1 2 3 5 7 2 1 5 1 1 2 1 3 2
 7 1 9 8 6 2 1 1 1 2 6 5 4 3 1 1 4 7 2 4 1 3 1 2 1 1 1 2 1 2 3 3
 12 2 3 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 3 1 1 8 1 1 1 1 1 1 3 2 1
 4 1 1 5 1 1 1 1 1 6 4 4 1 1 1 3 1 1 3 1 1 1 1 2 1 1 1 1 1 2 1 1
 1 1 1 1 2 1 1 1 1 1 12 1 2 5 1 5 3 1 2 1 1 2 1 2 3 3 1 15 1 4 1 1
 1 1 1 1 1 1 1 1 1 1 22 1 6 2 2 2 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 5 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 10 1 1 1 11 2 20 1 1
 1 1 3 13 1 1 4 1 1 1 28 1 4 4 2 1 2 1 23 4 1 3 1 6 1 2 1 2 1 1 1 2
 1 2 2 1 1 1 1 1 2 3 1 1 6 2 1 2 2 1 1 2 2 1 1 1 1 1 1 2 1 1 2 1
 4 1 11 3 1 1 1 1 1 2 1 1 2 1 1 1 2 1 2 1 1 1 3 1 4 9 1 1 1 1 1 1
 11 1 8 1 1 3 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 1 10 1 1
 2 1 1 2 1 3 1 3 3 1 2 1 16 1 14 5 1 4 6 1 4 2 1 4 3 1 2 1 1 2 1 1
 2 1 2 1 4 1 2 1 5 1 3 1 14 5 1 2 2 2 1 4 1 1 1 1 3 1 3 1 1 2 9 4
 1 8 5 1 5 2 1 2 14 1 1 2 2 4 1 6 1 8 8 3 1 2 1 3 1 2 1 1 5 1 3 1
 1 1 1 1 1 1 1 1 1 2 1 1 17 1 1 1 1 7 1 1 1 1 1 1 1 1 1 2 2 1 1 19
 1 7 1 2 3 1 1 21 1 13 1 1 1 1 9 2 7 1 1 1 2 2 2 1 45 2 1 1 22 1 1 3
 10 3 1 2 3 1 9 4 1 3 1 1 1 2 2 1 2 1 3 5 1 1 1 3 2 6 19 20 1 7 6 3
 1 2 1 17 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 16 1 1 1 1 1
 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1
 1 1 14 2 1 1 1 1 2 1 15 1 1 1 1 1 1 1 1 1 4 3 1 2 1 1 1 1 3 3 4 1
 1 3 1 1 21 1 1 2 1 1 2 1 1 1 1 1 1 1 1 5 1 1 1 1 3 1 1 1 1 1 2 1
 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 17 3 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 17 1 1 5 1 1 1 1 1 6 1 1 1 2 1 1 2 1 8 11 1 1 1 39
 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 3 1 1 1 4 2 1 1 1 1 1 1 1 5 1
 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1
 1 1 1 1 1 2 1 1 1 1 1 14 2 1 2 1 2 1 1 3 1 1 1 1 2 7 1 1 1 1 1 1
 1 1 1 1 2 1 1 5 1 2 1 1 1 3 1 1 1 1 1 1 1 1 2 1 23 1 1 2 1 10 1 1
 1 1 1 1 1 1 1 1 1 4 1 1 1 2 1 1 1 1 1 2 1 4 3 4 4 4 15 1 1 2 1 1
 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 3 2 1 1 38 1 1 3 1 1 1 1 1 3 1 1
 1 1 1 1 2 1 1 1 7 1 1 1 47 1 24 1 1 4 13 3 3 1 1 1 26 1 1 2 5 1 1 1
 1 1 1 2 1 1 1 14 1 1 1 3 2 1 1 1 1 1 1 2 1 3 2 1 1 1 20 1 7 5 1 1
 2 9 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 30
 1 4 1 1 1 2 5 1
 1 1 1 1 1 1 9 2 1 1 6 1 1 2 1 2 1 1 1 1 1 1 5 4 3 1 2 2 1 1 48 1
 1 1 1 1 2 1 1 24 1 2 4 1 1 3 2 3 3 1 5 1 1 7 5 1 5

 Stored metadata size: 1774707 Byte [1.69 MB] - Space used: 0.04 % of 4000 MB

 Read 1881 block-headers in 1s 271ms => average block-header read-time: 675 us/block

Figure A.1: 32 KB block fill rates.

50

[root@duo metafs]# ./check_metafs /dev/sdb 1

<displaySuper> File System Parameter: status = clean
volume_size: 4194304000 Byte = 4000 MB
block_size : 65536 Byte = 64 KB
blocks : 64000 | free : 62118 | used : 1882

Start read allocated block-header (according to bitmap): block load in [%] on: /dev/sdb

 1 2 18 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 4 1 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 2 1 1 5 1 1 1 1 1 1 1 1 3 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 10 1 1 9 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
 1 3 1 10 1 10 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 4 1 1 1 3 7 2 1
 1 1 1 1 1 1 82 1 1 2 1 1 1 1 1 1 2 1 1 5 1 1 1 1 1 1 1 2 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 2 1 1 2 1 1 4 1 2 5 1 1
 1 1 1 1 1 7 2 3 2 1 1 1 1 1 1 1 1 6 4 2 1 2 1 1 1 1 1 1 1 2 1 1
 1 1 1 1 1 3 1 1 4 1 1 1 6 1 1 1 1 1 1 3 1 1 18 1 1 1 1 1 1 1 1 1
 1 1 2 1 1 1 1 7 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 2 1 1
 1 3 1 1 4 1 1 3 1 1 1 1 7 1 1 1 3 1 1 1 3 1 7 1 28 2 1 1 1 1 1 1
 4 4 1 4 1 1 2 1 1 1 1 2 3 2 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2
 1 4 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 7 1 1 1
 1 10 1 1 1 1 1 1 1 1 2 3 1 1 1 3 1 1 2 2 1 2 1 1 1 1 6 1 1 1 1 1
 7 1 1 1 1 2 6 1 1 6 1 1 2 1 1 3 1 1 5 1 1 7 1 3 1 2 1 6 2 1 1 2
 1 1 1 12 4 1 1 5 1 1 2 3 6 1 1 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 1 1
 1 1 1 2 1 2 1 6 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 3 3 7 1 1 1
 1 1 1 1 1 1 1 1 3 11 1 2 1 1 1 1 5 1 1 1 1 1 1 1 14 1 1 13 1 1 1 3
 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 4 1 1 1 3 1 1 1 1 1 13
 1 1 1 2 1 1 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 5 1 3
 1 1 1 3 1 2 6 2 1 1 3 1 1 4 1 1 1 1 3 1 1 2 4 3 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 1 1 1 1
 1 2 1 1 6 1 1 1 1 1 1 8 1 3 1 1 2 1 1 1 1 1 3 3 1 2 1 2 3 1 2 1
 1 2 1 1 1 1 1 1 6 1 11 1 2 1 1 1 6 1 1 1 1 1 1 1 3 1 1 1 1 1 1 9
 1 3 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 3 1 1 2 1 1 1 1 1 1 3
 1 4 4 3 1 1 1 1 1 3 2 2 1 1 1 2 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 6
 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 2
 1 1 2 1 1 1 1 1 3 2 2 1
 1 1 1 1 1 1 1 1 1 6 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 7 1 2 1 1 1
 1 1 1 1 1 1 1 1 1 11 1 3 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 5 1 10 1 1 1
 1 1 6 1 1 2 1 1 1 14 1 2 2 1 1 1 1 11 2 1 1 1 3 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
 1 5 1 2 4 1 1 1 1 1 1 5
 1 4 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 8 1 7 2 1 2 3 1 2 1 1 2 1 1 1 1 1 1 1 1 1
 1 1 1 2 1 1 1 2 1 1 1 7 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 4 2 1
 4 2 1 2 1 1 1 7 1 1 1 1 2 1 3 1 4 4 1 1 1 1 1 1 1 1 1 2 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 8 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1
 3 1 1 1 1 1 10 1 6 1 1 1 1 4 1 3 1 1 1 1 1 1 1 22 1 1 1 11 1 1 1 5
 1 1 1 1 1 4 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 3 9 10 1 3 3 1 1
 1 1 8 1 8 1 1 1 1 1 1
 1
 1 7 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1
 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 8 1 1 2 1 1 1 1 1 3 1 1 1 1 1 1 1 1 4 5 1 1 1 19 1
 1 2 1 1 1 1 1 1 1 1 2 1 1
 1
 1 1 1 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1
 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 5 1 1 1
 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 7 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 3 1 1 1 23 1 12 1 1 2 6 1 1 1 1 1 13 1 1 1 2 1 1 1 1
 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 3 2 1 1 1
 4 1 15 1
 2 1 1 1 1 2 1
 1 1 1 1 1 4 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 24 1 1
 1 1 1 1 1 1 12 1 1 2 1 1 1 1 1 1 1 2 1 1 3 2 1 2
 done!
--
 Stored metadata size: 1774707 Byte [1.69 MB] - Space used: 0.04 % of 4000 MB
--
 Read 1880 block-headers in 1s 229ms => average block-header read-time: 654 us/block

Figure A.2: 64 KB block fill rates.

51

52

Appendix B

Banchmarks

53

[21280] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 526 0
 [21296] 0 0 0 0 0 0 0 30 0 0 726 0 0 0 0 0
 [21312] 0 0 0 31 0 0 0 0 0 0 7 0 0 30 0 0
 [21328] 0 0 0 15 0 0 16 0 14 0 0 30 0 0 0 0
 [21344] 0 0 0 0 15 15 0 0 30 0 0 14 0 0 2 0
 [21360] 0 14 0 0 0 0 0 0 126 0 0 0 0 0 0 0
 [21376] 62 31 0 0 0 0 2 0 62 0 0 0 0 0 0 0
 [21392] 30 31 0 0 63 0 0 14 0 0 30 0 0 0 0 0
 [21408] 30 0 0 14 0 0 0 0 0 0 6 0 0 30 0 0
 [21424] 6 0 0 30 0 0 6 0 0 0 30 0 0 14 0 0
 [21440] 62 0 0 0 0 0 14 0 0 30 0 0 0 2 0 0
 [21456] 14 0 0 62 0 0 0 0 0 0 0 30 0 0 6 0
 [21472] 0 62 0 0 0 0 0 0 30 0 0 30 0 0 30 0
 [21488] 0 0 0 0 127 0 0 0 726 0 0 0 0 0 0 0
 [21504] 0 0 0 0 0 0 0 0 0 0 30 0 0 0 6 0
 [21520] 0 31 0 0 0 0 15 0 0 15 0 0 14 0 0 0
 [21536] 30 0 0 0 0 0 33 0 0 0 31 0 0 0 0 0
 [21552] 0 0 0 62 0 0 0 0 0 0 0 0 14 0 0 14
 [21568] 0 0 62 0 0 0 14 0 0 14 0 0 62 0 0 0
 [21584] 0 0 62 0 0 0 0 0 62 0 0 14 0 0 0 0
 [21600] 0 30 0 0 0 0 0 0 30 0 0 0 0 0 30 0
 [21616] 0 0 0 0 0 0 0 30 0 0 0 6 0 0 15 0
 [21632] 0 30 0 6 0 0 30 0 0 30 0 0 0 0 0 0
 [21648] 0 0 0 30 0 0 0 0 30 0 0 0 0 0 0 30
 [21664] 0 0 0 0 0 14 0 0 6 0 0 30 0 0 14 0
 [21680] 0 7 0 0 0 62 0 0 30 0 0 0 0 0 14 0
 [21696] 0 30 0 0 0 0 0 0 14 0 0 0 30 0 0 0
 [21712] 0 31 0 0 0 0 0 14 0 0 0 14 0 0 30 0
 [21728] 0 0 0 0 62 0 0 0 0 0 0 0 0 0 14 0
 [21744] 0 15 0 0 30 0 0 0 0 0 6 0 0 30 0 0
 [21760] 0 14 0 6 0 15 6 0 0 0 0 32 0 0 0 0
 [21776] 30 0 0 0 30 0 0 30 0 0 62 0 0 0 0 0
 [21792] 0 0 0 14 0 0 0 2 0 0 62 0 0 0 0 0
 [21808] 0 0 0 30 0 0 0 30 0 0 14 0 0 14 0 0
 [21824] 30 0 0 0 0 0 0 0 0 31 0 0 0 0 0 3
 [21840] 0 0 31 0 0 14 0 0 6 0 0 30 0 0 0 0
 [21856] 0 32 0 0 0 3 0 0 62 0 0 0 0 0 30 0
 [21872] 0 14 0 0 0 15 62 0 0 62 0 0 0 0 0 0
 [21888] 0 6 0 0 14 0 0 14 0 0 30 0 0 14 0 0
 [21904] 14 0 0 14 0 0 30 0 0 0 0 0 0 30 0 0
 [21920] 0 0 0 31 0 0 0 0 0 14 0 0 0 30 0 0
 [21936] 14 0 0 0 0 0 2 0 0 30 0 0 14 0 0 0
 [21952] 30 0 0 0 0 0 14 0 30 0 0 0 0 0 62 0
 [21968] 0 0 0 0 0 0 0 0 6 0 0 30 0 0 6 0
 [21984] 0 30 0 0 0 0 0 0 14 0 0 14 0 0 30 0
 [22000] 0 0 0 0 30 0 0 0 6 0 0 14 0 0 6 0
 [22016] 0 62 0 0 0 0 0 0 0 14 0 0 0 2 0 0
 [22032] 30 0 0 0 0 0 30 0 0 0 0 0 30 0 0 0
 [22048] 0 0 0 30 0 0 14 0 0 14 0 0 14 0 0 14
 [22064] 0 0 0 30 0 0 0 0 0 6 0 0 30 0 0 6
 [22080] 0 0 30 0 0 14 0 0 6 0 0 30 0 0 0 0
 [22096] 0 30 0 0 0 30 0 0 2 0 0 30 0 0 0 0
 [22112] 0 30 0 0 0 0 0 0 14 0 0 30 0 0 14 0
 [22128] 0 3 0 0 0 0 0 30 0 0 0 0 0 0 30 0
 [22144] 0 0 0 0 32 0 0 0 0 0 30 0 0 0 0 0
 [22160] 30 0 0 15 0 0 6 0 0 30 0 0 0 30 0 14
 [22176] 0 0 14 0 0 2 0 0 30 0 0 0 0 0 14 0
 [22192] 0 0 6 0 0 62 0 0 0 0 0 2 0 0 30 0
 [22208] 0 0 0 0 30 0 0 14 0 0 30 0 0 0 0 0
 [22224] 30 0 0 14 0 0 6 0 0 0 0 0 0 30 0 0
 [22240] 0 0 0 15 0 0 7 0 0 30 0 0 0 14 0 0
 [22256] 30 0 0 7 0 0 63 0 0 0 0 0 30 0 0 6
 [22272] 0 0 30 0 0 0 0 0 0 0 0 0 6 0 0 30
 [22288] 0 0 14 0 0 6 0 0 30 0 0 14 0 0 30 0
 [22304] 0 0 0 0 30 0 0 0 0 0 0 30 0 0 0 0
 [22320] 0 30 0 0 0 0 6 0 30 0 0 0 0 0 0 0
 [22336] 0 14 0 0 30 0 0 6 0 0 0 30 0 0 14 0
 [22352] 0 6 0 0 14 0 14 0 0 62 0 0 0 62 0 0
 [22368] 0 0 0 0 0 0 0 0 0 31 0 0 14 0 0 14
 [22384] 0 0 14 0 0 30 0 0 0 0 0 0 14 0 0 14
 [22400] 0 0 14 0 0 62 0 0 0 0 0 0 14 0 0 14
 [22416] 0 0 14 0 14 0 0 6 0 0 6 0 0 0 30 0
 [22432] 0 14 0 0 62 0 0 0 0 0 30 0 0 14 0 0
 [22448] 0 2 15 0 0 0 0 31 0 0 0 0 0 30 30 0

Figure B.1: 32 KB block write times part 1.

54

[27312] 0 628 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27328] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27344] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27360] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27376] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27392] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27408] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27424] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 628
 [27440] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27456] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27472] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27488] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27504] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27520] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27536] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27552] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 726 0
 [27568] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27584] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27600] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27616] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27632] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27648] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27664] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27680] 0 0 0 0 0 0 0 0 0 0 0 0 727 0 0 0
 [27696] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27712] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27728] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27744] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27760] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27776] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27792] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27808] 0 0 0 0 0 0 0 0 0 0 726 0 0 0 0 0
 [27824] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27840] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27856] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27872] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27888] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27904] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27920] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27936] 0 0 0 0 0 0 0 0 727 0 0 0 0 0 0 0
 [27952] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27968] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [27984] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [28000] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [28016] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [28032] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [28048] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [28064] 0 0 0 0 0 0 827 0 0 0 0 0 0 0 0 0

Figure B.2: 32 KB block write times part 2.

55

[15568] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15584] 0 0 0 0 0 0 0 0 0 0 0 0 0 826 0 0
 [15600] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15616] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15632] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15648] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15664] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15680] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15696] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15712] 0 0 0 0 0 0 0 0 0 0 0 826 0 0 0 0
 [15728] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15744] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15760] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15776] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15792] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15808] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15824] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15840] 0 0 0 0 0 0 0 0 0 827 0 0 0 0 0 0
 [15856] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15872] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15888] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15904] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15920] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15936] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15952] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 [15968] 0 0 0 0 0 0 0 0 0 727 0 0 0 0 0 0
 [15984] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 done!

 writen: 16000 blocks in 70.99 seconds
 => average block-write speed: 7.00 MB/s

 Write data structures

<mefs_initEntry><displayEntry>[/] data [0] mode [16895]
<writeSuper>
<writeBitmap> written Bytes 2004 of 2004

 done!

Figure B.3: 32 KB block write times part 3.

56

[root@duo metafs]# ./check_metafs /dev/sdb 2

<displaySuper> File System Parameter: status = clean
volume_size: 4194304000 Byte = 4000 MB
block_size : 32768 Byte = 32 KB
blocks : 128000 | free : 126117 | used : 1883
--
Start read allocated full-blocks (according to bitmap): block read time in [ms] on: /dev/sdb
--
 1 3 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 0 2 0 3 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 4 0 0 0 2 0 3 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 5 0 0 0 2 0 3 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 3 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0

 Read 1881 blocks in in 2s 490ms => average block read-time: 1324 us/block

Figure B.4: 32 KB block read times.

57

[root@duo metafs]# ./check_metafs /dev/sdb 2

<displaySuper> File System Parameter: status = clean
volume_size: 4194304000 Byte = 4000 MB
block_size : 65536 Byte = 64 KB
blocks : 64000 | free : 62118 | used : 1882

Start read allocated full-blocks (according to bitmap): block read time in [ms] on: /dev/sdb

 2 3 4 2 2 2 2 5 0 2 6 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 3 2 2 2 2 2 5 0 2
 2 2 2 2 3 2 2 2 2 2 5 0 2
 2 2 2 2 3 2 2 2 2 2 4 0 2
 2 2 2 2 3 2 2 2 6 0 2 4 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 3 2
 2
 2
 2
 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 3 1 5 0 2 2 2 2 2 2
 2 2 4 2 2 2 2 2 2 3 2
 2 2 2 2 2 3 2 2 2 2 3 2
 2
 2
 2 2 2 2 2 2 2 2 2 2 4 0 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2
 2 2 2 2 2 2 2 2 4 0 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2
 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2
 2 3 2 3 2 2 2 2 2 2 2 2 2
 2
 2
 2
 2
 2
 2
 2
 2 2 2 2 2 2 2 2 3 1 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2
 2 2 2 2 2 2 2 2 2 2 4 0 2
 2 2 2 2 2 2 2 2 2 2 5 0 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 3 2 2 2 2 2 4 0 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2
 2
 2
 2 2 2 2 2 2 2 2 2 2 4 0 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 3 2
 2 2 2 2 2 2 2 2 2 2 4 0 2
 2
 2
 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 3 3
 2 2 2 2 3 2 2 2 2 5 0 2
 2
 2
 2
 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2
 2 2 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3
 done!
--
 Read 1880 blocks in in 5s 47ms => average block read-time: 2684 us/block

Figure B.5: 64 KB block read times.

58

List of Figures

2.1 A typical interface of I/O devices and an I/O bus to the CPU-memory bus [6] 12
2.2 Memory Hierarchie . 12
2.3 Flash cell structure([7], NOR cell structure) 13
2.4 NOR Flash Layout ([7], NOR Flash Layout) 13
2.5 NAND Flash Layout ([7], NAND Flash Layout) 14
2.6 NAND Flash Map ([7], NAND Flash Map) 14
2.7 Modifying Information on magnetic media ([7], Perpendicuar recordig). . . . 15
2.8 HDD Buildup [8] . 15
2.9 HDD Data Track [8] . 16
2.10 File name and attributes shown by typing ls -l in a shell [10] 19
2.11 Hierarchical Name Space . 21
2.12 Abstract OS Layers . 22
2.13 The System Call Interface [11] . 23
2.14 Architectural view of the Linux file system components [12] 24
2.15 FUSE structure . 25

3.1 Block layout. 29
3.2 Super block structure. 29
3.3 Fields of the block header . 30
3.4 Block with entries . 30
3.5 Fields of an entry. 31
3.6 Simplified path-lookup (without extended blocks). 32
3.7 In-Memory directory structure. 38
3.8 Mount procedure . 39

A.1 32 KB block fill rates. 50
A.2 64 KB block fill rates. 51

B.1 32 KB block write times part 1. 54
B.2 32 KB block write times part 2. 55
B.3 32 KB block write times part 3. 56
B.4 32 KB block read times. 57
B.5 64 KB block read times. 58

59

60

List of Tables

4.1 Meta data performance on HDD. 43
4.2 Meta data performance on flash storage. 43

61

62

Bibliography

[1] O. Mordvinova, J. M. Kunkel, Ch. Baun, Th. Ludwig, and M. Kunze. USB flash drives
as an energy efficiency storage alternative. In Proc. to GRID 2009, pages 175–183, Banff,
CA, 2009.

[2] JFFS2. Journalling flash file system. (version 2), 2009. http://sourceware.org/jffs2.

[3] UBIFS. Unsorted block image file system, 2009.
http://www.inf.u-szeged.hu/sed/ubifs.

[4] YAFFS2. Yet another flash file system. version 2, 2009.
http://www.yaffs.net/yaffs-2-specification-and-development-notes.

[5] LogFS. Scalable flash file system, 2009. http://logfs.org/logfs/.

[6] S. Danamudi. Fundamentals of Computer Organization and Design. Springer, 2002.

[7] Wikipedia – the free encyclopedia, February 2010. http://en.wikipedia.org/.

[8] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts, 7th Edition.
Wiley & Sons., 2005.

[9] D. P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly, 3 edition, 2005.

[10] S. D. Pate. UNIX R© Filesystems, Evolution, Design, and Implementation. Wiley Pub-
lishing, 2003.

[11] A. Rubini and J. Corbet. Linux Device Drivers. O’Reilly, 2 edition, 2001.

[12] M. Tim Jones. Anatomy of the linux file system, 2007.
http://www.ibm.com/developerworks/linux/library/l-linux-filesystem.

[13] R. Love. LINUX System Programming. O’Reilly, 2007.

[14] R. Love. Linux Kernel Development Second Edition. Sams Publishing, 2005.

[15] N. Matthew and R. Stones. Beginning Linux R© Programming 4th Edition. Wiley Pub-
lishing, 2008.

[16] W. R. Stevens and S. A. Rago. Advanced Programming in the UNIX R© Environment:
Second Edition. Addison Wesley Professional, 2005.

[17] J. Clark and A. Huffmann. Native command queuing. Technical report, Intel Corporation
and Seagate Technology, 2003.

63

[18] A. S. Tanenbaum. Operating Systems Design and Implementation, Third Edition. Pren-
tice Hall, 2006.

[19] S. C. Tweedie. Journaling the linux ext2fs filesystem. 1998.

64

