
SH

∞

Bachelor’s Thesis
submitted in partial fulfillment of the

requirements for the course “Applied Computer Science”

Interactive Data Center Digital Twin
using Virtual Reality

Lars Quentin

MatrNr: 21774184

First Supervisor: Prof. Dr. Julian Kunkel
Second Supervisor: Dr. Sven Bingert

Georg-August-Universität Göttingen
Institute of Computer Science

ISSN 1612-6793

December 15, 2022

Georg-August-Universität Göttingen
Institute of Computer Science

Goldschmidtstraße 7
37077 Göttingen
Germany

T +49 (551) 39-172000
t +49 (551) 39-14403
B office@informatik.uni-goettingen.de
m www.informatik.uni-goettingen.de

1

mailto:office@informatik.uni-goettingen.de
www.informatik.uni-goettingen.de

Abstract
Virtual Reality (VR) allows users to experience and interact with digital environments
in an immersive way and, therewith, can provide a more intuitive way of interacting
with computers using more natural human-machine interaction paradigms. Additionally,
virtual environments can provide various advantages for data visualization, as the digital
space is not constrained by real-world physical limitations. Furthermore, leveraging the
third dimension and the spatial features, VR can be a viable alternative to traditional
visualization.
The goal of this thesis is the interaction and visualization paradigms to the realm of
data centers by creating a server room as a digital twin using the Unity game engine.
By integrating the live utilization metrics of a real High-Performance Computing (HPC)
cluster into the virtual world, the VR server room can be used to analyze the current data
and reason about its implications. This integration is done by incorporating the data into
several places in the virtual environment. Following the creation of this digital twin, the
application was evaluated against traditional, web-based data dashboards by conducting
a user acceptance study. The results imply that the VR alternative improved the user
experience and reduced the analysis complexity compared to the web version, concluding
that VR can be a valuable addition to traditional metric visualization for the application
of data center monitoring.

i

Acknowledgements
First and foremost, I would like to thank my supervisors, Prof. Dr. Julian Kunkel and
Dr. Sven Bingert, for their valuable guidance and support throughout this thesis. The
feedback received shaped the direction and outcomes of my work.

Furthermore, I am also grateful to my parents for their support throughout my life, as
well as to Dr. Ulrich Degenhardt for introducing me to the joys of programming, Linux,
and LATEX.

ii

Contents

List of Figures vi

List of Abbreviations viii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Contributions . 2
1.4 Structure . 4

2 Background 5
2.1 Virtual Reality . 5

2.1.1 Devices . 6
2.1.2 Game Engines . 10
2.1.3 Interaction Guidelines and Cybersickness 12

2.2 HLRN . 13
2.3 Usage and Monitoring of HPC Systems . 14

3 Related Work 16
3.1 Dashboards and Visualisation . 16
3.2 VR Data Visualisation . 19
3.3 Data Center VR . 20

4 Methodology and Design 25
4.1 VR Technology Stack . 25

4.1.1 VR Headset . 25
4.1.2 Game Engine . 26

4.2 VR Environment and Interaction . 29
4.3 2D Plotting in VR . 34

4.3.1 Evaluation of Existing Libraries . 34
4.3.2 Implementation Approaches . 35

4.4 Live Metrics . 36
4.4.1 Metrics Used . 37

4.5 User Acceptance (UA) Study . 39

5 Implementation 42
5.1 Unity and Virtual Environment . 42
5.2 Plotting Library . 43
5.3 Live Metrics . 45

5.3.1 Query Design . 45
5.3.2 Singleton Structure . 47
5.3.3 Fetching and Parsing Metrics . 49
5.3.4 Event Subscribers . 51
5.3.5 Offline Usage . 55

5.4 UA Study . 55
5.4.1 Data Generation . 55

iv

5.4.2 Test Cases . 57

6 Evaluation 61
6.1 Participants and Study Structure . 61
6.2 Analysis Methodology . 61
6.3 Results . 62
6.4 Discussion . 64

7 Conclusion 65

References 66

A Grafana Proxy Queries 75
A.1 Central Processing Unit (CPU) Data Query 75
A.2 CPU Data Example Response (Truncated) 76
A.3 Memory Data Query . 77
A.4 Memory Data Example Response (Truncated) 78
A.5 Graphics Processing Unit (GPU) Data Query 79
A.6 GPU Data Example Response (Truncated) 80
A.7 Storage Data Query . 81
A.8 Storage Data Example Response (Truncated) 82

B UA Study Template 83
B.1 Part 1. Topic Explaination . 83

B.1.1 How the Gesellschaft für wissenschaftliche Datenverarbeitung mbH
Göttingen (GWDG) HPC System works 83

B.1.2 How to submit a job . 83
B.1.3 VR Environment . 84

B.2 Part 2. Pre-Questionaire . 90
B.3 Part 3. Test Cases . 91

B.3.1 Test Case 1: Are the servers used optimally? 91
B.3.2 Test Case 2: How does the scheduler work? 91
B.3.3 Test Case 3: Long Term Decision Making 91

B.4 Part 4. Post Questionaire . 91

C Mocked Data used in UA Study 93
C.1 Test Case 1: Are the servers used optimally? 93
C.2 Test Case 2: How does the scheduler work? 96
C.3 Test Case 3: Long Term Decision Making (Data Set 1) 98
C.4 Test Case 3: Long Term Decision Making (Data Set 2) 101

v

List of Figures
1 Compute nodes of HLRN-IV in Göttingen [4]. 1
2 Popular Grafana Dashboard for Monitoring Kubernetes with Ingress-NGINX

and Prometheus [7]. 2
3 The CAVE setup at the UIC [15]. 5
4 An assembled Google Cardboard VR mount [31]. 6
5 A Samsung Gear VR, smartphone mounted [34]. 7
6 A Quest 2 VR [39]. 8
7 Use cases for the Quest 2: (a) for collaborative remote work, (b) for general

interaction, (c, d) for gaming, and (e) for drawing and sculpting 3D visuals. 9
8 A Valve Index [51]. 10
9 The metrics server structure at the GWDG 15
10 For bar charts, the y-axis should start at zero. 16
11 The x-axis should have a consistent interval size. 17
12 The most important information should be highlighted in order to most

efficiently communicate the data. 17
13 Example of the color blindness simulator Coblis [87]. 18
14 An example of a bad data-ink ratio. This graph contains 5 points of data

[89]. 19
15 Tufte’s redesign of the box-plot, maximizing the data-ink ratio [89]. 19
16 Leaseweb 360-degree data center tour on YouTube [93]. 20
17 IronMountain VA-1 360-degree data center tour on YouTube [94]. 21
18 Manually controlled 360-degree tour through one of Hetzners data center

[95]. 21
19 A recording of a 6-DoF-based recording of Green Mountains data center [98]. 22
20 A VR solution for configuring a server rack [100]. 22
21 The various VR native interactions provided by the simulator [101]. 23
22 The interface of the VR construction software used internally by Meta [21]. 23
23 The interface and streamed data supported by the VMWare VR Datacenter

Experience [103]. 24
24 The PC Building Simulator [105]. 24
25 Comparison matrix for different VR hardware 26
26 A top view of the Virtual Environment (VE) layout 29
27 The overview in the starting view and the possible interaction provided. . . 30
28 The button mapping of the Oculus Quest 2 controller used. 31
29 The CPU and GPU server rooms . 32
30 The lamps of a CPU and GPU node and their related metrics 32
31 The tabular data overview, interacted with by scrolling using the right ray. 33
32 The server User Interface (UI) of a GPU rack. 34
33 All plot types supported by Plotty . 35
34 GPU based 2D rendering done by the Open Source frames per second (FPS)

counter Graphy [128] . 36
35 The Scientific Compute Cluster (SCC) cluster [135] 38
36 All server models in Blender. 43
37 The UML diagram of Plotty’s line and bar chart classes 44
38 The triangle mesh of the line between mi−1 and mi 44

vi

39 An example of a Query solely built with Grafana’s InfluxQL query builder 46
40 Viewing the Queries used by Grafana with the Firefox Developer Tools . . 47
41 The UML class diagram for the GrafanaSingleton 48
42 A comparison of Unity JavaScript Object Notation (JSON) parsers [146]. . 51
43 All event subscribers related to the UIs and server lights 52
44 All event subscribers related to the initial overview 53
45 The “Frontends and Storage” dashboard 58
46 The “Overview + All Nodes” dashboard . 59
47 The “Single Node Dashboard” dashboard 60
48 Distributions of the the self-reported post-questionaire data about the VR

user experience. 62
49 Distributions of the the self-reported post-questionaire data about the VR

analysis. 63
50 The distribution of the self-reported data answering the question “How did

the VR version change the quality of the experience?”. 64
51 Test Case 1: Mocked Frontend Data . 93
52 Test Case 1: Mocked Storage Data . 93
53 Test Case 1: Mocked CPU Node Data . 94
54 Test Case 1: Mocked GPU Node Data . 95
55 Test Case 2: Mocked Frontend Data . 96
56 Test Case 2: Mocked Storage Data . 96
57 Test Case 2: Mocked CPU Node Data . 97
58 Test Case 3.1: Mocked Frontend Data . 98
59 Test Case 3.1: Mocked Storage Data . 98
60 Test Case 3.1: Mocked CPU Node Data 99
61 Test Case 3.1: Mocked GPU Node Data 100
62 Test Case 3.2: Mocked Frontend Data . 101
63 Test Case 3.2: Mocked Storage Data . 101
64 Test Case 3.2: Mocked CPU Node Data 102
65 Test Case 3.2: Mocked GPU Node Data 103

vii

List of Abbreviations
AI Artificial Intelligence

AIO All-In-One

API Application Programming Interface

AR Augmented Reality

ARM Advanced RISC Machines

BI Business Intelligence

BIM Building Information Modeling

CAVE CAVE Automatic Virtual Environment

CLI Command Line Interaface

CPU Central Processing Unit

DoF Degrees of Freedom

DX Developer Experience

EULA End User License Agreement

FIFO First-In-First-Out

FLOPS Floating Point Operations Per Second

FOV Field of View

FPS frames per second

GOAL Game Oriented Assembly Lisp

GPU Graphics Processing Unit

GWDG Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

HDRP High Definition Render Pipeline

HLRN Norddeutsche Verbund für Hoch- und Höchstleistungsrechnen

HMD Head-Mounted Display

HPC High-Performance Computing

IDC International Data Corporation

IMU Inertial Measurement Unit

JSON JavaScript Object Notation

viii

MDC Modular Data Center

MIT Massachusetts Institute of Technology

MOOC Massive Open Online Course

NDK Native Development Kit

OOP Object-Oriented-Programming

OS Operating System

PoC Proof of Concept

RAM Random-Access Memory

REST Representational State Transfer

SCC Scientific Compute Cluster

SDK Software Development Kit

STL Standard Template Library

TSDB Time Series Database

UA User Acceptance

UAT User Acceptance Test

UI User Interface

UIC The University of Illinois at Chicago

URP Universal Render Pipeline

USB Universal Serial Bus

UX User Experience

VE Virtual Environment

VFX Visual Effects

VPN Virtual Prvate Network

VR Virtual Reality

XR Extended reality

ix

Interactive Data Center Digital Twin using Virtual Reality

1 Introduction
The first section discusses the motivations, goals, and contributions of this thesis.
Section 1.1 outlines the need for big data methods in data-driven research as well as
the complexities for researchers and other end users of understanding HPC environ-
ments, which could be solved by VR. Continuing in Section 1.2, the objectives of the
thesis get defined. Derived from this, Section 1.3 describes the technical contributions
of the work. Finally, in Section 1.4, the structure of the thesis is explained.

1.1 Motivation

According to the International Data Corporation (IDC), worldwide data volume increased
from 2 zettabytes in 2010 to 64.2 zettabytes in 2020 with a five-year compound annual
growth rate of 23 percent [1]. These trends, together with the recent advances in big
data tools and methodology also result in more data-intensive research discovery meth-
ods in many traditionally not computing-reliant sciences. This sparks the discussion of
data exploration being the fourth science paradigm besides empirical, theoretical, and
computational sciences [2] [3]. Due to this, many researchers from a variety of fields use
many computational and data-driven methods for their research. To process these vast
amounts of data, many researchers rely on HPC infrastructures for their computations.

Figure 1: Compute nodes of HLRN-IV in Göttingen [4].

Understanding the server topology and their current utilization can be complicated,
especially for researchers and other HPC users unfamiliar with scientific computing infras-
tructures. Although very verbose and detailed, technical documentation can be perceived
as overwhelming for a researcher unfamiliar with typical HPC workflows. While central-
ized monitoring systems like Grafana [5] for on-premise or Datadog [6] for cloud-based
monitoring do exist, they are not suitable for end users for multiple reasons: Firstly, they
can expose many security or privacy-related pieces of information. Secondly, they are pri-
marily designed with system administrators in mind, resulting in feature-rich but complex
UIs in the form of dashboards, which often require a deep knowledge of the data center
structure and server configuration. Furthermore, dashboards do not preserve spatial or
structural inter-node information, such as their relative physical location. Lastly, due to
security reasons, it also is not possible to make the server rooms physically accessible to

Section 1 Lars Quentin 1

Interactive Data Center Digital Twin using Virtual Reality

all end users.

Figure 2: Popular Grafana Dashboard for Monitoring Kubernetes with Ingress-NGINX
and Prometheus [7].

Another technology to aid the problem of visualizing and educating complex topics
is Virtual Reality. VR has gained much popularity over the last years, resulting in a
global revenue increase of 1.8 billion USD in 2016 to 3.3 billion USD in 2019 [8]. With
the advancements of All-In-One (AIO), Android-based VR headsets popularized by the
Oculus Quest series1 with its resulting decrease in cost also became more accessible to
developers, resulting in better tooling and frameworks.

VR technologies can improve the current utilization visualization and general HPC
education. It can leverage immersive technologies to communicate a high-level overview
of a HPC configuration and its usage.

1.2 Goals

The goal of this thesis is to create an immersive, VR-native visualization tool for data
center metrics. To make the association between the servers and their metrics as intuitive
as possible, a digital twin of a server room has been created as a VE. This VE allows
the visualization and interactive analysis of real metrics from actively used HPC systems.
Furthermore, the live streaming of data metrics was integrated.

1.3 Contributions

To fulfill the above goals, a Unity-based [9] server room digital twin with the following
features has been implemented:

1Later renamed to Meta Quest

Section 1 Lars Quentin 2

Interactive Data Center Digital Twin using Virtual Reality

• The program is fully controllable by VR native interaction methods. No classical
input methods such as keyboards are required, thus the immersion is never inter-
rupted.

• For each server, there is a 2D UI located in the 3D world space. There the metrics
are rendered through the use of plots, similar to those found in standard dashboard
technologies.

• Furthermore, multiple overviews are integrated into the Virtual Environment.

• The data can be live-streamed from an InfluxDB [10] Time Series Database (TSDB)
proxied through Grafana.

• The application is designed to be used entirely offline, which is especially convenient
for conferences and other presentations. This is possible through the use of mocked,
artificially generated data that is shipped as part of the application.

• All assets, plugins, or other parts used for this application are open source and
compatible with the MIT license [11], allowing the free distribution of the complete
source code, enabling any Oculus Quest 2 owner to build and use the program.

During the implementation of these objectives, some additional technical requirements
became apparent. Thus, the following other contributions had to be created within the
scope of the thesis:

• In order to facilitate the 2D plotting while retaining the right to publish the complete
source code, a standalone Unity plotting library was developed. This library, also
licensed as MIT [11], supports line plots, bar charts, and gauge plots.

• For the real-time metrics streaming of Grafana dashboards, based on InfluxDB
databases, a new event-driven, asynchronous, and thread-safe polling architecture
was designed and implemented. Additionally, it supports the inclusion of precom-
puted mock data for offline usage.

• A workflow and implementation for procedurally generating mock data was devel-
oped. Additionally, a python based client was created to either generate C# classes
containing that data or stream the data to an InfluxDB using the InfluxQL-based
Application Programming Interface (API).

Lastly, as part of this thesis, the following non-technical contributions have been made:

• An comprehensive analysis of the current, state-of-the-art research was provided,
creating a comparison between our VR digital twin and the different approaches
previously tested.

• To validate the claim that VR provides an edge and potential improvements over
traditional web-based dashboards, a User Acceptance study has been conducted. As
explored in the Analysis Section, the results imply a potential improvement in both
User Experience (UX) and analysis capabilities provided by the immersive Virtual
Environment.

Section 1 Lars Quentin 3

Interactive Data Center Digital Twin using Virtual Reality

1.4 Structure

First, Section 2 provides an introduction to the topics of virtual reality, the HLRN cluster,
as well as the usage and monitoring of HPC systems. In Section 3, the related work is
reviewed. After providing an overview of visualization theory, specifically of dashboards,
an summary of the state-of-the-art research around VR data visualization with a focus
on integrating VR with data centers is provided.

In Section 4, Methodology and Design, a taxonomy of VR headsets and game engines
is first provided, comparing them against the use case of this thesis. Next, the virtual en-
vironment and its various interaction possibilities are introduced. The Unity 2D plotting
library is then focused on, first evaluating existing libraries and then comparing different
implementation approaches. Next, the focus is set on the live metric architecture, explor-
ing the chosen metrics and the rationale behind each decision. Finally, the methodology
behind the user study is examined, with an emphasis on the optimal study participants
and the User Acceptance Test (UAT) structure, specifically on the design of all test cases.

Section 5 focuses on the technical implementation of this thesis. First, it shows the
Unity project properties and configurations as well as some technical details about the
virtual environment. Next, it focuses on implementing the beforementioned plotting li-
brary with a focus on the underlying math of creating the triangular faces.

After that, the implementation of the event-driven, asynchronous live metric archi-
tecture will be thoroughly explored. Starting at the query generation, a visual workflow
leveraging Grafana for faster incremental progress will be presented. After that, the sin-
gleton structure powering the data fetching and processing will be shown. Following this,
the data fetching, notification, and processing by the subscribers will be explored. In the
end, the integration of offline data will be inspected.

Concluding the implementation chapter, the focus will be on the technical parts of the
UA study. First, the procedural mock data generation will be explored in a bottom-up
manner. Lastly, it will be shown how this mock data was integrated into both the Grafana
dashboard as well as its VR digital twin.

Section 6, the evaluation, will focus on the results of our user study. It will begin
by providing details on the participants and the study structure, which were previously
discussed in the “Methodology and Design” chapter. The analysis methodology will be
explained, with a focus on the statistical tests used. The study’s results will then be
presented, followed by a discussion.

Lastly, in Section 7, the contributions and results will be reiterated, following by an
outlook on possible future work.

Section 1 Lars Quentin 4

Interactive Data Center Digital Twin using Virtual Reality

2 Background
Starting with Section 2.1, the relevant background to VR is given. This includes the
history of VR systems as well as the successful usage of current Head-Mounted Dis-
play (HMD) systems in various domains. Subsequently, in Section 2.1.1 a taxonomy
of different VR devices is presented. Next, Section 2.1.2 defines what a game engine
does and how different engines can be classified. In Section 2.1.3 it is explained how
VR interactions are best designed. Here an explicit focus is put on the problem of
cybersickness. Section 2.2 introduces the HLRN and the HLRN-IV HPC system,
which is presented as a digital twin in the VE. Finally, Section 2.3 explains the
concept of centralized monitoring systems and presents the current setup used at the
GWDG.

2.1 Virtual Reality

According to [12] VR can be defined as “[...] an interactive, immersive and realistic, three-
dimensional computer simulated world.” whereas this virtual world is referred to as the
Virtual Environment.

Research into VR and its potential in many domains has been a research topic for
multiple decades. Although the first HMD prototype was already developed in 1968 [13],
they weren’t usable for practical applications due to the high-performance requirements
and limited resources available at that time. Research first started to get traction with the
so-called CAVE Automatic Virtual Environment (CAVE) setup, first developed in 1992
at the The University of Illinois at Chicago [14]. CAVE works by projecting an immersive
VE onto all six sides surrounding the user.

Figure 3: The CAVE setup at the UIC [15].

Although CAVE found many applications in industry and the military, such as a
flight simulator [16] [17], due to the cost as well as the spacial requirements it was not
commercially viable for the retail end user. The first commercial successes were made with
interactive, motion-based input devices, namely the Wii remote by Nintendo and Sony’s
PlayStation Move. Microsoft’s Kinect technology, initially released in 2010 as an input
device for the Xbox 360, allowed for controllerless motion sensing via depth-sensing. It
also found many applications besides gaming, for example for identifying humans crossing
the demilitarized zone across North Korea and South Korea [18].

Section 2 Lars Quentin 5

Interactive Data Center Digital Twin using Virtual Reality

The first modern, consumer-oriented, HMD and motion-based input based VR-Headset
was the Oculus Rift, introduced in 2012 after crowdfunding nearly US$2.5 million from
over 9500 contributors [19]. Since then, VR found many applications in research, com-
mercial and retail usages. In the field of medical education, a meta-analysis suggests
that “[...] students training with VR archieve better pass rates than those educated using
traditional training methods” [20]. Other applications are found in fields like construction
[21], healthcare [22], and gaming [23].

2.1.1 Devices

Current HMD-based VR-Headsets can be grouped into 3 categories: Mobile Devices,
Standalone Devices, and Stationary Devices [24].

Mobile Devices VR mobile devices are based on modern smartphones. They can
be further subdivided into passive or active headsets. While passive headsets are only
dumb head mounts to fixate your smartphone to your head, active headsets provide
external Inertial Measurement Units (IMUs), i.e. accelerometers and gyroscopes. The
most popular type of passive mobile device headset is the Google Cardboard, and the
most popular active one the Samsung Gear VR.

The Google Cardboard is a smartphone-based VR platform developed by Google, and
released in 2014. There are two different ways of obtaining a Google Cardboard compatible
viewer; Not only can they be bought for less than 10e[25], sometimes being made out of
actual cardboard, but they can also be manufactured by the end user since Google made
both the schematics and assembly instructions freely available [26]. It does not contain
any hardware as it only relies on the internal accelerometer and gyroscope provided by the
smartphone. Despite the fact that it was developed by Google, it also supports iPhone
models [27]. After selling more than 15 million units by 2019 and open sourcing the
Software Development Kit (SDK), it was formally announced to be discontinued [28].
The third cardboard viewers are still available and the SDK and Unity plugins are still
actively developed [29] [30].

Figure 4: An assembled Google Cardboard VR mount [31].

The Samsung Gear VR is the most popular active mobile device-based headset, devel-
oped by Samsung in cooperation with Oculus [32]. The latest version was available for a
retail price of $99 [33], although it is currently not available since it was unofficially dis-
continued in 2020. It has several technical advantages over cheaper passive alternatives.

Section 2 Lars Quentin 6

Interactive Data Center Digital Twin using Virtual Reality

Firstly, it has more precise head-tracking because it ships with its own IMU, connected
via USB. Secondly, it provides a more mature user interface with the Oculus Home Envi-
ronment. Lastly, VR applications have a higher scheduling priority due to the customized
Android shipped with Samsung smartphones.

Figure 5: A Samsung Gear VR, smartphone mounted [34].

Mobile VR devices have few real-world applications besides some PoC visualizations,
such as VR films [35] or YouTube 360-degree videos. The main purpose of mobile device
VR technology is the acceleration of both user acceptance and third-party software de-
velopment. Due to the near zero upfront cost, it removes any barrier of entry for anyone
already owning a smartphone. This solves the VR chicken or egg problem: In order to
incentivize users into buying expensive dedicated hardware, the software selection has to
be comprised of many high-quality applications. But to fund those developments, the
user base has to be large enough.

Unfortunately, the disadvantages of mobile VR are numerous. Firstly, even after 8
years of first-class operating system support, no good ecosystem has been developed.
Secondly, all relevant hardware projects are out of production. Thirdly, while mobile
device VR supports head tracking, it is not able to track positional movement, which
severely reduces the theoretical space of applications. Lastly, since mobile device VR is
non-specialized consumer hardware there are several hardware limitations, such as sensor
accuracy, power management, or high latency [36].

Standalone Devices Standalone devices, or so-called All-In-One devices, are similar
to mobile VR devices as they have the same Advanced RISC Machines (ARM) based
computing architecture. In this section, the focus will be on the Meta Quest 2, since it
is the current market leader with over 10 million shipped units according to Qualcomm
[37].

The Meta Quest 22 was released in October 2020. It is an AIO HMD running on an
Android-based OS with a fully customized UI, controlled via 2 motion-based controllers.
No further tracking devices are required. The Quest 2 has the ability to run software
in two ways: Either in standalone mode, where the software runs as an Android app
completely independently on the device, or in passthrough mode, where it streams PC-
VR software to the device. In passthrough mode, the calculations are done on the PC
side; only the computed visuals are streamed to the VR device. Data Transfer can either

2Released as Oculus Quest 2

Section 2 Lars Quentin 7

Interactive Data Center Digital Twin using Virtual Reality

take place via Oculus Link over USB-C or via Airlink using Wi-Fi [38]. In the following,
however, the focus will only be on standalone use cases since stationary setups still have
better support for PC VR.

Figure 6: A Quest 2 VR [39].

AIO VR devices have found many diverse applications. In particular, the Quest 2,
with its dual QLED displays with a per-eye resolution of 1832x1920 at up to 120 Hz, a
Qualcomm Snapdragon XR2 as well as 6 GB LPDDR4X Random-Access Memory (RAM)
[40] has more than enough resources for most VR use cases.

A major use case for AIO VR is collaborative work and VR-based communications.
The biggest projects in this domain are Meta’s Horizon Workrooms [41] as part of their
Metaverse developments and VRChat [42], which is popular in the gaming space. The
next big application is gaming. VR gaming, even on mobile hardware, is very popular
with games like Beat Saber [43] or Pistol Whip [44]. Other use cases include 3D painting
[45] as well as various industrial applications [21].

Section 2 Lars Quentin 8

Interactive Data Center Digital Twin using Virtual Reality

(a) Workrooms [46] (b) VRChat [47]

(c) Beat Saber [48] (d) Pistol Whip [49]

(e) MultiBrush [45]

Figure 7: Use cases for the Quest 2: (a) for collaborative remote work, (b) for general
interaction, (c, d) for gaming, and (e) for drawing and sculpting 3D visuals.

Standalone VR devices like the Quest 2 have many advantages. First, with the com-
paratively low total price of 450e[40], it lowers the barrier to entry for new VR users. In
particular, no high-end gaming PC is needed here, as all calculations take place on the
headset itself. The compactness of the system also makes it very easy to set up, and since
no external sensors are needed, locations can be changed easily. Moreover, it combines
the best of both worlds: On the one hand, it can be used for PC VR applications and is
cheaper than a stationary system. On the other hand, it offers a completely integrated
VR-optimized experience, as all software is written for VR use only.

Systems like the Quest 2 have comparatively few disadvantages. The biggest downside
is that you don’t have full-body tracking since there are no sensors besides those contained
in the HMD. Another issue is that PC VR via Oculus Link and Airlink are not yet matured
and unstable compared to other solutions.

Stationary Devices Stationary devices are VR systems that are used only in conjunc-
tion with a PC. Currently, there are 2 leading solutions on the market: The HTC Vive
Pro 2 and the Valve Index. The components of both devices are compatible with each
other, and both are at least co-developed by Valve, the company behind the Steam gaming
platform and the Source Engine. Here, the focus is on the Valve Index.

Section 2 Lars Quentin 9

Interactive Data Center Digital Twin using Virtual Reality

The Index was released by Valve in June 2019. The system, consisting of an HMD
with a per-eye resolution of 1440x1600 with up to 144Hz, 2 controllers as well as 2 Base
Stations, can currently be purchased for 1079e[50]. Base Stations are stationary laser-
based tracking devices with a range of up to 7 meters. Both controllers are also compatible
with the HTC Vive systems. Full body tracking is possible with additional Vive trackers.

Figure 8: A Valve Index [51].

The primary reasons to use PC VR are as follows:

• The application does not run on Android and cannot be ported to Unix-like systems.

• The application only runs on x86-64 processor architectures and cannot be ported.

• The application requires greater performance or tracking accuracy than is possible
with an integrated processor and IMU.

Applications include graphics intensive video games such as Half Life Alyx [52], Fallout
4 VR [53] as well as high resolution modeling and CAD applications [54].

The biggest advantage of stationary devices is that most PC VR applications prioritize
compatibility with them. They also have the best resolution, refresh rate, and Steam
integration.

However, they also have some disadvantages. First of all, they are very expensive at
a price point of over 1000e, especially since they require a high-end PC as well. For
full body tracking, additional sensors are needed. Since these sensors have to be placed
in the room, the space requirements are significantly higher which makes the system
less portable. Finally, a wired VR system is detrimental to the immersiveness of the
experience[55].

2.1.2 Game Engines

Unity defines a game engine as “Software that offers a suite of tools and features to game
developers in order to build their games professionally and efficiently” [56]. More specif-
ically, most game engines perform the following tasks, implemented in a very optimized
manner, below:

• Asset Management: levels, models, textures and materials, engine plugins

• Audio: Audio file management, positional audio, audio effects

Section 2 Lars Quentin 10

Interactive Data Center Digital Twin using Virtual Reality

• Build System: Different target Operating Systems (OSs), compiling, linking, plat-
form deployment, external assets

• Event Handlers/Main Loop: Core game loop that provides event hooks for
developer generated content and scripts

• Graphics: Rendering, camera management, shader, culling, post processing, tex-
ture management, particle systems and visual effects, animations

• Input Management: Input events, UIs, controller support, touch support

• Multiplayer and Networking: Socket management, state consistency, server side
validation, lag and jitter management

• Physics: Rigid mechanics, soft body dynamics, particle systems

• Other: AR and VR3, navigation and pathfinding, performance profiling

Game Engines can be grouped into different categories:

• Low-Code Engines: Low-code game engines enable the development of com-
plete video games with little to no code written by the developer. Engines such
as Gamemaker [57] enable the design of small 2D video games, primarily through
visual programming. This is a trade-off; the more programming that is visual, the
bigger assumptions about the inner working have to be made, thus reducing the cus-
tomizability. The engine can also be extended by using its own scripting language,
the so-called “Game Maker Language”. Other engines such as Unity or Unreal also
allow the auto-generation of code through visual graphs4, but these are usually not
classified as low-code as these are not their main paradigms.

Despite the limitations, many successful video games like Undertale [58] or Hotline
Miami [59] were created with GameMaker.

• High-Level-Language Engines: High-level languages, defined by memory man-
agement not being manual, but instead through garbage collection, usually present
a trade-off: On the one hand, memory-safe code is more secure [60] and the devel-
opment cycle is faster, but on the other hand, the maximum performance cannot be
achieved. The most popular engines extendible via high-level languages are Unity
[9], which uses C# as a scripting language, and Godot [61], which developed its own
Python-like language called GDScript.

High-Level-Languages like Unity are usually the most used engines in indie and
small-scale development [62], but are also used by big game development studios
such as Blizzard Entertainment5.

• Low-Level-Language Engines: Using low-level languages, i.e. languages with
manual memory management and raw pointers such as C or C++, usually offer
the highest performance. They are also the most customizable since game logic

3also called Extended reality (XR)
4Unreal allows the creation of gameplay system logic through visual scripting through their Blueprints

system. Unity allows the automatic generation of shader as well as Visual Effects (VFX) logic through
their Shadergraph and Visual Effects Graph systems

5The popular online card game Hearthstone is made in Unity

Section 2 Lars Quentin 11

Interactive Data Center Digital Twin using Virtual Reality

and engine core are written in the same language. C++-based game engines, such
as Unreal [63] or Source [64], are mostly used by large game studios developing
graphic-intensive video games.

• Specialized Engines: Since there is active research in the field of engines, there
are also many very experimental ones, which cannot be grouped into one of the
above categories. Some noteworthy projects are:

– OpenGOAL [65] creates an open source version of Game Oriented Assembly
Lisp (GOAL), created by Naughty Dog’s Jak and Dexter team for scripting,
especially cutscenes.

– BEVY [66] is a Rust based free open source engine to leverage the memory
and thread safety provided by the Rust programming language.

– NonEuclidean [NonEucledean] is a game engine that allows using non-
euclidean geometry.

– Roblox [67] provides a platform on which developers can extend the Roblox
core game through Lua scripting.

A more detailed and rigorous taxonomy can be found in [62]. Furthermore, a more
detailed comparison of the engines will be given in the methodology in order to evaluate
different game engines for this thesis.

2.1.3 Interaction Guidelines and Cybersickness

VR interaction is a difficult, actively researched problem. Bryson [68] describes the prob-
lem as follows: “[...] the virtual reality interface is a completely new paradigm to which
two-dimensional interface paradigms do not easily apply. This difficulty has forced virtual
reality application developers to reinvent the human-computer interface all over again—a
difficult task.”. This section introduces the concepts of VR-specific interactions, VR best-
practises and the specific problem of cybersickness in VR.

VR-specific interactions VR is an immersive technology. If VEs are designed prop-
erly, they can be leveraged for improved human-machine interaction. VEs promote a
natural way of interacting with the computer interfaces in an instinctive manner. It has
been shown that the immersiveness of VR interactions improves engagement and focus
compared to traditional video communication software [69]. In order to maximize the
advantages of VR one should use as many VR native paradigms as possible, such as:

• Create digital twins to represent the real world. VR’s greatest advantages are im-
mersive Virtual Environments. The easiest way to allow for a more intuitive under-
standing is to recreate objects as interactive digital 3D models.

• Use spatial sound whenever possible. This is especially important for communication
software since it enables multiple conversations in the same virtual room.

• Leverage the VR specific, motion-based input methods ; do not rely on keyboards
or other external input hardware. Examples of motion-based input systems are
one and two-handed grab interactions, ray cast interactions, and gesture and hand
recognition.

Section 2 Lars Quentin 12

Interactive Data Center Digital Twin using Virtual Reality

• Always prioritize UX over realism. Valve’s talk about VR door interaction in video
games provides an example of how to design for UX [70].

• Whenever viable, design the user interaction around objects, not UIs.

• When possible, capitalize on all 3 dimensions for visualization.

Cybersickness and VR best practices Davis et al. [12] define Cybersickness as a
“[...] subset of motion sickness experienced by users of virtual reality where they appear to
be moving in the virtual scene while actually remaining stationary. This stationary reality
and the associated compelling experience of self-motion, also called vection, is believed to
underlie the condition”. Numerous symptoms can be caused by cybersickness, including
eye straing, headache, disorientation, nausea, or vomiting [71].

There are three main theories about why cybersickness happens: the poison theory,
the postural instability theory, and the sensory conflict theory [71].

• Poison Theory: The poison theory suggests that the body attempts to vomit as an
evolutionary response when the user experiences hallucinations in order to remove
any poison causing it.

• Postural Instability Theory: Postural instability theory is rooted in the idea
that the human body always tries to maintain postural stability in the surrounding
environment. Thus, extended postural instability leads to cybersickness.

• Sensory Conflict Theory: This is the most accepted theory of cybersickness [12].
This theory reasons that cybersickness is a result of conflicting information from
the visual and vestibular senses, which can often occur in VEs.

Oculus [72] published an elaborative list of best practices and their rationales. The
focus is mostly set on two topics: cybersickness and immersion retention.

Immersion retention can be reduced to the fact that the illusion of the Virtual
Environment should be permanently preserved. All objects have to react to head move-
ment (i.e. no static images) and the content on both eyes should be logically coherent.
Everything, including UIs, should be embedded into 3D space.

Cybersickness can be avoided by allowing the user to navigate the VE as naturally
as possible. According to Oculus [72], VR software should run with at least 60 FPS v-
synced and a maximum motion-to-photon latency of 20ms. Avoid continuous movement
if possible. For vehicles, use only forward movement. The camera should not be moved
without user control. This includes cinematic shaking in collisions and so-called “head
bobbing”. Furthermore, the Field of View (FOV) should never be changed, even during
interactions such as aiming through iron sights.

2.2 HLRN

The Norddeutsche Verbund für Hoch- und Höchstleistungsrechnen (HLRN) [73], or the
North German Supercomputing Alliance, is an association of 7 German states6. The
main tasks of the HLRN include the operation of the HLRN-IV, the fourth-generation

6Berlin, Brandenburg, Bremen, Hamburg, Mecklenburg-Vorpommern, Niedersachsen and Schleswig-
Holstein

Section 2 Lars Quentin 13

Interactive Data Center Digital Twin using Virtual Reality

distributed supercomputer system, and the provision of the associated competence net-
work in the field of scientific computing as well as user-specific research. The HLRN-IV is
the computing cluster whose metrics are used for the visualizations of this thesis. Com-
puting time is given to universities and institutions of the federal states via tenders. The
main research areas supported by the HLRN are the following [74]:

• Environmental research

• Life sciences

• Computational chemistry

• Materials science

• Fluid dynamics

HLRN-IV, the supercomputer operated by HLRN since 2018, is located at the Georg-
August-University Göttingen as well as the Zuse Institute Berlin. It consists of a total of
2695 nodes, with a total main memory of over 950TB and a peak performance of around
16 PFLOPS [75].

2.3 Usage and Monitoring of HPC Systems

In this section, the usage and monitoring of HPC clusters will be focused on. Firstly,
from a users perspective, it will be shown how the basic interaction with a HPC cluster
works by explaining the workflow of batch job submission, which is particually relevant
for understanding the UA study. Next, the concept of monitoring systems and their
advantages will be introduced. Lastly, by using the current setup of the GWDG as an
example, it will explained how the different parts of a monitoring solution work together.

Job Submission To send a job on an HPC cluster, one must first connect to one of the
frontend servers via SSH. These servers are not meant for compting and should not be
used for this purpose, as doing so can make them inaccessible to other users and render the
entire HPC system inoperative. Once connected to a frontend server, the user can load the
necessary software, compile or download their own, and create an shell script with SLURM
[76] commands that defines the execution order and computing resources to be used. Most
HPC systems are batch systems, meaning that jobs are executed asynchronously after
being placed in a specific queue according to the requested ressources. After creating the
shell script, it can then be enqueued as a job via the sbatch command, and the user will
be notified via email once the job has finished executing. The email will contain the shell
output of the script, and afterwards the user can pick up their processed data from the
frontend server.

Monitoring In the context of data centers and HPC, monitoring refers to the practice
of tracking the performance metrics of large systems in a centralized manner. This can
involve tracking a variety of metrics from various data sources, such as hardware utilization
metrics from the kernel, power and cooling metrics from the infrastructure sensors, data
about the specific scheduling and efficiency of executed jobs, as well as specific application
data of continuously running services.

Section 2 Lars Quentin 14

Interactive Data Center Digital Twin using Virtual Reality

Monitoring helps system administrators understand their systems by providing real-
time data on the performance and health of the system. It can provide valuable insights
into the system usage and user behaviour, allowing the data center to optimize the system
ressources and ensuring that they are meeting the needs of their users. Additionally,
monitoring helps improving the availability and reliability of systems and services. For
example, if a server in a data center is running low on memory, the monitoring system
could alert the responsible administrators, allowing them to address the problem before it
causes the server to crash, become unresponsive or otherwise reduce the User Experience.

Monitoring at the GWDG At the GWDG, the monitoring system is set up using a
metrics server running Grafana [5], an open-source platform for data visualization dash-
boards. The Grafana dashboards get their data from so-called datasources, which are
usually provided by TSDBs. A TSDB is a database specifically designed and optimized
to store and manage time-series data. In the case of GWDG, the TSDB being used is
InfluxDB [10].

The HPC nodes use a tool called Telegraf [77] to send the data to the InfluxDB
database. Telegraf is an open-source tool that can collect and send data from a wide
variety of sources, extendible via a plugin architecture. After sent to the TSDB, the data
can then be analyzed visually through Grafana’s Frontend.

Figure 9: The metrics server structure at the GWDG

This setup is a common way that monitoring systems are set up, but there are also
alternatives. For example, HLRN uses Prometheus [78] as its TSDB instead of InfluxDB.
Additionally, some organizations may use cloud-based monitoring solutions like Datadog
[6] instead of an on-premise solution like Grafana.

It’s worth noting that the database used in a monitoring system doesn’t have to be
a traditional TSDB. For example, Kibana [79], which Grafana is based on, uses Elas-
ticsearch [80] as its data store. Elasticsearch is primarily used as an open-source search
engine, but it can also be used to store and index time-series data.

Next, an overview of the related work, focusing on visualization theory and the current
research of VR research will be given.

Section 2 Lars Quentin 15

Interactive Data Center Digital Twin using Virtual Reality

3 Related Work
Section 3.1 describes aspects of visualization research and explicitly dashboard re-
search, as these are the 2D equivalent of this thesis. Next, Section 3.2 highlights
the mixed evidence on the effectiveness of VR data visualization. Finally, Section
3.3 reviews previous efforts in data center related VR projects. A classification into
different subcategories is provided.

3.1 Dashboards and Visualisation

Real-time dashboards are ubiquitous nowadays, especially in the area of system moni-
toring and Business Intelligence (BI). Vázques-Ingelmo et al. define dashboards as “[...]
a set of (visual) resources that enable its audience to understand and/or reach insights
regarding the data being displayed ” [81]. Despite their ubiquity, however, little research
on dashboard visualization has been done [82].

Dashboard design and dashboard evaluation based on quantifiable metrics are both
difficult problems. Furthermore, it is impossible to design a dashboard that is optimal for
all users; the design should depend on the use case, relevant data, and visualization skills.
These are also dependent on social factors such as personal biases or beliefs [83] [84].
Thus, most literature is only providing high-level recommendations such as designing
the dashboards according to the goals of your users, creating a narrative around your
data, proritizing the important information, and allowing the user to accomplish tasks to
archieve their purpose [85].

In general visualization theory, most literature also consists of time-tested best prac-
tices rather than rigorous research, such as the following[86]:

• For bar charts, the y-axis must start at zero, the x-axis should have consistent
intervals.

Figure 10: For bar charts, the y-axis should start at zero.

Section 3 Lars Quentin 16

Interactive Data Center Digital Twin using Virtual Reality

Figure 11: The x-axis should have a consistent interval size.

• When comparing data, highlight the most important information.

Figure 12: The most important information should be highlighted in order to most effi-
ciently communicate the data.

• Do not use more than 6 colors. Make the colors accessible for black-white printed
versions and color blindness7. If color maps are required, use libraries for perceptual
uniformity [88].

7Color blindness simulators can be used in order to test the colors: [87]

Section 3 Lars Quentin 17

Interactive Data Center Digital Twin using Virtual Reality

(a) No color blindness (b) Red blindness

(c) Green blindness (d) Blue blindness

Figure 13: Example of the color blindness simulator Coblis [87].

• Use Tufte’s principle of data-ink [89]. Data-ink is the ink of the graphic that repre-
sents actual information. For example, data-ink are the data points and necessary
labels while non-data-ink are the frames, grids, and unnecessary documentation.
One should, within reason, try to maximize the so-called data-ink ratio, which is
defined as

data-ink ratio =
data-ink
total ink

Section 3 Lars Quentin 18

Interactive Data Center Digital Twin using Virtual Reality

Figure 14: An example of a bad data-ink ratio. This graph contains 5 points of data [89].

Figure 15: Tufte’s redesign of the box-plot, maximizing the data-ink ratio [89].

3.2 VR Data Visualisation

Virtual Reality provides a way to enhance classic 2D visualizations through the strategic
use of spatial and depth information with immersive VEs. Research on VR visualization

Section 3 Lars Quentin 19

Interactive Data Center Digital Twin using Virtual Reality

is rather limited, as no studies are published on most of the applications. Findings on the
effectiveness of VR-based visualizations are mixed. While some papers have found better
insights based on user studies [90], others have found no significant differences [91].

The biggest advantage of VR seems to be the “fun factor”. Users seem to prefer VR
environments over traditional 2D non-VR ones [92]. Also, people are more satisfied overall
with the experience, which makes for higher engagement with the data [90].

3.3 Data Center VR

There are a lot of Proof of Concepts (PoCs) around data center visualizations using Virtual
Reality. They can be divided into two groups: Projects that use 360-degree camera
footage and ones that use game engines for more interactiveness and immersiveness.

360-degree camera based setups There are many projects providing data center
tours using 360-degree cameras. These are not interactive. Moreover, only the physical
facilities are shown; information about the state of the server is missing. There are 2
approaches:

First, there are video-based tours. Here, a narrated 360-degree camera is used to walk
through the data center while the visuals are explained along the way. Usually, these
guides are uploaded to YouTube [93] [94].

Figure 16: Leaseweb 360-degree data center tour on YouTube [93].

Section 3 Lars Quentin 20

Interactive Data Center Digital Twin using Virtual Reality

Figure 17: IronMountain VA-1 360-degree data center tour on YouTube [94].

There are also stationary approaches that use still images with a Google Streetview-
like UI for navigation [95]. Although more interactive, it is also less information dense
since there is no guided narration possible.

Figure 18: Manually controlled 360-degree tour through one of Hetzners data center [95].

6 Degrees of Freedom (DoF) camera system A more immersive approach to image-
based data center tours was done by Teatime research [96], a finnish based XR studio,
using a 6 DoF camera setup. 6-DoF setups are sophisticated camera systems that allow
estimating the image depth in order to allow motion parallax while using recorded im-
ages. Example systems are the stacked omnistereo by Thatte et al. [97], which stacked
two camera rigs on top of each other and Googles “Welcome to light field” that uses a
spinning camera setup for both capturing the image and approximating the depth con-
tained in it [overbeck2017system]. Teatime research did not document the hardware
used. Unfortunately, the VR software is not publicly available either. A recorded video
of the software can be found on their website [98].

Section 3 Lars Quentin 21

Interactive Data Center Digital Twin using Virtual Reality

Figure 19: A recording of a 6-DoF-based recording of Green Mountains data center [98].

Engine-based VR systems There are many projects, ranging from commercial VE
designers applied to data centers to consumer-oriented video games for building one’s
own PC, which enable the visualization or interaction of data centers and servers. No
formal papers are written about an evaluation of their effectiveness. Most are not openly
accessible. In the following paragraphs, the most important projects will be presented.

VE Configurators Axonom created the Powertrak VR Product Configurator [99], a
3D design tool built for PCVR setups such as the Valve Index or Oculus Rift. It allows
for basic physical and teleportation-based movement. It is also used for the configuration
of server racks, where it is possible to physically move the different servers within the
rack. As of this writing, the software is not publicly available.

Figure 20: A VR solution for configuring a server rack [100].

Device Interaction Hypercane studios created a VR data center simulator made for
the Oculus Quest AIO VR setup [101]. This PoC is mostly focused on interaction. It
allows several interactions with the digital twins of realistic server hardware, such as:

• Adding and removing server and switch components in an interactive way

• Manually connecting cables between switches

Section 3 Lars Quentin 22

Interactive Data Center Digital Twin using Virtual Reality

• Create guided learning environments for teaching

As of this writing, the software is not publicly available either.

(a) Interactively replacing storage (b) Connecting switches with a cable system

Guided configuration of a 10 slot switch

Figure 21: The various VR native interactions provided by the simulator [101].

Data Center Planning Meta, the developers of the Oculus devices, are internally us-
ing the Oculus Quest 2 itself to design new data centers. They, together with Mortenson
Construction and InsiteVR, presented the internal software at the 2022 AWE XR con-
ference [21]. It provides a collaborative, real-time VE for all subcontractors to detect
mistakes earlier. It also integrates into modern Building Information Modeling (BIM)
software, hence it works with industry standard tooling for inter-company collaboration
of large-scale building projects. Unfortunately, it is only for internal use and is not publicly
available as well.

Figure 22: The interface of the VR construction software used internally by Meta [21].

Another data center design was also developed on stationary VR-based technologies
by dtm, although no public footage exists [102].

Section 3 Lars Quentin 23

Interactive Data Center Digital Twin using Virtual Reality

Other Lastly, there are two other projects that, although they do not fit any of the
previous categories, are still noteworthy:

The VMWare VR Datacenter Experience is a PoC for visualizing vCenter en-
vironments. It was first presented at the VMWorld 2017 Europe [103]. It is built using
Unity and targeted stationary headsets, i.e. the Windows platform. It could stream basic
data from the vCenter and print it out in world space. Although discontinued, the source
code is still available on Github [104].

(a) The general UI (b) Streamed data from the configured vCenter

Figure 23: The interface and streamed data supported by the VMWare VR Datacenter
Experience [103].

Although not VR, the popular “PC Building Simulator” is a very detailed and elabo-
rate simulator game in which one builds consumer PC setups [105]. It provides realistic
hardware as they have many partnerships with chip manufacturers such as Intel, AMD,
NVIDIA and peripheral producers such as Razer, Corsair, or SteelSeries. It covers every-
thing from choosing a case, to connecting the components and even benchmarking with
3DMark afterward.

(a) An fully licensed example configuration (b) Overclocking the processor via the BIOS.

Figure 24: The PC Building Simulator [105].

Although a lot of research has been done in the field of VR visualization, it was not
previously tried to visualize live metrics in VR. In the next chapter, the methodology and
desing behind this data visualization approach will be further looked at

Section 3 Lars Quentin 24

Interactive Data Center Digital Twin using Virtual Reality

4 Methodology and Design
Section 4.1 of the presents a taxonomy of various virtual reality headsets and game
engines, comparing them for the use case of the thesis. In Section 4.2, the vir-
tual environment and related interaction mechanics are introduced and the reasoning
behind their design is explained. Section 4.3 discusses the design of a new 2D plot-
ting library for Unity, beginning with a comparison of existing alternatives before
considering different implementation approaches. Afterwards Section 4.4 provides
an overview of the high-level ideas of the Grafana live metric architecture, followed
by a detailed listing and explanation of the visualized metrics. Finally, Section 4.5
presents the methodology of the user acceptance study, starting with an description
of ideal study participants and continuing with the high-level structure of the user
acceptance testing, mainly focusing on test cases.

4.1 VR Technology Stack

In the background section a taxonomy of the different VR setups and game engines is pro-
vided. Building upon this, this subsection provides the rationale behind the technologies
used in this thesis, particularly the VR headset and game engine chosen.

4.1.1 VR Headset

The choice of the optimal VR hardware depends on many components. The most im-
portant parts are immersiveness, the hardware specifications as well as the general UX.
In addition, the three categories of the previously determined taxonomy are compared:
Mobile devices, AIO devices and stationary devices.

Immersiveness: Immersiveness is the most important part of a good VE. Without
immersiveness, the most essential advantages of VR are lost: focus is reduced, the virtual
environment feels less realistic, and the fun factor is diminished. From an immersiveness
perspective, mobile devices are fundamentially unusable. Since it only allows for head,
but not positional tracking, the possibility of creating immersive VEs is acutely limited.
Also, as mentioned before, the immersiveness of stationary systems are limited by the
requirement of cords [55]. Immersiveness is not equal to photorealism; although stationary
systems allow more graphically intensive, AAA-type environments immersiveness can also
be archived with simpler art styles.

Hardware Specification: The possible quality and scope of the VR experiences are
limited by the hardware specifications of the VR devices. Obviously, stationary devices
have the better specifications, even if only due to the purchase price and the processing
power of modern desktop devices. Mobile devices are, as already mentioned, unviable due
to the lack of sensors. Thus, the primary question is how much difference the stationary
hardware is compared to the AIO devices. In this case, the Quest 2 is used for those
comparisons as it is currently the most sold AIO headset.

With a per-eye resolution of 1832x1920, the resolution of the Quest 2 is superior
to stationary alternatives like the Valve Index with 1440x1600. While the Index’s 144Hz
refresh rate is superior to the Quest’s 120Hz one, in reality the difference isnegligible. The
result of more servere performance limitations in game development is very complicated

Section 4 Lars Quentin 25

Interactive Data Center Digital Twin using Virtual Reality

to quantify. Many games like Half Life Alyx [52] or Skyrim [106] are mainly thriving on
their vast, sophisticated realistic envrionments. But for practical purposes, this question
is irrelevant, as any application of this scope would immensely exceed any bachelors thesis.
After all the computing power of any modern AIO device suffice for all PoCs creatable as
a bachelors thesis.

End-User Experience The value of a good end-user experience should not be under-
estimated. Any software, no matter how immersive or otherwise beneficial, is of no value
if the hardware is not accessible to end users. The higher the effort required for using the
hardware, the fewer active users will exist.

Besides the aforementioned problem of positional tracking, mobile VR actually has
a good UX. Both AIO and mobile devices have several advantages over stationary PC-
based VR setups. The most obvious advantage is the acquisition cost. Smartphone based
VR headsets, passive as well as active, range in price from $10 to $99 [GetCardboard]
[33] and are thus very accessible to most consumer, since essentially everybody owns a
smartphone nowadays. But even with a higher price of up to 450e[40], AIO devices are
outstandingly more accessible then modern high-end gaming setups ranging up multiple
thousands of dollar. Since all applications and libraries created for this thesis are open
source, it should also be accessible to as many readers as possible.

Even more important are the spacial requirements of stational VR devices. Due to the
immobile desktop hardware and the various room sensors, stationary VR environments
require their dedicated room. This is especially important for this thesis. Since the
software may also be shown at conferences or other events, the required hardware should
be set up as easily as possible.

Conclusion: In conclusion, is was found that the AIO devices offered the best trade-off
for the scope of this thesis, as shown in this comparison matrix:

Mobile Standalone Stationary
Unresticted VR movement only head tracking yes cables required
Sufficient hardware not enough sensors yes yes
Accessible to end-users yes accessible enough high barrier of entry

Figure 25: Comparison matrix for different VR hardware

4.1.2 Game Engine

As previously mentioned in the Background Section, game engines provide out-of-the-box
solutions for most of the components required for the development of VR applications.
Therefore, selecting the most appropriate game engine should not be done as a mere
afterthought. In this section, we will evaluate the most used publically available game
engines for VR development by doing a feature-wise comparison. At first, we will look
which engines are the best fit for modern VR development by looking at their tooling and
VR compatibility. Next, we will compare those engines in their Developer Experience
(DX), whether they have any missing features and their popularity in the development
community. Lastly, we will use those insights to conclude which game engine best fits our
project.

Section 4 Lars Quentin 26

Interactive Data Center Digital Twin using Virtual Reality

Best Engines for VR Projects: At the time of this writing, not many publically
available VR engines do exist. Many companies such as Bethesda8 or Rockstar9 still use
in-house engines for their flagships. Valve, while being very involved in the hardware
development, has no plans of publishing a SDK for their Source 2 engine powering games
such as Half-Life Alyx [109]. According to the Oculus documentation, Meta officially
supports four different target platforms for their AIO devices:

• Unity Engine: [9] A high-level engine mainly used for small studio development.

• Unreal Engine: [63] A low-level game engine mostly used for graphic-intensive
games.

• Native Development: Meta also provides the OpenXR Mobile SDK [110] for AIO
devices and the Oculus PC SDK [111] for stationary devices. Those are not viable
for this use case, as there is nether a need for developing a game engine nor are the
ressources available.

• Web Development: They also allow a engine-less development targeting the so-
called Meta Quest Browser shipped with every Meta Quest device [112]. This is
a Chromium based browser, which enables graphic intensive VR development via
WebXR and WebGL, natively embedded into the webbrowser. This solution doesn’t
fit our use case as well for the same reasons above.

This leaves us with Unity or Unreal as our engine choices, which will now be avaluated
for their DX, features and populuarity among the developer community.

Developer Experience The DX of a framework can be very subjective and depend on
the preference of the developer. Nevertheless, there are some parts that can be compared
between Unity and Unreal. First of all, both engines enable visual programming. Unity
has several visual scripting systems: The Shader graph for shaders, visual effect graph
for VFX and Unity Visual Scripting (formerly Bolt) for general purpose scripting. Un-
real offers the so-called Blueprints visual scripting system, which can be used to create
complete games. However, visual graph-based programming can become very complex.
Visual scripting is also slower than its code-based counterpart. When comparing the
actual programming, the different DX can be broken down into two components: The
scripting language itself and the embedding of the language into the game engine.

As mentioned in the beginning, Unity uses C# and Unreal C++ as their scripting
languages. According to the 2022 Stackoverflow Developer Survey with over 70000 par-
ticipants, C# is the most popular pure Object-Oriented-Programming (OOP) language
with over 63% of developers "loving" the language instead of dreading it. C++, on the
other hand, is more dreaded than loved [113]. Even though the survey didn’t ask why
C# is more popular, there are a few objective advantages of C#: By being developed
by Microsoft instead of an ISO committee, language development is faster. C# has a
working package management system with a remote registry10 and due to its age and

8Using the Creation Engine: [107]
9Using the Rockstart Advance Game Engine: [108]

10C++ also has many pacakge managers such as Conan or vcpkg, but they are not part of the of-
ficial ecosystem yet. What makes matters worse is that the C++ build system ecosystem is also very
heterogeneous, ranging from simple Makefiles to sophisticated CMake or Bazel setups.

Section 4 Lars Quentin 27

Interactive Data Center Digital Twin using Virtual Reality

backwards compatibility requirements, legacy and modern C++ are basically essentially
two different programming languages.

Another important difference is how the languages are integrated into the game engine.
While Unity exposes the engine as an API and allows writing very idiomatic C# code,
Unreal is a bit more optionated: First of all, Unreal does not support the Standard
Template Library (STL)11 [115]. Also, Unreal relies on a lot of macros. Both of these
things increase the initial learning curve for someone who already knows C++.

Features For developing VR applications, Unity and Unreal have complete feature par-
ity as both engines offer everything required while targeting all commonly used setups.
With the Unity Asset Store and the Unreal Marketplace, both engines offer a way to buy
ready-made 3D assets and other functionality. The Unity Asset Store has more content,
but also exists for a longer time. Lastly, both Unity and Unreal offer their own video
learning platforms.

Popularity The popularity of game engines is very relevant. The larger the community,
the more learning resources and libraries exist. Thus, more applications are developed as
well. This creates more jobs, which in turn results in a larger community. Here are some
publicly available metrics to quantify popularity:

• Community Size: Nowadays, most discussions take place on Reddit [116], which is
considered the modern successor of decentralized forums. Thus, the size of the sub-
forums (so-called subreddits) can quantify the relative size of the active community.
On Reddit, the Unity3D [117] subreddit has a much larger user base with over
315000 members than the unrealengine [118] subreddit with 193000 members.

• Third Party Learning Ressources: With over 54 million registered users and
over 200 thousand courses available [119], Udemy is the most popular Massive Open
Online Course (MOOC) platform. On Udemy, more MOOCs about Unity exist, with
around 6500 results for “Unity” and 3300 for “Unreal Engine”.

• Commercial Game Publishing: According to the research done by user /u/justkevin
on the /r/gamedev subreddit, Unity was the most used engine of the 50 most pop-
ular Steam games of 2020 [120].

• Indie Development: Due to the smaller barrier of entry and their many game
jams, many indie developers publish their Games on itch.io. According to their
statistics, Unity is the most used engine throughout all projects [121].

Conclusion: Concluding, Unity was chosen for the game engine of this thesis. Although
the popularity and consequent variety of tutorials is very convenient, the primary focus
was on the DX and development speed: since this work is only a PoC, the asset store as
well as faster development time are more important than the ability to create graphically
elaborate experiences for which the time frame would not suffice nonetheless.

11Although, as pointed out by the Author, STL is not a formal definition provided by the C++
committee. For further reading see [114].

Section 4 Lars Quentin 28

itch.io

Interactive Data Center Digital Twin using Virtual Reality

4.2 VR Environment and Interaction

In this section, the VE will be introduced. From a top view, the layout is structured as
follows:

Figure 26: A top view of the VE layout

As seen in the figure, the VE was split into multiple rooms. This has multiple advan-
tages. Firstly, it is less overwhelming for the user foreign to both analyzing metrics and
VR in general. Secondly, it intuitively highlights the difference between the node types
using the spatial features of VR. Lastly, it insreases the amount of exploration available.
The rooms are split into the starting area containing the overview, the CPU server room,
the GPU Server room and the floor containing the storage and frontend servers

In the starting area, the overview can be directly viewed when spawning. Here, a
gauge chart is used in order to not overwhelm the user with a more complicated time
series data visualization.

Section 4 Lars Quentin 29

Interactive Data Center Digital Twin using Virtual Reality

Figure 27: The overview in the starting view and the possible interaction provided.

As seen in the picture, the controller movement is visualized using animated hands,
also known as “hand presence”. The animation of the hands is based on the buttons
pressed. Each ray has a ray extending from it outwards, which is used for teleportation
and other interactions with the VE. The general button bindings, which are the same for
both controllers, can be seen here:

Section 4 Lars Quentin 30

Interactive Data Center Digital Twin using Virtual Reality

Figure 28: The button mapping of the Oculus Quest 2 controller used.

The turn stick works in a discrete manner, turning 90 degrees at a time. This is impor-
tant; continuous turn movement, as explained in the background, causes cybersickness.
The button based turning can also be used to maximize the usable space in the VE as
it enables rotating the virtual space in order to move in the direction correllating to the
most avaibale physical space.

The rays can be used for all dynamic interactions, as well as teleporting by pointing
it towards the floor. The concept of teleportation is used to fully utilize the possibility
of large VEs and enable the structure of multiple rooms. It also, even more important,
allows for completely stationary setups, making the application as portable as possible.

The CPU and GPU rooms contain multiple servers, as well as an tabular overview,
listing one metric at a time, showing all hosts, containing a line plot of the recent utiliza-
tion12.

12The plot shows the last 7 data points, representing the last 210 seconds

Section 4 Lars Quentin 31

Interactive Data Center Digital Twin using Virtual Reality

Figure 29: The CPU and GPU server rooms

Lastly there are, besides the previously already shown overview, multiple ways the
data is visualized and can be interacted with:

The server lamps indicate the current load. Servers without a GPU have two lamps,
indicating the CPU and memory utilization of that node. The color is based on a green-
yellow-red color gradient. This is meant as an quick overview as one can just glance in
the room, skimming over each server.

Figure 30: The lamps of a CPU and GPU node and their related metrics

The beforementioned tabular overviews can also be interacted with. By using the
“Switch” button, it is possible to change the displayed metric. Furthermore, the ray can
be used to scroll through the entries with a smartphone-like gesture.

Section 4 Lars Quentin 32

Interactive Data Center Digital Twin using Virtual Reality

Figure 31: The tabular data overview, interacted with by scrolling using the right ray.

Lastly, each server has its own UI, which can be toggled via ray interaction on the
server rack. In this menus, for each node and each available metric, the last 30 minutes
of utilization are plotted. Note that the UI is always rotated towards the user, enabling
the use from every angle.

Section 4 Lars Quentin 33

Interactive Data Center Digital Twin using Virtual Reality

Figure 32: The server UI of a GPU rack.

4.3 2D Plotting in VR

Although this thesis uses Virtual Environments for their immersiveness, 2D graphs still
have their raison d’être for two important reasons: First and foremost, users are most
familiar with tradional 2D graphs, which makes them easier to read. What is more, some
visulaizations do not benefit from higher dimensionality. For example, it is not clear that
more insight is gained when correllating both CPU and RAM usage together in relation to
time; in this case, the higher dimensionality is not worth the additional visual complexity.

This section starts with an overview and evaluation of already existing 2D plotting
libraries compatible with 3D Unity environments and why it was chosen to write a new
plotting library. After that, all possible approaches of implementing a UI library will be
compared.

4.3.1 Evaluation of Existing Libraries

There are many different plotting and graph implementations available on the Unity
store, such as “Graph and Chart” [122] or “Awesome Charts and Graphs” [123]. From a
functionality perspective, both of those libaries would suffice for any visualization used.

Section 4 Lars Quentin 34

Interactive Data Center Digital Twin using Virtual Reality

Unfortunately, both are non-free software licensed by the Standard Unity Asset Store End
User License Agreement (EULA) [124]. To cite Section 3.5 of the EULA:

“Unless you have been specifically permitted to do so in a separate agreement with
Unity and except as permitted under the Unity-EULA, you agree that you will not
use, reproduce, duplicate, publicly display, publicly perform, copy, modify, adapt,
translate, prepare derivative works of, distribute, transfer, license, sublicense, rent,
lease, lend, sell, trade, resell, or otherwise commercialize or monetize any Asset that
you have licensed from the Unity Asset Store for any purpose.”

This means that once one uses a library from the Unity Asset Store that is not publicly
available, is is not possible to open source any work depending on that library. This is
against the spirit of reproducible research; hence commercial plotting solutions are not
viable in the context of this thesis.

Unfortunately, no open source 2D plotting libraries exist exist for Unity yet. Thus, a
new plotting library called Plotty was created, which is publically available on Github,
freely licensed with the MIT license [125]. It currently supports bar, bar and gauge plots.

Figure 33: All plot types supported by Plotty

4.3.2 Implementation Approaches

There are several approaches to rendering line plots and bar charts on two dimensional
canvas in 3D space. During the libraries creation three different approaches were com-
pared:

1. Image-based: The bars and lines are each instantiated as a transformed combina-
tion of simple images. For example, a white rectangle would be a white texture with
transformed x and y scales. A circle would be a square image with transparency
around the circle texture. This was already done as a YouTube video tutorial series
[126], although the underlying licensing is unclear.

This is clearly very inperformant, especially since it solely runs on the CPU. It is
also very unmaintainable and inflexible since the graph color is based on the texture
used.

Section 4 Lars Quentin 35

Interactive Data Center Digital Twin using Virtual Reality

2. UIVertex-based: The UIVertex class is used internally by Unity to render various
components such as fonts on a canvas. It is possible to use the same APIs to
manually generate triangle meshes on a canvas as documented here [127]. This is
way more performant, although still computed on the CPU.

3. Shader-based: The last solution would be to render the data on the graphics card
as a shader. Although not used for general plotting, Graphy [128] is as an open
source library leveraging GPU shader to plot stats such as the FPS or memory
usage.

Figure 34: GPU based 2D rendering done by the Open Source FPS counter Graphy [128]

Although the most performant approach, it is also the most complicated one as C#
can not be used to write shaders. Unity supports their own shader language called
Shaderlab [129] as well as Microsofts High Level Shader Language [130]. Unity also
supports raw GLSL [131], although this is not recommended as both other languages
get transpiled into optimized, target-dependent GLSL as well.

In this thesis, we chose the UIVertex-based approach, as it provided enough perfor-
mance and maintainability while not requiring another programming language. More on
the technical details can be found in the corresponding Section of the Implementation
chapter.

4.4 Live Metrics

As previously mentioned, metrics can be used to gain insights and develop an understand-
ing of a given HPC system. For example, one can understand the availability, reliability
and popularity of the single components and even infer basic user behaviour. Additionally,
instead of using sophisticated dashboards that require in-depth knowledge of the cluster
structure and topology, users can get an better intuition connecting the metrics to the
physical cluster nodes by leveraging the spacial features of virtual environments.

Section 4 Lars Quentin 36

Interactive Data Center Digital Twin using Virtual Reality

The canonical way of accessing the live metrics would be to query the data directly
from the TSDB. However, due to administrative restrictions, access to the data source
itself was not possible. Therefore, the decision was made to query the data from Grafana.

We used Grafana’s data source proxy API [132]. When making an API call to Grafana,
the selected database name and the query are passed as GET parameters. Once these
parameters are passed to Grafana, the query is executed by the TSDB using the creden-
tials that Grafana has been configured to use for authentication with the InfluxDB. This
allows the client to authenticate with their Grafana API credentials, rather than having
to provide credentials for the underlying database.

There are two main advantages to this approach. Firstly, it makes the API endpoint
more data source agnostic, since as mentioned before, Grafana can be configured to use a
variety of databases. Secondly, it simplifies the process of designing and executing queries
as one can visualize them beforehand using Grafana’s UI. This will be further explored
later. It should be noted that, even though we are using Grafana as the API endpoint,
we still need to write InfluxQL calls in order to query the data from InfluxDB. InfluxQL
is one of the query languages for InfluxDB. This means that, although the API endpoint
itself is data source agnostic, the specific query only works with InfluxDB 1.7 or lower.

In order to properly be usable for presentations in a portable setting, the two following
problems have to be solved:

• One potential problem that could arise when trying to access live metrics via the
Grafana API is the possibility of the client not having internet access or the metrics
server being otherwise inaccessible. To address this issue, different application builds
were made that are able to use mocked data instead of the current metrics, creating
the illusion of live data metrics.

• Another issue, especially around studies and presentations, is that an insightful
visualization requires good live metrics. In some cases, the data could be such that
it is either too hard to analyze for the average HPC user or one that it does not
provide any valuable insights. To solve this problem, the offline builds use artificially
generated mocked data instead of old replays of actual data recorded from the HPC
cluster. This solution was also used for the user acceptance study, and will be
discussed in further detail in the “Implementation” Section.

4.4.1 Metrics Used

Unfortunately, at the time of this writing, the HLRN-IV cluster could not be used as a
data source for this server room digital twin. This is due to two reasons:

• The HLRN has its own Grafana and Prometheus [78] based monitoring solution.
The accessibility of this server is, from a networking perspective, more restricted
than the GWDG’s central monitoring setup. Especially, the only way to connect
to this server outside of the GWDG’s internal network is to use a Virtual Prvate
Network (VPN). The two available VPN solutions are either Cisco Anyconnect
[133] or Wireguard [134], both of which are impossible to use on an Oculus Quest
without rooting the device.

Section 4 Lars Quentin 37

Interactive Data Center Digital Twin using Virtual Reality

• Additionally, the HLRN monitoring setup is still in-progress. While the infrastructure-
related metrics such as rack temperature, air cooling or power usage are already
properly integrated, the computing nodes do not have any clients such as telegraf
installed yet. Thus, no utilization metrics are currently accessible.

Instead, we use the SCC. The SCC [135] is a local compute cluster used by the
University of Göttingen as well as several Max-Planck-Institutes. It offers a shared storage
and several node types. It is currently distributed across the old headquarter as well as
the Modular Data Center (MDC).

Figure 35: The SCC cluster [135]

Too keep the digital twin more accessible and have a reasonable amount of data, it
was chosen to only use a subset of all available SCC nodes. To keep the physical topology
connected, it was chosen to only use the nodes set in the MDC. The following nodes were
chosen:

• To begin with, we chose to use include all frontend nodes. Those were the nodes the
HPC user is directly interacting with, doing things such as loading modules, compil-
ing software and configuring jobs. Those servers include the gwdu101, gwdu102, and
gwdu103 nodes. For those nodes, we chose the current CPU and Memory utilization.

• Also, we chose to include all nodes from the MDC that contain GPUs. This allows
for a better variety of metrics visualized. Those nodes are the agt001-agt002 as
well as the agq001-016. Aside from the CPU and Memory utilization, we also
visualize the GPU usage.

• Moreover, we included a subset of computing nodes that do not contain a GPU.
Those are the so-called amp nodes at the MDC, of which there are 96. Since that
many nodes are hard to comprehend in a visual setting, especially compared to the
way fewer GPU nodes, it was chosen to only include the amp001-amp015. We also
use the current CPU and Memory utilization.

• Lastly, we decided to include the storage utilization of the SCRATCH share.

Section 4 Lars Quentin 38

Interactive Data Center Digital Twin using Virtual Reality

In order to make the data more accessible and easier to understand, it was normalized
to percentages. This is especially useful for users who may not have extensive knowledge
or experience with HPC systems and were only previously exposed to consumer scale
hardware. By presenting the data as percentages, the data is simplified from multiple
CPUs with many cores to a single-dimensional value representing the utilization of the
current node.

4.5 UA Study

The UA Study consists of a UAT and the corresponding analysis. The User Acceptance
Test verifies whether a given application satisfies all use cases and can be used by the
expected end user. In this section the focus will be on the UA study design. First, it will
be discussed how the study participants were selected. Next, the general structure of the
UAT will be examined. Finally, the test case design will be further explored.

Study Participants The UAT should be done by the future users. On the one hand,
if a study participant is completely unfamiliar with the concept of computing clusters,
they will not be able to understand the visualized data. They should be at least knowl-
edgeable enough to understand the value of the virtual environment and the insight it
provides. It should be possible for them to grasp and have a rudimentary understand-
ing of the visualization, being able to do fundamantal analysis about the current system
state. Lastly, they should also be able, after a short introduction, to navigate and use a
traditional dashboard software such as Grafana. Otherwise, the comparison between the
VR approach and traditional, web-based dashboard technologies is not possible.

On the other hand, the participant should not be a seasoned system administrator as
they are not the expected target audience. The main advantage of this digital twin is the
visual intuition it provides over traditional dashboards. That it can provide insights over
how the HPC system works and how it is structured by mapping the live metrics to the
physical server topology. Furthermore, moving around in a VE would be too much fric-
tion for everyday usage. System administrators are used to read graphs and do not need
the spatial information probided by the virtual environment because they have already
understood the cluster structure.

Thus, it was chosen to base the study on computer science students which are at
least in the third semester of their undergraduate degree. This way, they were already
exposed to the concepts of computing, programming, servers, and have the mathematical
background to rudimentary analyze time series graphs. Lastly, they do not have a regular
experience with performance monitoring or the GWDG HPC cluster system.

UAT Structure The structure of the UAT is as follows:

• To begin, a simplified version of the HPC cluster and batch job system was intro-
duced, along with an explanation of the VR navigation and embedded metrics in
the virtual environment.

• The participant was then asked to complete a Pre-Questionnaire, which gathered
information on their age, study major, and exposure to topics such as server main-

Section 4 Lars Quentin 39

Interactive Data Center Digital Twin using Virtual Reality

tenance, VR, and remote computing infrastructure as both familiarity and novelty
may influence the results.

• The participant was then asked to participate in four different test cases, two of
which were conducted in VR and two of which used Grafana dashboards.

• Lastly, the participant was asked to self-evaluate both technologies in order to pro-
vide feedback on their experiences.

Note that the entirety of the UAT can be found in the Appendix.

Test Cases As mentioned before, the four tasks were split into two tasks using web
dashboards and two tasks using VR visualization. While the tests were slightly different,
they all centered around rudimentary HPC cluster analysis based on the utilization met-
rics provided. To mitigate the potential of study participants becoming more accustomed
to the user interface or task at hand, the software was switched after each test so that
neither Grafana nor the VR digital twin was used twice in a row. The order in which
the VR and web versions were introduced was also anticipated to potentially affect the
results. As such, the starting order was alternated after each user. In the test cases, live
data was not used. This approach allowed the data to be deterministic and the results
to be independent of the current cluster load. Additionally, in order to design better test
cases and facilitate easier data analysis, the data displayed was generated artificially. The
appendix contains the data used in the various test cases. The participant was instructed
to think out aloud while analyzing the data.

The the first two test cases of the User Acceptance Study were designed to introduce
the participant to the VR and dashboard user interfaces. The first test case, “Are the
servers used optimally?”, was designed to familiarize the participant with the first user
interface. Mocked data was generated in such a way that the servers were not used in
the most efficient manner. The frontend servers had high load, implying that they were
used for computation instead of just cluster interaction and job configuration. Also the
GPU clusters were had a lot of jobs only utilizing the CPU, wasting valuable computing
resources by allocating those nodes.

The second test case, “How does the scheduler work?”, focused only on the nodes
without a graphics card to simplify the task. The participant was explained that when
a job is removed from the queue, it must be assigned one of the nodes in the pool. The
task was then to analyze the metrics and infer how the scheduler works. The data was
generated in such a way that the scheduler works like the following pseudocode:

1 for (int i=0; i<N; ++i) {
2 if (server_free(server[i])) {
3 return server[i];
4 }
5 }

This test case was designed to introduce the participant to the other user interface.

The third and fourth test cases were the same task, called “Long Term Decision Mak-
ing”. The formal task description was:

Section 4 Lars Quentin 40

Interactive Data Center Digital Twin using Virtual Reality

Your department got some funds and decides on whether to upgrade the cur-
rent computing hardware. The hardware should just get upgraded if it is
mostly fully utilized.

Find out if there is a need to upgrade the current hardware. If there is, find
out which type of servers are most needed.

After being introduced to both user interfaces in the previous test cases, this task was
meant to create a direct comparison between the dashboard and VR versions. The first
data set was designed in such a way that the GPU nodes were under high load, with a
high GPU utilization. The second data set was designed in such a way that all resource
types were used in a balanced way, with no need for hardware upgrades. All mock data
can be found in the appendix. This allowed the participant to observe the differences
between the two data sets and draw conclusions about the need for hardware upgrades.

In the next chapter, the focus will be on how the digital twin and UA study have been
implemented.

Section 4 Lars Quentin 41

Interactive Data Center Digital Twin using Virtual Reality

5 Implementation
Starting with Section 5.1 the implementation details of the unity project and the
virtual environment are being presented. Section 5.2 focuses on the implementa-
tion and underlying math of writing a plotting library. The implementation of the
Grafana-InfluxDB-based live metrics system is discussed in Section 5.3, including
the database query design, asynchronous event streaming architecture and the offline
mode. Finally, Section 5.4 delves into the technical details of the user acceptance
study, including the mock data generation, C# code generation and Python-based
metric streaming client.

5.1 Unity and Virtual Environment

In this section, we will first describe the unity setup, focusing on the packages used and
the project preferences set. After that, we will focus on a few implementation specifics
related to the VE.

For this setup, the Universal Render Pipeline (URP) was used, which offers improved
performance and more configuration options compared to the old Unity rendering pipeline.
Since we are on an embedded device with computational constraints and do not have the
resources for highly detailed models and textures, we did not use the High Definition
Render Pipeline (HDRP). In order to get the URP working with the Android target,
we explicitly used OpenGLES3 instead of OpenGLES2. For the build, we chose to use
Unity’s IL2CPP instead of Mono. This means that our C# scripts were transpiled to
highly optimized C++ and then compiled to native code using the Android Native Devel-
opment Kit (NDK), rather than shipping the Mono C# runtime. Furthermore, we chose
high optimization levels, which means that we get faster code and smaller builds while
increasing the build time.

The app has not been deployed into the Unity store and must be sideloaded by 3rd
party software like Sidequest. For the VR components, the newer manufacturer agnos-
tic OpenXR framework and Unity’s XR Interaction Toolkit are being used. The use of
OpenXR also requires the use of the new action based input system instead of the old
controller based one. This means that the controls are mapped to actions such as "Ac-
tivate" and "Select," relying on the VR manufacturer to create the action to controller
mapping.

For the hand presence, we used the hand models created by Meta [136], converted
and animated by Valem [137]. Furthermore, we built the room geometry using Unitys
ProBuilder package. While the CPU and GPU servers were modeled for this thesis, the
storage server is from the ipoly3d server package [138]. Here, the faces representing the
lamps are different objects in order to simpler change their material.

Section 5 Lars Quentin 42

Interactive Data Center Digital Twin using Virtual Reality

Figure 36: All server models in Blender.

5.2 Plotting Library

As previously stated in the methodology, the 2D plotting library Plotty for Unity was
designed and implemented as part of this bachelor thesis [125]. Plotty supports three
different plot types: Line charts, bar charts and gauge plots. For convenience, prefabs are
provided. In this section we will look at the implementation details in more depth.

Line and bar chart: The basic inheritance structure can be seen in Figure 37. Awake
and OnPoulateMesh are overwritten methods provided by Unity’s MonoBehaviour [139]
and Graphic [140] respectively. This way, the Unity interaction is provided by the ab-
stract base class so that the subclasses only have to implement the drawing logic through
DrawAll. In order to provide a “Sliding Window”-look a FIFO queue of fixed length is
used to store the most recent n measurements.

Section 5 Lars Quentin 43

Interactive Data Center Digital Twin using Virtual Reality

Figure 37: The UML diagram of Plotty’s line and bar chart classes

Let cx, cy be the width and height of the canvas. The position of the i-th measurement
mi in the queue of length n is calculated by

pos(mi) :=

[︃
i · (cx/n)

(max{m1, . . .mn} · cy) ·mi

]︃
Plotting a line works as follows: Let mi−1 and mi be two measurements between which

we want to draw a line. A line is composed of two rectangles and four points as seen in
Figure 38.

Figure 38: The triangle mesh of the line between mi−1 and mi

At first, we calculate the difference δ and its normalized direction vector d.

δ := pos(mi)− pos(mi−1), d :=
δ

||δ||

Furthermore, we can calculate the clockwise cw and counter-clockwise orthogonal ccw
vector as

cw([x, y]T) = [y,−x]T

ccw([x, y]T) = [−y, x]T

Section 5 Lars Quentin 44

Interactive Data Center Digital Twin using Virtual Reality

Therefore, we can calculate the points A,B,C,D seen in figure 38 as

A := pos(mi−1) + cw(d) · t
B := pos(mi−1) + ccw(d) · t
C := B + δ

D := A+ δ

where t is the relative thickness set as a Prefabattribute.

Gauge Plot The gauge plot was mainly provided by the “Radial 180” fill method pro-
vided by Unity [141]. A configurable, fixed (i.e. discrete) color gradient was used in order
to show different colors based on the value plotted.

5.3 Live Metrics

As mentioned in the methodology, the VR digital twin was used to visualize the live met-
rics of the MDC part of the SCC HPC Cluster using the Grafana data source proxy API
[132]. A fully event-driven and concurrent polling architecture was designed, bypassing
the limitations of Unity’s single threaded scripting API. This architecture is internally
queries using InfluxQL, one of the query languages used by InfluxDB. The implemented
architecture works with both mocked offline data and real live data provided by the pro-
duction monitoring stack described in the background section.

In this section, the technical details will be explored. Firstly, the design of the InfluxQL
queries using Grafana’s Frontend will be focused on. Next, the singleton data structure
providing the live data through an asynchronous event system will be introduced. After
that, the actual fetching and parsing of the metrics provided by Grafana will be examined
in more detail. Subsequently, the event subscribers’ processing of the newly polled data
will be explored. Lastly, the workings of the offline mode and the integration of mocked
data into the event workflow will be examined.

5.3.1 Query Design

As previously mentioned in the methodology, the use of Grafana as a proxy greatly en-
hanced the workflow in designing the InfluxQL queries. It allowed for an easy visual
representation of the data corresponding to the query, resulting in faster query iterations.
Additionally, the use of Grafana’s own visual query builder decreased the error rate of
incorrect InfluxDB queries. In this subsection, the process of using Grafana’s frontend to
create the queries used in the VR software will be shown. Note that all queries used and
their example responses can be found in the appendix.

Here are the steps required for creating the queries:

1. First, a new Grafana Dashboard has to be created. In this Dashboard, multiple Pan-
els can be created, each corresponding to one set of data and nodes to be visualized.
This has multiple advantages:

• Multiple plot and chart types, such as graph, gauge, or pie charts, can be used
to better understand the data.

Section 5 Lars Quentin 45

Interactive Data Center Digital Twin using Virtual Reality

• The visual query builder can be used to create standardized InfluxQL queries,
which also shows all valid values, resulting in a faster workflow and fewer error-
prone queries.

Figure 39: An example of a Query solely built with Grafana’s InfluxQL query builder

• The data can be viewed on different time frames. It can also be live updated
in a regular interval, which allows to see whether the current query is a ideal
for the data provided.

2. The API calls can then be extracted from the Grafana Frontend. In order to un-
derstand the idea behind this workflow, which is also mentioned in Grafanas own
documentation, a small introduction into the concept of website frontends is re-
quired:

At the beginning of the internet, or the so-called Web 1.0, the content of the web
was static. This means that, once the file was fetched from the webserver and the
HTML and CSS were rendered by the local webbrowser, the content did not change
anymore. This worked well for an information- and documentation-centered inter-
net. Interactive elements were already possible, using either Macromedia Flash13,
Java-Applets or Javascript, although they were only sparingly used.

Furthermore, when the user wanted to see another page, their browser had to re-
quest a new HTML file, completely fetch all embedded HTML and CSS components
and rerender the whole website.

After that, people started to create more interactive websites, resulting in whole
applications being ported to the browser. They heavily relied on Javascript, which
was later renamed to ECMAScript, to provide the dynamic functionality.

This resulted in the concept of partitioning web applications into frontend and back-
end. The frontend is the part of the code that runs in the user’s browser while the
backend is the code that runs on the server serving the data. After the advent of full
featured web frameworks such as React, Vue or Angular, this became the standard
way of creating new web applications.

In the case of Grafana, although slightly simplified, it works as follows:
13Later Adobe

Section 5 Lars Quentin 46

Interactive Data Center Digital Twin using Virtual Reality

• First, after the user requests the website, the Grafana server responds with an
empty HTML struct containing links to the frontend Javascript code.

• After fetching the frontend code, the website layout is dynamically created and
the frontend is initialized.

• When the user navigates the website, it is not necessary to refetch and rerender
the whole website. It only needs the content in a semi-structured format14 in
order to render it locally.

• Especially when new metric data is desired, the frontend only requests that
data from the backend. It uses the queries previously written using the visual
query builder. These requests can be recorded using the browsers development
tools, replayed using our own authentication token, and the same data can be
obtained.

The request sent for the metrics data can be seen in the networking tab in all modern
browsers.

Figure 40: Viewing the Queries used by Grafana with the Firefox Developer Tools

Replaying the same request can be done either through Command Line Interaface
(CLI) tools such as HTTPie or cURL or more user friendly graphical alternatives
such as Postman.

3. After that, the queries can be joined and further manually optimized. The full
queries and truncated example responses used in the VR software can be found in
the appendix.

5.3.2 Singleton Structure

The data fetching architecture is centered around the GrafanaSingleton class, which is,
as the name suggests, a global singleton managing the fetching and parsing of the metrics

14mainly JSON

Section 5 Lars Quentin 47

Interactive Data Center Digital Twin using Virtual Reality

provided by a remote Grafana instance.
Here is it’s UML class diagram:

Figure 41: The UML class diagram for the GrafanaSingleton

The fetched data is stored in the cpuData, memData, gpuData, and storageData dic-
tionaries, which split the fetched data according to their metric. The keys of those dictio-
naries are the hostnames, which are provided by the Grafana-API as InfluxDB tags. The
values are a time series of the according metric, wrapped in a ServerData data structure.
Note that since the C# dictionary is based on a hash table, its amortized lookup com-
plexity is O(1).

The ServerData class can be seen as a fixed size First-In-First-Out (FIFO) queue.
When constructing the queue, the maximal length must be set, which is the amount of
metric data points that will be stored at a time. Each data point is a tuple of (long,

Section 5 Lars Quentin 48

Interactive Data Center Digital Twin using Virtual Reality

double) representing the timestamp and the scalar value representing the metric of the
node at that time. After the queue is constructed, new data can be added. If the queue
has too many elements, the oldest one will be removed. This queue is implemented using
a double linked list, so removing the first and adding the last element are both O(1). This
means that this shifting operation also takes constant time.

For now, the most important parts are the NewData delegate and the related NewDataArrived
event. A delegate is a type of object that can hold a reference to a method, similar to
function pointers in other languages. In our case, NewData is a type of function that
takes no parameters and returns void. Events are a concept for classes to notify its event
subscribers. Other functions can subscribe to an event by adding their function reference
of the delegate type.

This way, the GrafanaSingleton can poll new Data asynchronously and notify all sub-
scribers whenever they have to update their local data visualization. Thus we can avoid
costly busy polling and minimize the risk of race conditions. Furthermore, objects can
unsubscribe whenever they are invisible or otherwise disabled in order to improve overall
performance.

5.3.3 Fetching and Parsing Metrics

Grafana only offers access to its data through a Representational State Transfer (REST)
API, which is a kind of stateless HTTP API. It should be noted that, unlike grpc or
websockets, REST APIs are unidirectional. Consequently, the server is unable to notify
the client of new data. Therefore, we have to actively poll for new data.

The canonical way of repeatedly doing things in Unity is the Update function, invoked
from Unity if the object inherits from Monobehaviour. This function gets called every
frame, blockingly. Thus, until the Update of every active object is finished, Unity won’t
render the next frame. As mentioned in the section about VR best practises, Oculus
recommends to have at least 60 v-synced FPS [72]. Since it is impossible to fetch an API
and process its response within 1/60 of a second, or 16.67 ms, the polling request can’t
be done syncronously. Furthermore, the data refesh rate of once a frame would be too
frequent.

Unity also provides the easy to use InvokeRepeating method that runs the given func-
tion name repeatedly, given a specific seconds interval. Unfortunately, InvokeRepeating
also runs in the main thread, consequently suffering from the same problem as Update.

In order to provide the asynchronous polling, C# coroutines were used, which are a
way of writing asynchronous code. They use the yield keyword to return a new element.
After the next call, the execution is continued after that intruction.

Awake The GrafanaSingleton gets initialized via the Awake function, which gets called
by Unity at the very start of the software execution. From there, if the offline mode is not
enabled, the RealAwake starts the PollCoutine routine. This coroutine runs non-blocking
in its own thread.

Section 5 Lars Quentin 49

Interactive Data Center Digital Twin using Virtual Reality

PollCoroutine The PollCoroutine is an infinite loop, and for each iteration, four
async ProxyQueryRequest Tasks are started, one for each metric (CPU, Memory, GPU,
Storage). All of those run concurrently because they are not awaited one at a time, in-
stead a WaitUntil is used. This works analogously to a MPI barrier or a Promise.All in
Javascript. After that, the ServerData attributes are stored and the latest average value
of each metric are computed and set. The first time all four REST calls have succeed,
the data is formally set to be properly initialized by setting the isInitialized attribute
to true. Also, after all REST calls are finished, the NewDataArrived event is invoked,
notifying subscribers that they have to update their visualizations. Finally, execution is
paused by yielding a WaitForSeconds object until starting the next fetching iteration.
Note that no data is passed to the subscriber! All subscribers are using the data read-only,
thus copying the data is avoided to improve performance.

ProxyQueryRequest Lastly, the focus will be on how the actual asynchronous request
to the Grafana API is done by looking at the function of the ProxyQueryRequest, which
takes an InfluxQL Query as a parameter. All Queries used, along with their truncated re-
sponses, can be found in the appendix. This method operates asynchronously and returns
a Task, a concept also known in other languages as a Promise (in Javascript) or Future
(in Rust). In order to perform the HTTP request, the System.Net.Http.HttpClient
client is utilized, which is part of the .NET runtime. This client is the preferred modern
way of making HTTP requests due to its thread safety and performance15.

The request is constructed by setting the URL to the Grafana data source proxy API
endpoint, as specified in the DATA_SOURCE_PROXY_ENDPOINT variable. The Bearer token
is then set as a HTTP header used for authentication against Grafanas user management.
Furthermore, the following GET parameter are set:

• db: Defines the InfluxDB database which should be queried from.

• q: Defines the InfluxQL query used.

• epoch: Defines the unit in which the UNIX timestamp is returned in, always set to
ms.

After setting the GET parameters, the asynchronous call is awaited. If the call is
successful, indicated by an HTTP return code of 200 OK, the response body will contain
a JSON string containing the metrics data. After that, the JSON gets deserialized and
parsed into a ServerData struct.

JSON Deserialization The JSON string is deserialized by parsing it into a nested
C# object representing the exact JSON structure. This is usually done with Unity’s
JsonUtility [143]. This is the fastest available JSON parser, since it is written in highly
optimized native C++ code instead of the C# code available to scripts. Unfortunately,
this library was not available for our use case; it does not support destructuring multi-
dimensional JSON arrays as received by Grafana [144].

15For a taxonomy see [142]

Section 5 Lars Quentin 50

Interactive Data Center Digital Twin using Virtual Reality

Thus we chose to use the most popular C# based JSON parser, which is Newtonsoft’s
Json.NET [145]. This is also the next best solution from an performance perspective as
shown by Jackson Dunstan [146].

Figure 42: A comparison of Unity JSON parsers [146].

5.3.4 Event Subscribers

In the last section, it was mentioned that each event subscriber is notified whenever new
data arrives. The focus of this section will be on the processing of the newly fetched data
by the different subscribers. To begin, we will examine the inheritance structure. After
that, each class will be explored in more detail. Specifically, the solution to concurrency
problem of unity’s rendering being singlethreaded and not threadsafe will be discussed.

Inheritance Structure Here is the inheritance structure of all event subscribers, de-
signed as two UML class diagrams:

Section 5 Lars Quentin 51

Interactive Data Center Digital Twin using Virtual Reality

Figure 43: All event subscribers related to the UIs and server lights

Section 5 Lars Quentin 52

Interactive Data Center Digital Twin using Virtual Reality

Figure 44: All event subscribers related to the initial overview

Next will be a more discussion of the single event listeners, starting with the first
inheritance tree, traversing from top to bottom:

AbstractDataReceiver First, we will look at the AbstractDataReceiver class. The
class contains the hostname of the server node as well as a reference to the GrafanaSingleton,
which can be used in its children to extract the proper metric for the correct host. It
subscribes to the NewDataArrived event using Unity’s OnEnable and unsubscribes using
Unity’s OnDisable. In this VE, most objects are always enabled, but everything related
to the UIs is enabled if and only if it is toggled visible. This optimization vastly reduces
the number of subscribers.

Next we will focus on how the beforementioned concurrency problem was solved. This
is the related code:

1 protected bool newData = true;
2

3 private void NewDataArrived ()
4 {
5 newData = true;
6 }
7

8 protected void Update ()
9 {

10 if (! singleton.IsInitialized)
11 {
12 return;
13 }
14 if (newData)
15 {
16 processData ();
17 newData = false;
18 }
19 }
20

21 protected abstract void processData ();

As mentioned, Unity itself is single threaded, and all rendering-related tasks must be
performed in the main thread. However, as explained earlier, performing HTTP requests

Section 5 Lars Quentin 53

Interactive Data Center Digital Twin using Virtual Reality

synchronously in the main thread would clog it up to a point of not having enough FPS
for a proper VR experience. Since everything has to be done in the main thread, some
polling has to be done using the Update function, since this function runs on the main
thread. Thus, the goal should be to minimize the time polling each frame.

At the beginning of the Update function, the code checks whether the singleton is
formally initialized. Assuming normal network conditions, the ServerData structures are
initialized in less than a second. Therefore, most of the time when Update is called, the
singleton will be initialized. This is why the code branches out only in the unlikely case,
improving instruction prefetching and minimizing polling time. Analagously, it is more
likely that the current method invocation is not one after new data has arrived. Also,
doing a boolean comparison is faster than analyzing the actual structure for changes,
which further reduces the execution time of Update.

Every time the GrafanaSingleton triggers the NewDataArrived event, it will only set
the newData bool of the receiver, indicating that the receiver wants to process the new
data in the next frame using Unity’s main thread. This solves the concurrency problem.
Furthermore, it means that the concurrency problem is solved for all children of the class,
as they only have to implement the processData method.

AbstractServerReceiver The AbstractServerReceiver class is an abstract class that
implements coloring the material of a GameObject according to a set color gradient. In
our VE, a green-yellow-red gradient is used to map the percentage-wise utilization to
a according color. This is used for the lamps of the server racks, with each lamp hav-
ing its own child of AbstractServerReceiver. It is worth noting that this class only
processes the newest value available and does not require access to the full time series.
The AbstractServerReceiver only exposes one abstract method, GetServerData, which
must be implemented by all children of the class.

The other ServerReceivers The other, non-abstract ServerReceivers implement the
GetServerData function to the correct GrafanaSingleton metric they are representing.

AbstractUIReceiver The AbstractUIReceiver class is an abstract class, inheriting
from AbstractDataReceiver as seen in the UML. It is slightly more sophisticated than
the AbstractServerReceiver since it uses the complete time series instead of just the
last value. It is used for all line plots in the UIs as seen in the sections about the VE.
Analagously to AbstractServerReceiver, it also only expoeses the GetServerData func-
tion, which then gets implemented for each metric by one non-abstract children.

The processData function does the following every time new data arrives

• Merging the new data with the already plotted ones by their timestamp values.

• Rerendering the plot.

• Printing the latest percentage value.

• Coloring the UI according to the latest value, evaluated against the same gradient
used for the server lamps.

Section 5 Lars Quentin 54

Interactive Data Center Digital Twin using Virtual Reality

Overview Receivers The overview receivers work completely equivalent to the ServerReceiver,
but instead of changing th material color they use the previously created radial plot in-
stead.

5.3.5 Offline Usage

If the useDummyData boolean in the GrafanaSingleton is set to true, the offline data
compiled into the binary will be used. When the singleton initializes using the Awake
function called by Unity, it branches to the DummyDataAwake function instead. In this
function, the server data is filled with the values for the first 30 minutes provided by the
automatically generated DummyData before computing the average, setting the singleton
to being initialized and invoking the event. The design of the fake data and the C# code
generation process can be found in the implementation chapter’s user study subsection.
After the initial 30 minutes of data is stored, the InvokeRepeating function spawns an
add function every 30 seconds, simulating the real sending rate of the telegraf clients.
Although InvokeRepeating, as mentioned before, is blocking the main thread, this is not
a problem in this case as the operation of copying precomputed values is from an O(1)
data structure is efficient for the overhead to be negligible.

5.4 UA Study

In this section, the implementation of the User Acceptance Study will be examined. First,
the generation of mocked data for the test cases described in the methodology will be
discussed. Then, the implementation of the test cases will be explored, focusing on both
the mocked Grafana environment and its VR digital twin.

5.4.1 Data Generation

In this section, the process of generating mock data for the UA study will be dis-
cussed. Firstly, the building blocks of the load generation will be explored. Those in-
clude two dimensional linear interpolation, function addition and clamping, as well was
one-dimensional perlin noise. Secondly, it will be shown how those building blocks were
used to design the different type of loads for CPU, memory, GPU and storage utilization.
Finally, it will be presented how the load intensity for each node was set randomly and
procedurally.

Building Blocks Since all data is represented percentagewise, the data generated lies
in the [0, 100] interval. The time axis is mapped to the unit interval. The generator
functions were created using a functional approach of composition:

1. Simple functions that map to some part of the unit interval are used.

2. These functions are lazily layered over each other, which mathematically maps to
the addition in function spaces.

3. The so-called “clamp” operation is used to map all function values within their
valid interval. This ensures that the generated data remains within the required
range and accurately represents the behavior of a real computing environment. It

Section 5 Lars Quentin 55

Interactive Data Center Digital Twin using Virtual Reality

is mathematically defined as

clamp(x) :=

⎧⎪⎨⎪⎩
100 x ≥ 100

0 x ≤ 0

x otherwise

The following basic function generators were used:

• Constant Functions: Constant functions are mathematically defined as

cx0,x1,y(x) =

{︄
y x0 ≤ x ≤ x1

0 otherwise

• Linear Interpolation: We also use linear interpolation between two points, in
which be evaluate the point on the convex combination of two points, and otherwise
0. Given two points (x0, y0), (x1, y1) ∈ R2, this maps to

L(x0,y0),(x1,y1)(x) =
y0 · (x1 − x) + y1 · (x− x0)

x1 − x0

• Perlin Noise: The perlin-noise python library[147] was used to generate one-
dimensional perlin noise. Perlin noise is a mathematical function that generates
random noise by using the values of nearby points to influence the value of each
point.

Load Characteristics Different strategies were used for creating the various metric
types:

• CPU: The CPU load generation is a multi-step process. It takes a load range
(lo, hi) which define the allowed the minimal and maximal utilization allowed as
well as n, the number of base points and whehter a lot of noise should be used. It
works as follows:

1. Generate n two-dimensional points in the domain [0, 1)× [lo, hi).

2. Create a linear interpolation between each two neighbouring points

3. Create the amount of perlin noise requested.

4. Sum all linear interpolations and the perlin noise; clamp to [0, 100].

• Memory: Typically, memory load resembles more like a step function with less
variance, based on large heap allocations or new stack layers. Thus, we could not use
linear interpolation to represent the load. Instead, we created the following function,
taking a load range (lo, hi) and n, the number of base points as an argument:

1. Create the set of points S = {0, x1, . . . , xn, 1}, xi ∈ [0, 1).

2. For all neighbouring values a, b ∈ S create a constant function for that interval
with a random value in [lo, hi).

3. Sum all constant functions and add a bit of perlin noise.

Section 5 Lars Quentin 56

Interactive Data Center Digital Twin using Virtual Reality

• GPU: GPU metrics tend to have to most variance over time. Thus, a lot of perlin
noise in order to reflect that characteristic in the mock data. Mocked GPU data
consists of a one-step function of two random values, summed together with strong
perlin noise.

• Storage: Due to its size and the short time span the storage data mostly resembles
a constant function. In our mocked data, a constant function is used as well, adding
a minimal amount of noise.

Procedural Load Generation By setting the [lo, hi) ranges accordingly, it is then
possible to define random generator function for idle, low, mid and high load for each
metric. Next, we generate the node data by assigning each load intensity class a prob-
ability. For example, in the first test case, the AGT and AGQ node CPUs had a 10%
probability to be idling, 20% to have low load, 60% to have mid load and 10% to be highly
utilized. This, in our case, is called the weighted random load.

5.4.2 Test Cases

Next, it will be shown how the mock data was integrated into the UA studies using a
standalone Python application. Specifically, we will first look at how it was streamed into
a fake Grafana monitoring system. After that, we will look at the VR integration using
code generation.

Mocked Grafana Instance For the user acceptance study a new grafana instance was
set up. Using the GWDG cloud server [148], an Ubuntu 22.04 virtual machine was initial-
ized and configured. Using a previously published docker-compose setup [149] Grafana
and InfluxDB were configured.

After that, a Python application was written in order to stream mock data into the
remote InfluxDB using the now deprecated InfluxDB-Python library [150]. It uses the
previously generated data and streams it using the current timestamp. Before starting to
stream, it also drops all database values and initializes the database with 30 minutes of
mocked data. The code is available in the Repository.

Lastly, three Dashboards were created:16

16Only the ones with GPU notes are shown. For Test Case 2, the GPU data is omitted as it is set to
zero.

Section 5 Lars Quentin 57

Interactive Data Center Digital Twin using Virtual Reality

Figure 45: The “Frontends and Storage” dashboard

Section 5 Lars Quentin 58

Interactive Data Center Digital Twin using Virtual Reality

Figure 46: The “Overview + All Nodes” dashboard

Section 5 Lars Quentin 59

Interactive Data Center Digital Twin using Virtual Reality

Figure 47: The “Single Node Dashboard” dashboard

All dashboards are available as a JSON export in the repository.

VR integration Since, in the user acceptance study, the starting order was alternated,
all test case data had to be available in both the dashboard and VR version. To achieve
this, we extended a Python application to generate a C# class containing a Dictionary
data struct initialized with the mocked data. Additionally, for each of the four test cases,
we generated a complete binary. This has a pragmatic reason:

Instead of directly embedding the Mono C# runtime, which is an alternative to Mi-
crosofts .NET core, Unity uses their own tool called IL2CPP, which generates highly
optimized C++ code from C#. This code, using the Android NDK bindings to interact
with the Oculus Quest 2, then gets compiled by LLVM. Unfortunately, the generated
source code grows exponentially to the original one, resulting in more than 30 gigabytes
of RAM usage and hour-long compile times if multiple test cases are embedded.

In the next chapter, the evaluation of the digital twin will be explored, and its results
will be discussed

Section 5 Lars Quentin 60

Interactive Data Center Digital Twin using Virtual Reality

6 Evaluation
In Section 6.1, the participants and the structure of the user acceptance study eval-
uating the VR digital twin against a traditional web dashboard will be examined. In
Section 6.2, the analysis methodology will be discussed, with a focus on how statistical
tests were used to infer the significance of the recorded samples. In Section 6.3, the
results from applying the beforementioned methodology will be presented. Finally, in
Section 6.4, the results will be discussed.

6.1 Participants and Study Structure

The study was done with the following participants: The sample size for this study was
n = 20. All participants were in at least their third undergraduate semester, with 20%
being master students and 80% being bachelor students. The average age of participants
was 22.75. All participants were either computer science or data science majors, with two
participants completing a double major with math and biochemistry respectively. This
particular sampling was a good fit for several reasons. Firstly, as previously explained in
the Methodology Section, the participants were knowledgable enough to understand the
data and were able to perform basic reasoning and inferring. Additionally, none of the
participants were experienced with the particular HPC cluster and metric analysis used
in the study, allowing them to benefit from the spatial and dynamic features of the VE.

The reasoning behind the structure of this study is further explained in the Methodol-
ogy Section. The study was structured in four parts: the introduction, pre-questionnaire,
test cases, and post-questionnaire.

The introduction provided an overview of HPC systems and their batch job structure
in order to provide participants with the necessary knowledge to understand and reason
about the data visualized as well as an introduction to the virtual environemnt and its
navigation. This can be found in the appendix. The pre-questionnaire collected data on
students age, major, and previous experience with VR, server maintenance, and remote
computing infrastructure.

Next, the four test cases were then completed in an alternated manner as mentioned in
the Methodology Section. A think-out-aloud protocol was used during the test cases. This
was needed since, due to the technical constraints of using a laptop without a dedicated
graphics card, it was not possible to stream the application using Oculus Airlink. Lastly,
the students were asked to self-assess the UX and how well the medium was suited for
the data analysis task.

6.2 Analysis Methodology

Note that the data collected and its formats can be found in the appendix. The analysis
focuses on the self-assessment data collected in the post-questionnaire, specifically in com-
paring the UX and effectiveness of the data analysis tasks performed on both platforms.
We will analyze it using the following methodology, using an α of 0.05:

• To begin, the data will be visually plotted.

Section 6 Lars Quentin 61

Interactive Data Center Digital Twin using Virtual Reality

• Next, it will be checked whether a parametric test can be used. For this, the
normality of the data has to be tested. This will be done using the Shapiro-Wilk
test using scipy.stats.shapiro [151]. Since it is only needed to specifically test
for the normal distribution, the Kolmogorov-Smirnov test is not necessary.

– If the data is normal distributed, a parametric t-test will be used via
scipy.stats.ttest_rel [151].

– If the data is not normal distributed, a non-parametric Wilcoxon signed-rank
test will be used via scipy.stats.wilcoxon [151].

• Lastly, the self-reported change in quality of the experience will be looked at.

The Jupyter notebook containing all computation as well as an Microsoft Excel table
of the data can be found in the repository.

6.3 Results

The leikert scales related to the self-assesment have the following distribution:

Figure 48: Distributions of the the self-reported post-questionaire data about the VR user
experience.

Section 6 Lars Quentin 62

Interactive Data Center Digital Twin using Virtual Reality

Figure 49: Distributions of the the self-reported post-questionaire data about the VR
analysis.

As one can already visually see, the recorded data is not normally distributed. Further-
more, using the Shapiro-Wilk test for normality, the following p values can be computed,
confirming the highly non-normality of the sample data:

pVR UX ≈ 0.0003

pDashboard UX ≈ 0.0071

pVR Analysis ≈ 0.0002

pDashboard Analysis ≈ 0.0168

Thus, the Wilcoxon signed-rank test will be used, resulting in the following p and t
values:

tUX = 25.5

pUX ≈ 0.0222

tAnalysis = 9.0

pAnalysis ≈ 0.0148

Those p values indicate that there is a statistically significant difference between the
two groups of ratings. This means that the difference in the ratings for the web dashboard
user and the VR version is unlikely to be solely coincidental. Therefore, the data suggests
that the students both preferred the UX as well as the analysis capabilities of the VR
version over the traditional grafana dashboards.

Lastly, we will look at VR’s reported change of quality over dashboards:

Section 6 Lars Quentin 63

Interactive Data Center Digital Twin using Virtual Reality

Figure 50: The distribution of the self-reported data answering the question “How did the
VR version change the quality of the experience?”.

As this data is not normal distributed, it won’t be further analyed. But it can be seen
that the majority of participants felt that the VR version improved the quality of the
experience.

6.4 Discussion

As seen in the results it seems that the users preferred the User Experience of the VR ver-
sion. This outcome was expected, given that most of them did not have a lot of previous
experience with virtual reality, with only one person reporting to use their VR headset
around once a month or more. Additionally, the data suggests that the participants pre-
ferred the data analysis in the VR version over the dashboards. In the think-out-loud
protocol, it was often mentioned that the students liked the overview provided by the
servers simply by looking at them. However, it is possible that this result is misleading
for the following reason:

The spatial features of VR and immersive virtual environments provide the most
benefit to the users. As mentioned twice in the post-questionaire, the VR software most
likely provides the most benefit to the user unfamiliar to the cluster. One could argue that
sophisticated system administrators could prefer analyzing data using the web dashbaord
version due to its compactness and less usage overhead. Nonetheless, the software seems
to be useful for the target audience described earlier.

Section 6 Lars Quentin 64

Interactive Data Center Digital Twin using Virtual Reality

7 Conclusion
Overall, this thesis showed that VR could be a beneficial addition for the visualization of
data centers metrics. It revealed the potential of using a digital twin in order to leverage
the spatial structure of the virtual environment, giving the user a more intuitive under-
standing of the data showed.

With its immersive environments and more natural interactions, virtual reality has
found various applications in many diverse sectors. This thesis explored the benefits of
using VR in the application field of data visualization, particularly for visualizing a HPC
cluster’s utilization. This has been done by developing an immersive server room digital
twin using the Unity framework.

The virtual server room, spanning multiple rooms, contains various overviews aggre-
gating the data. Furthermore, each server rack can be interacted with individually by a
traditional user interface in the virtual world space. To provide those UIs, a new open
source plotting library has been developed.

Moreover, an concurrent, event-based data polling architecture has been implemented
to provide the live metrics of the GWDG’s SCC HPC cluster. By using InfluxQL queries,
it is able to poll the data using Grafana’s proxy APIs. This data can then be processed by
all subscribers. The architecture also allows the integration of mock data for offline usage.

In order to generate this mock data, a workflow was designed and implemented. Fur-
thermore, this generation works completely procedural and can be adjusted to create data
containing specific load characteristics. This data can then be either exported as a C#
class or streamed into an InfluxDB.

Leveraging the reproducibility of virtual environments, an in-between user acceptance
study with 20 participants was conducted, comparing the website-based dashboards to
the VR-based digital twin. Training effects were mitigated by alternating both the start-
ing order and the UI between the tests. The collected data is based on the participants’
self-assessment.

This study revealed that the use of virtual reality provided an advantage in both the
user experience (p ≈ 0.0222, t = 25.5) as well as the perceived data analysis complexity
(p ≈ 0.0148, t = 9). Additionally, most of the participants felt that using virtual reality
improved the overall quality of the experience with 16/20 participants reporting that the
quality of the experience either improved or strongly improved.

Future Work There are multiple next steps in how the usage of VR for analyzing met-
rics could be further extended. On the one hand, more VR native interaction methods
such as hand gestures could be used to further improve the immersion. On the other
hand, one could create more visualizations and increase the amount of metrics visualized,
for example using a Heatmap shader to visualize temperatures.

Section 7 Lars Quentin 65

Interactive Data Center Digital Twin using Virtual Reality

References
[1] IDC and Statista. Volume of data/information created, captured, copied, and con-

sumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025 (in zettabytes)
[Graph]. June 2021. url: https://www.statista.com/statistics/871513/
worldwide-data-created/ (visited on 10/05/2022).

[2] Tony Hey et al. The Fourth Paradigm: Data-Intensive Scientific Discovery. Mi-
crosoft Research, Oct. 2009. isbn: 978-0-9825442-0-4. url: https://www.microsoft.
com / en - us / research / publication / fourth - paradigm - data - intensive -
scientific-discovery/.

[3] Jim Gray. “Jim Gray on eScience: A Transformed Scientific Method”. In: (Jan.
2007), pp. 1–15. url: http://itre.cis.upenn.edu/myl/JimGrayOnE-Science.
pdf.

[4] HLRN. The compute nodes of HLRN-IV phase 1 in Göttingen. 2018. url: https:
//www.hlrn.de/wp- content/uploads/2019/12/HDR_3673- 3674- 3675a-
2000x1333.jpg (visited on 10/06/2022).

[5] Grafana Labs. Grafana: The open observability platform. url: https://grafana.
com/ (visited on 12/15/2022).

[6] Datadog. Datadog: Cloud Monitoring as a Service. url: https://www.datadoghq.
com/ (visited on 12/15/2022).

[7] DevOps Nirvana. Kubernetes - Nginx Ingress via Prometheus Metrics. 2021. url:
https : / / github . com / DevOps - Nirvana / Grafana - Dashboards (visited on
10/06/2022).

[8] SuperData Research. Consumer virtual reality (VR) hardware and software market
revenue worldwide from 2016 to 2023. Apr. 2020. url: https://www.statista.
com/statistics/528779/virtual-reality-market-size-worldwide/ (visited
on 10/05/2022).

[9] Unity. Unity Real-Time Development Platform. url: https://unity.com/ (vis-
ited on 12/15/2022).

[10] InfluxData. InfluxDB Times Series Data Platform. url: https://www.influxdata.
com/ (visited on 12/15/2022).

[11] Open Source Initiative. The MIT License. url: https : / / opensource . org /
licenses/mit-license.php (visited on 12/15/2022).

[12] Simon Davis, Keith Nesbitt, and Eugene Nalivaiko. “A Systematic Review of Cy-
bersickness”. In: Proceedings of the 2014 Conference on Interactive Entertainment.
IE2014: Interactive Entertainment 2014. Newcastle NSW Australia: ACM, Dec. 2,
2014, pp. 1–9. isbn: 978-1-4503-2790-9. doi: 10.1145/2677758.2677780. url:
https://dl.acm.org/doi/10.1145/2677758.2677780 (visited on 10/03/2022).

[13] Ivan E. Sutherland. “A Head-Mounted Three Dimensional Display”. In: Proceedings
of the December 9-11, 1968, Fall Joint Computer Conference, Part I. AFIPS ’68
(Fall, part I). San Francisco, California: Association for Computing Machinery,
1968, pp. 757–764. isbn: 9781450378994. doi: 10.1145/1476589.1476686. url:
https://doi.org/10.1145/1476589.1476686.

Section 7 Lars Quentin 66

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
http://itre.cis.upenn.edu/myl/JimGrayOnE-Science.pdf
http://itre.cis.upenn.edu/myl/JimGrayOnE-Science.pdf
https://www.hlrn.de/wp-content/uploads/2019/12/HDR_3673-3674-3675a-2000x1333.jpg
https://www.hlrn.de/wp-content/uploads/2019/12/HDR_3673-3674-3675a-2000x1333.jpg
https://www.hlrn.de/wp-content/uploads/2019/12/HDR_3673-3674-3675a-2000x1333.jpg
https://grafana.com/
https://grafana.com/
https://www.datadoghq.com/
https://www.datadoghq.com/
https://github.com/DevOps-Nirvana/Grafana-Dashboards
https://www.statista.com/statistics/528779/virtual-reality-market-size-worldwide/
https://www.statista.com/statistics/528779/virtual-reality-market-size-worldwide/
https://unity.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://opensource.org/licenses/mit-license.php
https://opensource.org/licenses/mit-license.php
https://doi.org/10.1145/2677758.2677780
https://dl.acm.org/doi/10.1145/2677758.2677780
https://doi.org/10.1145/1476589.1476686
https://doi.org/10.1145/1476589.1476686

Interactive Data Center Digital Twin using Virtual Reality

[14] Carolina Cruz-Neira, Daniel J Sandin, and Thomas A DeFanti. “Surround-Screen
Projection-Based Virtual Reality: The Design and Implementation of the CAVE”.
In: (Jan. 1993), pp. 1–8. url: https://doi.org/10.1145/166117.166134.

[15] Dave Pape. The Cave Automatic Virtual Environment at EVL, University of Illi-
nois at Chicago. 2001. url: https://commons.wikimedia.org/wiki/File:
CAVE_Crayoland.jpg (visited on 10/06/2022).

[16] Scott Isabelle et al. “Defense applications of the CAVE (CAVE automatic virtual
environment)”. In: (July 1997), p. 14. doi: 10.1117/12.277034.

[17] Kai-Uwe Doer, Jens Schiefel, and W. Kubbat. “Virtual Cockpit Simulation for Pilot
Training”. In: (Mar. 2001), p. 8. url: https://apps.dtic.mil/sti/citations/
ADP010789.

[18] Business Insider. Microsoft’s Kinect Is Being Used To Help Guard The Korean
DMZ. Feb. 2014. url: https://www.businessinsider.com/the-kinect-is-
helping-monitor-the-dmz-2014-2 (visited on 10/06/2022).

[19] Oculus. Oculus Rift: Step Into the Game. url: https://www.kickstarter.
com/projects/1523379957/oculus- rift- step- into- the- game (visited on
12/15/2022).

[20] Guanjie Zhao et al. “The comparison of teaching efficiency between virtual reality
and traditional education in medical education: a systematic review and meta-
analysis”. In: Annals of Translational Medicine 9.3 (Feb. 2021), p. 252. issn: 2305-
5839. doi: 10.21037/atm-20-2785. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC7940910/ (visited on 10/03/2022).

[21] Taylor Gilmore et al. Data Center of the Future: VR Construction Design Review.
June 2022. url: https://www.youtube.com/watch?v=_E4JSRxT_D4 (visited on
10/06/2022).

[22] US Food and Drug Administration. FDA Authorizes Marketing of Virtual Reality
System for Chronic Pain Reduction. Nov. 2021. url: https://www.fda.gov/
news-events/press-announcements/fda-authorizes-marketing-virtual-
reality-system-chronic-pain-reduction (visited on 10/06/2022).

[23] PwC. Virtual reality (VR) gaming revenue worldwide from 2017 to 2024. Sept.
2020. url: https://www.statista.com/statistics/499714/global-virtual-
reality-gaming-sales-revenue/ (visited on 10/06/2022).

[24] Arzu Coltekin et al. “Extended Reality in Spatial Sciences: A Review of Research
Challenges and Future Directions”. In: International Journal of Geo-Information
9 (July 2020). doi: 10.3390/ijgi9070439.

[25] Google VR. Get Cardboard. url: https://arvr.google.com/cardboard/get-
cardboard/ (visited on 12/15/2022).

[26] GoogleVR. Google Cardboard Manufacturers Kit. url: https://arvr.google.
com/cardboard/pdfs/gc_manufacturers_kit.zip (visited on 10/06/2022).

[27] Google. Google Cardboard. url: https://apps.apple.com/de/app/google-
cardboard/id987962261 (visited on 12/15/2022).

[28] Jeffrey Chen. Open sourcing Google Cardboard. Nov. 2019. url: https://developers.
googleblog.com/2019/11/open-sourcing-google-cardboard.html (visited on
10/06/2022).

Section 7 Lars Quentin 67

https://doi.org/10.1145/166117.166134
https://commons.wikimedia.org/wiki/File:CAVE_Crayoland.jpg
https://commons.wikimedia.org/wiki/File:CAVE_Crayoland.jpg
https://doi.org/10.1117/12.277034
https://apps.dtic.mil/sti/citations/ADP010789
https://apps.dtic.mil/sti/citations/ADP010789
https://www.businessinsider.com/the-kinect-is-helping-monitor-the-dmz-2014-2
https://www.businessinsider.com/the-kinect-is-helping-monitor-the-dmz-2014-2
https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game
https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game
https://doi.org/10.21037/atm-20-2785
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940910/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940910/
https://www.youtube.com/watch?v=_E4JSRxT_D4
https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-virtual-reality-system-chronic-pain-reduction
https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-virtual-reality-system-chronic-pain-reduction
https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-virtual-reality-system-chronic-pain-reduction
https://www.statista.com/statistics/499714/global-virtual-reality-gaming-sales-revenue/
https://www.statista.com/statistics/499714/global-virtual-reality-gaming-sales-revenue/
https://doi.org/10.3390/ijgi9070439
https://arvr.google.com/cardboard/get-cardboard/
https://arvr.google.com/cardboard/get-cardboard/
https://arvr.google.com/cardboard/pdfs/gc_manufacturers_kit.zip
https://arvr.google.com/cardboard/pdfs/gc_manufacturers_kit.zip
https://apps.apple.com/de/app/google-cardboard/id987962261
https://apps.apple.com/de/app/google-cardboard/id987962261
https://developers.googleblog.com/2019/11/open-sourcing-google-cardboard.html
https://developers.googleblog.com/2019/11/open-sourcing-google-cardboard.html

Interactive Data Center Digital Twin using Virtual Reality

[29] GoogleVR. Cardboard SDK. url: https://github.com/googlevr/cardboard
(visited on 10/06/2022).

[30] GoogleVR. Google Cardboard XR Plugin for Unity. url: https://github.com/
googlevr/cardboard-xr-plugin (visited on 10/06/2022).

[31] othree. An assembled Google Cardboard VR mount. June 2014. url: https://
commons . wikimedia . org / wiki / File : Assembled _ Google _ Cardboard _ VR _
mount.jpg (visited on 10/06/2022).

[32] Darrell Etherington. An Inside Look At The Development Of Samsung’s Gear VR
At Oculus With CEO Brendan Iribe. Sept. 2014. url: http://tcrn.ch/Wduq40
(visited on 10/06/2022).

[33] Samsung. Samsung Gear VR. url: https://en.wikipedia.org/wiki/Samsung_
Gear_VR (visited on 12/15/2022).

[34] Maurizio Pesce. Samsung Gear VR. Sept. 2014. url: https://www.flickr.com/
photos/pestoverde/15247457825 (visited on 10/07/2022).

[35] Inc. Within Unlimited. WITHIN. url: https://play.google.com/store/apps/
details?id=com.shakingearthdigital.vrsecardboard (visited on 12/15/2022).

[36] Prashant Sharma. “Challenges with virtual reality on mobile devices”. In: ACM
SIGGRAPH 2015 Talks. SIGGRAPH ’15. New York, NY, USA: Association for
Computing Machinery, July 31, 2015, p. 1. isbn: 978-1-4503-3636-9. doi: 10.1145/
2775280.2792597. url: https://doi.org/10.1145/2775280.2792597 (visited
on 10/06/2022).

[37] Chaim Gartenberg. Meta’s Oculus Quest 2 has shipped 10 million units, according
to Qualcomm. Nov. 2021. url: https://www.theverge.com/2021/11/16/
22785469/meta-oculus-quest-2-10-million-units-sold-qualcomm-xr2
(visited on 10/07/2022).

[38] Oculus-Blog. Air Link, a Wireless Way to Play PC VR Games on Oculus Quest
2, Plus Infinite Office Updates, Support for 120 Hz on Quest 2, and More. Apr.
2021. url: https://www.oculus.com/blog/introducing-oculus-air-link-a-
wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-
office-updates-support-for-120-hz-on-quest-2-and-more/ (visited on
10/07/2022).

[39] KKPCW. Oculus Quest 2 - 2. Oct. 2020. url: https://commons.wikimedia.
org/wiki/File:Oculus_Quest_2_-_2.jpg (visited on 10/07/2022).

[40] Meta. Oculus Quest 2: Our Most Advanced New All-in-one VR Headset. url:
https://www.meta.com/de/en/quest/products/quest-2/tech-specs/ (visited
on 12/15/2022).

[41] Meta. Horizon Workrooms. url: https://www.oculus.com/experiences/quest/
2514011888645651/ (visited on 12/15/2022).

[42] VRChat Inc. VRChat. url: https://www.oculus.com/experiences/quest/
1856672347794301/ (visited on 12/15/2022).

[43] Beat Games. Beat Saber. url: https://www.oculus.com/experiences/quest/
2448060205267927/ (visited on 12/15/2022).

[44] Ltd. Cloudhead Games. Pistol Whip. url: https://www.oculus.com/experiences/
quest/2104963472963790/ (visited on 12/15/2022).

Section 7 Lars Quentin 68

https://github.com/googlevr/cardboard
https://github.com/googlevr/cardboard-xr-plugin
https://github.com/googlevr/cardboard-xr-plugin
https://commons.wikimedia.org/wiki/File:Assembled_Google_Cardboard_VR_mount.jpg
https://commons.wikimedia.org/wiki/File:Assembled_Google_Cardboard_VR_mount.jpg
https://commons.wikimedia.org/wiki/File:Assembled_Google_Cardboard_VR_mount.jpg
http://tcrn.ch/Wduq40
https://en.wikipedia.org/wiki/Samsung_Gear_VR
https://en.wikipedia.org/wiki/Samsung_Gear_VR
https://www.flickr.com/photos/pestoverde/15247457825
https://www.flickr.com/photos/pestoverde/15247457825
https://play.google.com/store/apps/details?id=com.shakingearthdigital.vrsecardboard
https://play.google.com/store/apps/details?id=com.shakingearthdigital.vrsecardboard
https://doi.org/10.1145/2775280.2792597
https://doi.org/10.1145/2775280.2792597
https://doi.org/10.1145/2775280.2792597
https://www.theverge.com/2021/11/16/22785469/meta-oculus-quest-2-10-million-units-sold-qualcomm-xr2
https://www.theverge.com/2021/11/16/22785469/meta-oculus-quest-2-10-million-units-sold-qualcomm-xr2
https://www.oculus.com/blog/introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/
https://www.oculus.com/blog/introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/
https://www.oculus.com/blog/introducing-oculus-air-link-a-wireless-way-to-play-pc-vr-games-on-oculus-quest-2-plus-infinite-office-updates-support-for-120-hz-on-quest-2-and-more/
https://commons.wikimedia.org/wiki/File:Oculus_Quest_2_-_2.jpg
https://commons.wikimedia.org/wiki/File:Oculus_Quest_2_-_2.jpg
https://www.meta.com/de/en/quest/products/quest-2/tech-specs/
https://www.oculus.com/experiences/quest/2514011888645651/
https://www.oculus.com/experiences/quest/2514011888645651/
https://www.oculus.com/experiences/quest/1856672347794301/
https://www.oculus.com/experiences/quest/1856672347794301/
https://www.oculus.com/experiences/quest/2448060205267927/
https://www.oculus.com/experiences/quest/2448060205267927/
https://www.oculus.com/experiences/quest/2104963472963790/
https://www.oculus.com/experiences/quest/2104963472963790/

Interactive Data Center Digital Twin using Virtual Reality

[45] Inc. Rendever. Multi Brush. url: https://www.oculus.com/experiences/
quest/3438333449611263/ (visited on 12/15/2022).

[46] Meta. horizon Worrooms. url: https://www.oculus.com/workrooms (visited on
10/07/2022).

[47] VRChat. PRESS KIT - VR CHAT. url: https://hello.vrchat.com/press
(visited on 10/07/2022).

[48] Beat Games. Beat Saber. url: https://store.steampowered.com/app/620980/
Beat_Saber (visited on 10/07/2022).

[49] Cloudhead Games ltd. Pistol Whip. url: https://store.steampowered.com/
app/1079800/Pistol_Whip (visited on 10/07/2022).

[50] Valve. Valve Index. url: https://store.steampowered.com/valveindex (visited
on 12/15/2022).

[51] Valve. Valve Index. url: https://www.valvesoftware.com/en/index (visited
on 10/07/2022).

[52] Valve. Half Life Alyx. url: https://store.steampowered.com/app/546560/
HalfLife_Alyx/ (visited on 12/15/2022).

[53] Bethesda Softworks. Fallout 4 VR. url: https://store.steampowered.com/
app/611660/Fallout_4_VR/ (visited on 12/15/2022).

[54] Seth M. Feeman, Landon B. Wright, and John L. Salmon. “Exploration and evalu-
ation of CAD modeling in virtual reality”. In: Computer-Aided Design and Applica-
tions 15.6 (Nov. 2, 2018), pp. 892–904. issn: 1686-4360. doi: 10.1080/16864360.
2018.1462570. url: http://www.cad-journal.net/files/vol_15/Vol15No6.
html (visited on 10/07/2022).

[55] Omid Abari et al. “Cutting the cord in virtual reality”. In: Proceedings of the 15th
ACM Workshop on Hot Topics in Networks. 2016, pp. 162–168.

[56] Unity. Game development terms. url: https://unity.com/how-to/beginner/
game-development-terms (visited on 10/07/2022).

[57] YoYo Games Ltd. Gamemaker. url: https://gamemaker.io/en (visited on
12/15/2022).

[58] tobyfox. Undertale. url: https://store.steampowered.com/app/391540/
Undertale/ (visited on 12/15/2022).

[59] Dennaton Games. Hotline Miami. url: https://store.steampowered.com/app/
219150/Hotline_Miami/ (visited on 12/15/2022).

[60] Chromium. Chroum Security: Memory Safety. url: https://www.chromium.org/
Home/chromium-security/memory-safety (visited on 10/07/2022).

[61] Ariel Manzur Juan Linietsky and contributors. Godot Engine. url: https://
godotengine.org/ (visited on 12/15/2022).

[62] Marcus Toftedahl and Henrik Engström. “A Taxonomy of Game Engines and the
Tools that Drive the Industry”. In: Aug. 2019, p. 17.

[63] Epic Games. Unreal Engine. url: https : / / www . unrealengine . com / en - US
(visited on 12/15/2022).

Section 7 Lars Quentin 69

https://www.oculus.com/experiences/quest/3438333449611263/
https://www.oculus.com/experiences/quest/3438333449611263/
https://www.oculus.com/workrooms
https://hello.vrchat.com/press
https://store.steampowered.com/app/620980/Beat_Saber
https://store.steampowered.com/app/620980/Beat_Saber
https://store.steampowered.com/app/1079800/Pistol_Whip
https://store.steampowered.com/app/1079800/Pistol_Whip
https://store.steampowered.com/valveindex
https://www.valvesoftware.com/en/index
https://store.steampowered.com/app/546560/HalfLife_Alyx/
https://store.steampowered.com/app/546560/HalfLife_Alyx/
https://store.steampowered.com/app/611660/Fallout_4_VR/
https://store.steampowered.com/app/611660/Fallout_4_VR/
https://doi.org/10.1080/16864360.2018.1462570
https://doi.org/10.1080/16864360.2018.1462570
http://www.cad-journal.net/files/vol_15/Vol15No6.html
http://www.cad-journal.net/files/vol_15/Vol15No6.html
https://unity.com/how-to/beginner/game-development-terms
https://unity.com/how-to/beginner/game-development-terms
https://gamemaker.io/en
https://store.steampowered.com/app/391540/Undertale/
https://store.steampowered.com/app/391540/Undertale/
https://store.steampowered.com/app/219150/Hotline_Miami/
https://store.steampowered.com/app/219150/Hotline_Miami/
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://godotengine.org/
https://godotengine.org/
https://www.unrealengine.com/en-US

Interactive Data Center Digital Twin using Virtual Reality

[64] Valve. Source 2. url: https://developer.valvesoftware.com/wiki/Source_2
(visited on 12/15/2022).

[65] OpenGOAL. OpenGOAL. url: https://opengoal.dev/ (visited on 12/15/2022).

[66] BEVY. BEVY. url: https://bevyengine.org/ (visited on 12/15/2022).

[67] Roblox Corporation. Roblox. url: https://www.roblox.com/ (visited on 12/15/2022).

[68] Steve Bryson. “Virtual reality in scientific visualization”. In: Communications of
the ACM 39.5 (May 1996), pp. 62–71. issn: 0001-0782, 1557-7317. doi: 10.1145/
229459.229467. url: https://dl.acm.org/doi/10.1145/229459.229467
(visited on 10/03/2022).

[69] Abraham G. Campbell et al. “Uses of Virtual Reality for Communication in Fi-
nancial Services: A Case Study on Comparing Different Telepresence Interfaces:
Virtual Reality Compared to Video Conferencing”. In: Advances in Information
and Communication. Ed. by Kohei Arai and Rahul Bhatia. Vol. 69. Series Title:
Lecture Notes in Networks and Systems. Springer International Publishing, 2020,
pp. 463–481. isbn: 978-3-030-12387-1 978-3-030-12388-8. doi: 10.1007/978-3-
030-12388-8_33. url: http://link.springer.com/10.1007/978-3-030-
12388-8_33 (visited on 10/08/2022).

[70] Kerry Davis. HLVR Door Talk. Oct. 2019. url: https://www.youtube.com/
watch?v=9kzu2Y33yKM (visited on 10/08/2022).

[71] Joseph J. LaViola. “A discussion of cybersickness in virtual environments”. In:
ACM SIGCHI Bulletin 32.1 (Jan. 2000), pp. 47–56. issn: 0736-6906. doi: 10.
1145/333329.333344. url: https://dl.acm.org/doi/10.1145/333329.333344
(visited on 10/04/2022).

[72] Richard Yao et al. Oculus best practises. 2014.

[73] HLRN. hlrn.de. url: https://www.hlrn.de/ (visited on 12/15/2022).

[74] HLRN. Research and Development. url: https://www.hlrn.de/about- us/
researchdevelopment/?lang=en (visited on 10/07/2022).

[75] HLRN. HLRN-IV System. url: https://www.hlrn.de/supercomputer-e/hlrn-
iv-system/?lang=en (visited on 12/15/2022).

[76] SchedMD. Slurm Workload Manager. url: https://slurm.schedmd.com/ (visited
on 12/15/2022).

[77] InfluxData. Telegraf. url: https : / / www . influxdata . com / time - series -
platform/telegraf/ (visited on 12/15/2022).

[78] Prometheus Authors. Prometheus. url: https://prometheus.io/ (visited on
12/15/2022).

[79] elastic. Kibana. url: https://www.elastic.co/de/kibana/ (visited on 12/15/2022).

[80] elastic. Elasticsearch. url: https://www.elastic.co/de/elasticsearch/ (vis-
ited on 12/15/2022).

[81] Andrea Vázquez-Ingelmo, Francísco J. Garcia-Peñalvo, and Roberto Therón. “In-
formation Dashboards and Tailoring Capabilities - A Systematic Literature Re-
view”. In: IEEE Access 7 (2019). Conference Name: IEEE Access, pp. 109673–
109688. issn: 2169-3536. doi: 10.1109/ACCESS.2019.2933472.

Section 7 Lars Quentin 70

https://developer.valvesoftware.com/wiki/Source_2
https://opengoal.dev/
https://bevyengine.org/
https://www.roblox.com/
https://doi.org/10.1145/229459.229467
https://doi.org/10.1145/229459.229467
https://dl.acm.org/doi/10.1145/229459.229467
https://doi.org/10.1007/978-3-030-12388-8_33
https://doi.org/10.1007/978-3-030-12388-8_33
http://link.springer.com/10.1007/978-3-030-12388-8_33
http://link.springer.com/10.1007/978-3-030-12388-8_33
https://www.youtube.com/watch?v=9kzu2Y33yKM
https://www.youtube.com/watch?v=9kzu2Y33yKM
https://doi.org/10.1145/333329.333344
https://doi.org/10.1145/333329.333344
https://dl.acm.org/doi/10.1145/333329.333344
https://www.hlrn.de/
https://www.hlrn.de/about-us/researchdevelopment/?lang=en
https://www.hlrn.de/about-us/researchdevelopment/?lang=en
https://www.hlrn.de/supercomputer-e/hlrn-iv-system/?lang=en
https://www.hlrn.de/supercomputer-e/hlrn-iv-system/?lang=en
https://slurm.schedmd.com/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://prometheus.io/
https://www.elastic.co/de/kibana/
https://www.elastic.co/de/elasticsearch/
https://doi.org/10.1109/ACCESS.2019.2933472

Interactive Data Center Digital Twin using Virtual Reality

[82] Alper Sarikaya et al. “What Do We Talk About When We Talk About Dash-
boards?” In: IEEE Transactions on Visualization and Computer Graphics 25.1
(Jan. 2019). Conference Name: IEEE Transactions on Visualization and Computer
Graphics, pp. 682–692. issn: 1941-0506. doi: 10.1109/TVCG.2018.2864903.

[83] Jessica Hullman, Eytan Adar, and Priti Shah. “The impact of social information
on visual judgments”. In: Proceedings of the SIGCHI conference on human factors
in computing systems. 2011, pp. 1461–1470.

[84] Yea-Seul Kim, Katharina Reinecke, and Jessica Hullman. “Data through others’
eyes: The impact of visualizing others’ expectations on visualization interpreta-
tion”. In: IEEE transactions on visualization and computer graphics 24.1 (2017),
pp. 760–769.

[85] Lisa Pappas and Lisa Whitman. “Riding the technology wave: Effective dashboard
data visualization”. In: Symposium on Human Interface. Springer. 2011, pp. 249–
258.

[86] European Environment Agency. Dos and don’ts of data visualisation. url: https:
//www.eea.europa.eu/data-and-maps/daviz/learn-more/chart-dos-and-
donts (visited on 10/10/2022).

[87] Colblindor. Coblis — Color Blindness Simulator. url: https://www.color-
blindness.com/coblis-color-blindness-simulator/ (visited on 10/10/2022).

[88] Holoviz. Colorcet: Collection of perceptually uniform colormaps. url: https://
colorcet.holoviz.org/ (visited on 10/09/2022).

[89] Edward Tufte. The Visual Display of Quantitative Information. 1983.

[90] Patrick Millais, Simon L. Jones, and Ryan Kelly. “Exploring Data in Virtual Real-
ity: Comparisons with 2D Data Visualizations”. In: Extended Abstracts of the 2018
CHI Conference on Human Factors in Computing Systems. CHI ’18: CHI Con-
ference on Human Factors in Computing Systems. Montreal QC Canada: ACM,
Apr. 20, 2018, pp. 1–6. isbn: 978-1-4503-5621-3. doi: 10.1145/3170427.3188537.
url: https : / / dl . acm . org / doi / 10 . 1145 / 3170427 . 3188537 (visited on
10/03/2022).

[91] Benjamin JH Andersen et al. “Immersion or diversion: Does virtual reality make
data visualisation more effective?” In: 2019 International Conference on Electron-
ics, Information, and Communication (ICEIC). IEEE. 2019, pp. 1–7.

[92] Theophilus Teo et al. “Data fragment: Virtual reality for viewing and querying
large image sets”. In: 2017 IEEE Virtual Reality (VR). IEEE. 2017, pp. 327–328.

[93] Leaseweb. Data center 360 VR tour - LeaseWeb. url: https://www.youtube.
com/watch?v=sS7UxiCVqrg (visited on 10/10/2022).

[94] IronMountain. VA-1 360 VR Data Center Tour. url: https://www.ironmountain.
com/resources/multimedia/v/va-1-360-vr-data-center-tour (visited on
10/10/2022).

[95] Hetzner. Virtual tour of Hetzner Online Data Center Park. url: https://www.
hetzner.com/unternehmen/360-tour/ (visited on 10/10/2022).

[96] Teatime Research. Teatime Research. url: https://teatimeresearch.com/ (vis-
ited on 12/15/2022).

Section 7 Lars Quentin 71

https://doi.org/10.1109/TVCG.2018.2864903
https://www.eea.europa.eu/data-and-maps/daviz/learn-more/chart-dos-and-donts
https://www.eea.europa.eu/data-and-maps/daviz/learn-more/chart-dos-and-donts
https://www.eea.europa.eu/data-and-maps/daviz/learn-more/chart-dos-and-donts
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://colorcet.holoviz.org/
https://colorcet.holoviz.org/
https://doi.org/10.1145/3170427.3188537
https://dl.acm.org/doi/10.1145/3170427.3188537
https://www.youtube.com/watch?v=sS7UxiCVqrg
https://www.youtube.com/watch?v=sS7UxiCVqrg
https://www.ironmountain.com/resources/multimedia/v/va-1-360-vr-data-center-tour
https://www.ironmountain.com/resources/multimedia/v/va-1-360-vr-data-center-tour
https://www.hetzner.com/unternehmen/360-tour/
https://www.hetzner.com/unternehmen/360-tour/
https://teatimeresearch.com/

Interactive Data Center Digital Twin using Virtual Reality

[97] Jayant Thatte et al. “Stacked omnistereo for virtual reality with six degrees of
freedom”. In: 2017 IEEE Visual Communications and Image Processing (VCIP).
IEEE. 2017, pp. 1–4.

[98] Teatime. Green Mountain VR. url: https : / / teatimeresearch . com / fwp _
portfolio/green-mountain/ (visited on 10/10/2022).

[99] Axonom. Powertrak VR Product Configurator. url: https://www.axonom.com/
vr-product-configurator (visited on 10/10/2022).

[100] Axonom. Virtual Reality Data Center Rack Configuration Experience. url: https:
//www.youtube.com/watch?v=_gsh1YF6mFY (visited on 10/10/2022).

[101] Hypercane Studios. VR Data Center Simulator. url: https://hypercanestudios.
com/ptta-portfolio/vr-data-center-simulator (visited on 10/10/2022).

[102] dtm. Durchblick im RZ - dtm group als erster mit VR im RZ-Planungsprozess.
url: https://www.openpr.de/news/1038615/Durchblick-im-RZ-dtm-group-
als-erster-mit-VR-im-RZ-Planungsprozess.html (visited on 10/10/2022).

[103] Alan Renouf. VMworld 2017 Europe - General Session Day 1. url: https://www.
youtube.com/watch?v=jOpsBClEuNs&t=2859s (visited on 10/10/2022).

[104] Alan et al. Renouf. vr-dc-ex. url: https://github.com/vmware-archive/vr-
dc-ex (visited on 10/10/2022).

[105] The Irregular Corporation. PC Building Simulator. url: https://store.steampowered.
com/app/621060/PC_Building_Simulator/ (visited on 10/10/2022).

[106] Bethesda Softworks. The Elder Scrolls V: Skyrim VR. url: https://store.
steampowered.com/app/611670/The_Elder_Scrolls_V_Skyrim_VR/ (visited on
12/15/2022).

[107] Wikipadia. Creation Engine. url: https://en.wikipedia.org/wiki/Creation_
Engine (visited on 12/15/2022).

[108] Wikipedia. Rockstar Advanced Game Engine. url: https://en.wikipedia.org/
wiki/Rockstar_Advanced_Game_Engine (visited on 12/15/2022).

[109] Alissa McAloon. No plans for a full Source 2 SDK, and other tidbits from Valve’s
Half-Life: Alyx AMA. url: https://www.gamedeveloper.com/design/no-
plans-for-a-full-source-2-sdk-and-other-tidbits-from-valve-s-i-
half-life-alyx-i-ama (visited on 10/18/2022).

[110] Meta. OpenXR Mobile SDK. url: https://developer.oculus.com/documentation/
native/android/mobile-intro/ (visited on 12/15/2022).

[111] Meta. PC SDK. url: https://developer.oculus.com/documentation/native/
pc/pcsdk-intro/ (visited on 12/15/2022).

[112] Meta. Introduction to Meta Quest Browser. url: https://developer.oculus.
com/documentation/web/browser-intro/ (visited on 12/15/2022).

[113] Stackoverflow. 2022 Developer Survey. url: https://survey.stackoverflow.
co/2022 (visited on 10/19/2022).

[114] Pieter. What’s the difference between "STL" and "C++ Standard Library"? url:
https://stackoverflow.com/q/5205491/9958281 (visited on 10/19/2022).

[115] MaxL. Why doesn’t UE utilize STL containers? url: https://forums.unrealengine.
com/t/why-doesnt-ue-utilize-stl-containers/34551 (visited on 10/19/2022).

Section 7 Lars Quentin 72

https://teatimeresearch.com/fwp_portfolio/green-mountain/
https://teatimeresearch.com/fwp_portfolio/green-mountain/
https://www.axonom.com/vr-product-configurator
https://www.axonom.com/vr-product-configurator
https://www.youtube.com/watch?v=_gsh1YF6mFY
https://www.youtube.com/watch?v=_gsh1YF6mFY
https://hypercanestudios.com/ptta-portfolio/vr-data-center-simulator
https://hypercanestudios.com/ptta-portfolio/vr-data-center-simulator
https://www.openpr.de/news/1038615/Durchblick-im-RZ-dtm-group-als-erster-mit-VR-im-RZ-Planungsprozess.html
https://www.openpr.de/news/1038615/Durchblick-im-RZ-dtm-group-als-erster-mit-VR-im-RZ-Planungsprozess.html
https://www.youtube.com/watch?v=jOpsBClEuNs&t=2859s
https://www.youtube.com/watch?v=jOpsBClEuNs&t=2859s
https://github.com/vmware-archive/vr-dc-ex
https://github.com/vmware-archive/vr-dc-ex
https://store.steampowered.com/app/621060/PC_Building_Simulator/
https://store.steampowered.com/app/621060/PC_Building_Simulator/
https://store.steampowered.com/app/611670/The_Elder_Scrolls_V_Skyrim_VR/
https://store.steampowered.com/app/611670/The_Elder_Scrolls_V_Skyrim_VR/
https://en.wikipedia.org/wiki/Creation_Engine
https://en.wikipedia.org/wiki/Creation_Engine
https://en.wikipedia.org/wiki/Rockstar_Advanced_Game_Engine
https://en.wikipedia.org/wiki/Rockstar_Advanced_Game_Engine
https://www.gamedeveloper.com/design/no-plans-for-a-full-source-2-sdk-and-other-tidbits-from-valve-s-i-half-life-alyx-i-ama
https://www.gamedeveloper.com/design/no-plans-for-a-full-source-2-sdk-and-other-tidbits-from-valve-s-i-half-life-alyx-i-ama
https://www.gamedeveloper.com/design/no-plans-for-a-full-source-2-sdk-and-other-tidbits-from-valve-s-i-half-life-alyx-i-ama
https://developer.oculus.com/documentation/native/android/mobile-intro/
https://developer.oculus.com/documentation/native/android/mobile-intro/
https://developer.oculus.com/documentation/native/pc/pcsdk-intro/
https://developer.oculus.com/documentation/native/pc/pcsdk-intro/
https://developer.oculus.com/documentation/web/browser-intro/
https://developer.oculus.com/documentation/web/browser-intro/
https://survey.stackoverflow.co/2022
https://survey.stackoverflow.co/2022
https://stackoverflow.com/q/5205491/9958281
https://forums.unrealengine.com/t/why-doesnt-ue-utilize-stl-containers/34551
https://forums.unrealengine.com/t/why-doesnt-ue-utilize-stl-containers/34551

Interactive Data Center Digital Twin using Virtual Reality

[116] Reddit. Reddit. url: https://www.reddit.com (visited on 12/15/2022).

[117] Reddit. Unity 3D - News, Showcase, Help, and Discussion. url: https://www.
reddit.com/r/Unity3D/ (visited on 12/15/2022).

[118] Reddit. Unreal Engine. url: https://www.reddit.com/r/unrealengine/ (vis-
ited on 12/15/2022).

[119] udemy. About Us. url: https://about.udemy.com/ (visited on 10/19/2022).

[120] justkevin. Engines used in the most popular Steam games of 2020. url: https:
//www.reddit.com/r/gamedev/comments/os0idx/engines_used_in_the_
most_popular_steam_games_of/ (visited on 10/19/2022).

[121] itch.io. Most used Engines. url: https://itch.io/game-development/engines/
most-projects (visited on 10/19/2022).

[122] BitSplash Interactive. Graph and Chart - Scientific. url: https://assetstore.
unity . com / packages / tools / gui / graph - and - chart - scientific - 195222
(visited on 12/15/2022).

[123] Happy Pixels. Awesome Charts and Graphs. url: https://assetstore.unity.
com/packages/tools/gui/awesome-charts-and-graphs-138153 (visited on
12/15/2022).

[124] Unity. Asset Store Terms of Service and EULA. url: https://unity.com/legal/
as-terms (visited on 10/19/2022).

[125] Lars Quentin. Plotty: 2D plots in Unity3D! url: https://github.com/lquenti/
PlottyUnity (visited on 10/19/2022).

[126] Code Monkey. Create a Graph - Unity Tutorial. url: https://www.youtube.com/
playlist?list=PLzDRvYVwl53v5ur4GluoabyckImZz3TVQ (visited on 10/19/2022).

[127] Saticmotion. Generating UI meshes in Unity. url: https://saticmotion.github.
io/Blog/2018/06/26/Generating- UI- Meshes- in- Unity.html (visited on
10/19/2022).

[128] Martín Pane. Graphy - Ultimate FPS Counter - Stats Monitor & Debugger (Unity).
url: https://github.com/Tayx94/graphy (visited on 10/19/2022).

[129] Unity. ShaderLab. url: https://docs.unity3d.com/Manual/SL-Reference.
html (visited on 12/15/2022).

[130] Microsoft. High-level shader language (HLSL). url: https://learn.microsoft.
com/en- us/windows/win32/direct3dhlsl/dx- graphics- hlsl (visited on
12/15/2022).

[131] Khronos. Core Language (GLSL). url: https://www.khronos.org/opengl/
wiki/Core_Language_(GLSL) (visited on 12/15/2022).

[132] Grafana Labs. Data source API. url: https://grafana.com/docs/grafana/
latest/developers/http_api/data_source/ (visited on 12/15/2022).

[133] GWDG. Cisco AnyConnect (Windows). url: https://docs.gwdg.de/doku.php?
id=en:services:network_services:vpn:anyconnect (visited on 12/15/2022).

[134] Edge Security. Wireguard. url: https : / / www . wireguard . com/ (visited on
12/15/2022).

Section 7 Lars Quentin 73

https://www.reddit.com
https://www.reddit.com/r/Unity3D/
https://www.reddit.com/r/Unity3D/
https://www.reddit.com/r/unrealengine/
https://about.udemy.com/
https://www.reddit.com/r/gamedev/comments/os0idx/engines_used_in_the_most_popular_steam_games_of/
https://www.reddit.com/r/gamedev/comments/os0idx/engines_used_in_the_most_popular_steam_games_of/
https://www.reddit.com/r/gamedev/comments/os0idx/engines_used_in_the_most_popular_steam_games_of/
https://itch.io/game-development/engines/most-projects
https://itch.io/game-development/engines/most-projects
https://assetstore.unity.com/packages/tools/gui/graph-and-chart-scientific-195222
https://assetstore.unity.com/packages/tools/gui/graph-and-chart-scientific-195222
https://assetstore.unity.com/packages/tools/gui/awesome-charts-and-graphs-138153
https://assetstore.unity.com/packages/tools/gui/awesome-charts-and-graphs-138153
https://unity.com/legal/as-terms
https://unity.com/legal/as-terms
https://github.com/lquenti/PlottyUnity
https://github.com/lquenti/PlottyUnity
https://www.youtube.com/playlist?list=PLzDRvYVwl53v5ur4GluoabyckImZz3TVQ
https://www.youtube.com/playlist?list=PLzDRvYVwl53v5ur4GluoabyckImZz3TVQ
https://saticmotion.github.io/Blog/2018/06/26/Generating-UI-Meshes-in-Unity.html
https://saticmotion.github.io/Blog/2018/06/26/Generating-UI-Meshes-in-Unity.html
https://github.com/Tayx94/graphy
https://docs.unity3d.com/Manual/SL-Reference.html
https://docs.unity3d.com/Manual/SL-Reference.html
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://grafana.com/docs/grafana/latest/developers/http_api/data_source/
https://grafana.com/docs/grafana/latest/developers/http_api/data_source/
https://docs.gwdg.de/doku.php?id=en:services:network_services:vpn:anyconnect
https://docs.gwdg.de/doku.php?id=en:services:network_services:vpn:anyconnect
https://www.wireguard.com/

Interactive Data Center Digital Twin using Virtual Reality

[135] GWDG. SCC - GWDG - IT in der Wissenschaft. url: https://www.gwdg.de/
hpc-on-campus/scc (visited on 12/12/2022).

[136] Meta. Oculus Hand Models. url: https://developer.oculus.com/downloads/
package/oculus-hand-models/?locale=de_DE (visited on 12/15/2022).

[137] Valem Tutorials. How to Make a VR Game in Unity 2022 - PART 2 - INPUT and
HAND PRESENCE. url: https://www.youtube.com/watch?v=8PCNNro7Rt0
(visited on 12/15/2022).

[138] ipoly3d. LowPoly Server Room Props. url: https://ipoly3d.com/assets/
lowpoly-server-room-props/ (visited on 12/15/2022).

[139] Unity. MonoBehaviour. url: https://docs.unity3d.com/ScriptReference/
MonoBehaviour.html (visited on 12/15/2022).

[140] Unity. Graphic. url: https://docs.unity3d.com/2017.3/Documentation/
ScriptReference/UI.Graphic.html (visited on 12/15/2022).

[141] Unity. Image.FillMethod.Radial180. url: https://docs.unity3d.com/2017.
4/Documentation/ScriptReference/UI.Image.FillMethod.Radial180.html
(visited on 12/15/2022).

[142] Stackoverflow community wiki. Send HTTP POST request in .NET. url: https:
//stackoverflow.com/questions/4015324/send-http-post-request-in-
net/4015346#4015346 (visited on 12/15/2022).

[143] Unity. JsonUtility. url: https://docs.unity3d.com/ScriptReference/JsonUtility.
html (visited on 12/15/2022).

[144] fermmmm. JsonUtility fails to convert 2D arrays to json and also from json. url:
https://forum.unity.com/threads/jsonutility-fails-to-convert-2d-
arrays-to-json-and-also-from-json.387884/ (visited on 12/15/2022).

[145] Newtonsoft. Json.NET. url: https://www.newtonsoft.com/json (visited on
12/15/2022).

[146] Jackson Dunstan. JSON Performance Benchmarks. url: https://www.jacksondunstan.
com/articles/3294 (visited on 12/12/2022).

[147] Ildar SALAKHIEV. Perlin Noise. url: https://github.com/salaxieb/perlin_
noise (visited on 12/13/2022).

[148] GWDG. GWDG Cloud Server. url: https://www.gwdg.de/server-services/
gwdg-cloud-server (visited on 12/15/2022).

[149] GWDG. InfluxBenchmarker. url: https://github.com/gwdg/InfluxBenchmarker/
tree/main/docker-influx-grafana (visited on 12/15/2022).

[150] InfluxData. InfluxDB-Python. url: https://github.com/influxdata/influxdb-
python (visited on 12/13/2022).

[151] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-
019-0686-2.

Section Lars Quentin 74

https://www.gwdg.de/hpc-on-campus/scc
https://www.gwdg.de/hpc-on-campus/scc
https://developer.oculus.com/downloads/package/oculus-hand-models/?locale=de_DE
https://developer.oculus.com/downloads/package/oculus-hand-models/?locale=de_DE
https://www.youtube.com/watch?v=8PCNNro7Rt0
https://ipoly3d.com/assets/lowpoly-server-room-props/
https://ipoly3d.com/assets/lowpoly-server-room-props/
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/2017.3/Documentation/ScriptReference/UI.Graphic.html
https://docs.unity3d.com/2017.3/Documentation/ScriptReference/UI.Graphic.html
https://docs.unity3d.com/2017.4/Documentation/ScriptReference/UI.Image.FillMethod.Radial180.html
https://docs.unity3d.com/2017.4/Documentation/ScriptReference/UI.Image.FillMethod.Radial180.html
https://stackoverflow.com/questions/4015324/send-http-post-request-in-net/4015346#4015346
https://stackoverflow.com/questions/4015324/send-http-post-request-in-net/4015346#4015346
https://stackoverflow.com/questions/4015324/send-http-post-request-in-net/4015346#4015346
https://docs.unity3d.com/ScriptReference/JsonUtility.html
https://docs.unity3d.com/ScriptReference/JsonUtility.html
https://forum.unity.com/threads/jsonutility-fails-to-convert-2d-arrays-to-json-and-also-from-json.387884/
https://forum.unity.com/threads/jsonutility-fails-to-convert-2d-arrays-to-json-and-also-from-json.387884/
https://www.newtonsoft.com/json
https://www.jacksondunstan.com/articles/3294
https://www.jacksondunstan.com/articles/3294
https://github.com/salaxieb/perlin_noise
https://github.com/salaxieb/perlin_noise
https://www.gwdg.de/server-services/gwdg-cloud-server
https://www.gwdg.de/server-services/gwdg-cloud-server
https://github.com/gwdg/InfluxBenchmarker/tree/main/docker-influx-grafana
https://github.com/gwdg/InfluxBenchmarker/tree/main/docker-influx-grafana
https://github.com/influxdata/influxdb-python
https://github.com/influxdata/influxdb-python
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

Interactive Data Center Digital Twin using Virtual Reality

A Grafana Proxy Queries
A.1 CPU Data Query

1 SELECT
2 mean("load1")/max("n_cpus") * 100
3 FROM
4 "system"
5 WHERE (
6 "host"=’gwdu101 ’ OR
7 "host"=’gwdu102 ’ OR
8 "host"=’gwdu103 ’ OR
9 "host" =~ /^agt\d\d\d$/ OR

10 "host" =~ /^agq\d\d\d$/ OR
11 "host" =~ /^amp0 (?:0[0 -9]|1[1 -6])$/
12) AND time >= now() - 30m
13 AND time <= now()
14 GROUP BY
15 time (30s),
16 "host"
17 fill(null)

Section A Lars Quentin 75

Interactive Data Center Digital Twin using Virtual Reality

A.2 CPU Data Example Response (Truncated)

1 {
2 "results ": [
3 {
4 "statement_id ": 0,
5 "series ": [
6 {
7 "name": "system",
8 "tags": {
9 "host": "agq001"

10 },
11 "columns ": [
12 "time",
13 "mean_max"
14],
15 "values ": [
16 [
17 1670675640000 ,
18 null
19],
20 [
21 1670675670000 ,
22 0.09375
23],
24 ...
25]
26 },
27 {
28 "name": "system",
29 "tags": {
30 "host": "agq002"
31 },
32 "columns ": [
33 "time",
34 "mean_max"
35],
36 "values ": [
37 [
38 1670675640000 ,
39 null
40],
41 [
42 1670675670000 ,
43 17.8125
44],
45 ...
46]
47 },
48 ...
49]
50 }
51]
52 }

Section A Lars Quentin 76

Interactive Data Center Digital Twin using Virtual Reality

A.3 Memory Data Query

1 SELECT
2 mean("used_percent")
3 FROM
4 "mem"
5 WHERE (
6 "host"=’gwdu101 ’ OR
7 "host"=’gwdu102 ’ OR
8 "host"=’gwdu103 ’ OR
9 "host" =~ /^agt\d\d\d$/ OR

10 "host" =~ /^agq\d\d\d$/ OR
11 "host" =~ /^amp0 (?:0[0 -9]|1[1 -6])$/
12) AND time >= now() - 30m
13 AND time <= now()
14 GROUP BY
15 time (30s),
16 "host"
17 fill(null)

Section A Lars Quentin 77

Interactive Data Center Digital Twin using Virtual Reality

A.4 Memory Data Example Response (Truncated)

1 {
2 "results ": [
3 {
4 "statement_id ": 0,
5 "series ": [
6 {
7 "name": "mem",
8 "tags": {
9 "host": "agq001"

10 },
11 "columns ": [
12 "time",
13 "mean"
14],
15 "values ": [
16 [
17 1670676270000 ,
18 null
19],
20 [
21 1670676300000 ,
22 3.7886977251484337
23],
24 ...
25]
26 },
27 {
28 "name": "mem",
29 "tags": {
30 "host": "agq002"
31 },
32 "columns ": [
33 "time",
34 "mean"
35],
36 "values ": [
37 [
38 1670676270000 ,
39 null
40],
41 [
42 1670676300000 ,
43 8.756937081211326
44],
45 ...
46]
47 },
48 ...
49]
50 }
51]
52 }

Section A Lars Quentin 78

Interactive Data Center Digital Twin using Virtual Reality

A.5 GPU Data Query

1 SELECT
2 mean("utilization.gpu")
3 FROM
4 "nvidia_gpu"
5 WHERE (
6 "gpu_name" = ’Tesla V100 -PCIE -32GB’ OR
7 "gpu_name" = ’Quadro RTX 5000’
8) AND time >= now() - 30m
9 AND time <= now()

10 GROUP BY
11 time (30s),
12 "host"
13 fill(null)

Section A Lars Quentin 79

Interactive Data Center Digital Twin using Virtual Reality

A.6 GPU Data Example Response (Truncated)

1 {
2 "results ": [
3 {
4 "statement_id ": 0,
5 "series ": [
6 {
7 "name": "nvidia_gpu",
8 "tags": {
9 "host": "agq001"

10 },
11 "columns ": [
12 "time",
13 "mean"
14],
15 "values ": [
16 [
17 1670676450000 ,
18 null
19],
20 [
21 1670676480000 ,
22 0
23],
24 ...
25]
26 },
27 {
28 "name": "nvidia_gpu",
29 "tags": {
30 "host": "agq002"
31 },
32 "columns ": [
33 "time",
34 "mean"
35],
36 "values ": [
37 [
38 1670676450000 ,
39 null
40],
41 [
42 1670676480000 ,
43 5
44],
45 ...
46]
47 },
48 ...
49]
50 }
51]
52 }

Section A Lars Quentin 80

Interactive Data Center Digital Twin using Virtual Reality

A.7 Storage Data Query

1 SELECT
2 last("used_percent")
3 FROM
4 "disk"
5 WHERE (
6 "host" = ’gwdu108 ’ AND
7 "device" = ’beegfs_nodev ’
8) AND time >= now() - 30m
9 AND time <= now()

10 GROUP BY
11 time (30s),
12 "host"
13 fill(null)

Section A Lars Quentin 81

Interactive Data Center Digital Twin using Virtual Reality

A.8 Storage Data Example Response (Truncated)

1 {
2 "results ": [
3 {
4 "statement_id ": 0,
5 "series ": [
6 {
7 "name": "disk",
8 "tags": {
9 "host": "gwdu108"

10 },
11 "columns ": [
12 "time",
13 "last"
14],
15 "values ": [
16 [
17 1670676600000 ,
18 null
19],
20 [
21 1670676630000 ,
22 84.07970595904321
23],
24 ...
25]
26 }
27]
28 }
29]
30 }

Section A Lars Quentin 82

Interactive Data Center Digital Twin using Virtual Reality

B UA Study Template
(Originally in Markdown, ported to LaTeX with the help of pandoc17)
ID: 1
Date: dd.mm.yyyy

B.1 Part 1. Topic Explaination

B.1.1 How the GWDG HPC System works

B.1.2 How to submit a job

• The User first connects to one of the so-called “Frontend-Servers” via SSH

• The Frontends are used to create the Jobs (Shell-Scripts) and compile/configure the
software used for computation. They should not be used for computation since it is
shared with other users that configure their jobs!

– This is the logical equivalent to the ssh login servers at the IfI.

• Then, the User decides a “Job Queue”. By choosing a Queue, it is decided which
kind of server the job gets executed on.

• In our simplified case, the user can decide between:

– Servers without a GPU (for only computing on the CPU)

– Servers with a GPU (for mainly computing on the GPU)
17https://pandoc.org/

Section B Lars Quentin 83

https://pandoc.org/

Interactive Data Center Digital Twin using Virtual Reality

• Then, it gets put into that “First-In-First-Out” Queue. Eventually, it will be in the
first place and the computation will be done.

• Afterwards, the user gets notified and get the results from the frontend server.

B.1.3 VR Environment

Button Bindings

How the Envrionment is Structured Here is a general Overview of the Server Room:

Section B Lars Quentin 84

Interactive Data Center Digital Twin using Virtual Reality

In the starting area, you can see the total Overview, as well as the Frontend and
Storage servers. The buttons can be interacted by aiming at the back button with the
ray.

On the left side, one can then see the CPU room on the left side

Section B Lars Quentin 85

Interactive Data Center Digital Twin using Virtual Reality

and the GPU Room on the right side

There are multiple Ways to interact with the data:

The Server

Server Lamps The server lamps indicate the current load. Servers without a GPU
have two lamps, servers with a GPU have three.

Section B Lars Quentin 86

Interactive Data Center Digital Twin using Virtual Reality

This can help for an easy overview.

Server Menu By clicking when selecting the server one opens its metric menu. In the
first menu, one can see all servers that are part of the current rack.

Section B Lars Quentin 87

Interactive Data Center Digital Twin using Virtual Reality

When selecting a specific node, one can furthermore select which metric one wants to
see.

Then one sees a 30 minute overview of the previous utilization.

Section B Lars Quentin 88

Interactive Data Center Digital Twin using Virtual Reality

Note that the UI rotates towards the users head in order to be usable from every angle.

The other Overviews Besides the Server interaction and the general overview both
the CPU and GPU servers have an tabular overview that shows the current metric as well
as a plot of the last few minutes. The current shown metric can be toggled in the top
right corner. It can be furthermore interacted by scrolling with the ray.

Section B Lars Quentin 89

Interactive Data Center Digital Twin using Virtual Reality

B.2 Part 2. Pre-Questionaire

• Age:

• Major:

• Highest Level of Education:

□ Below High School equivalent

□ Abitur/Fachhochschulreise/High School Equivalent

□ Bachelors

□ Masters

□ PhD

• How often do you manage or maintain servers?

□ Never

□ Highly Irregular

□ Around Once a Month

□ Around Once a Week

□ Daily or Every Few Days

• How often do you use remote computing infrastructure? Both HPC and Google
Colab / Hosted Jupyter count.

□ Never

□ Highly Irregular

□ Around Once a Month

□ Around Once a Week

□ Daily or Every Few Days

• How often do you use VR?

□ Never

□ Highly Irregular

□ Around Once a Month

□ Around Once a Week

□ Daily or Every Few Days

□ Do you own a VR headset or have you previously owned one?

– If Yes, which type of VR headset?

□ Smartphone-based (such as Google Cardboard)
□ Standalone Devices (such as Oculus Quest)
□ PCVR-Devices (such as HTC-Vive or Steam Index)

Section B Lars Quentin 90

Interactive Data Center Digital Twin using Virtual Reality

B.3 Part 3. Test Cases

If id%2==1, it starts with the Dashboardversion.

B.3.1 Test Case 1: Are the servers used optimally?

Task: Find out whether they servers could be used more optimally.
Hint: Remember how the assignment workflow works.

B.3.2 Test Case 2: How does the scheduler work?

Task: Find out how the batch tasks get scheduled by looking at the server utilization

B.3.3 Test Case 3: Long Term Decision Making

Task:

Your department got some funds and decides on whether to upgrade the cur-
rent computing hardware. The hardware should just get upgraded if it is
mostly fully utilized.

Find out if there is a need to upgrade the current hardware. If there is, find
out which type of servers are most needed.

B.4 Part 4. Post Questionaire

• Rate the first dashboard user experience from 1 to 5

□ 1

□ 2

□ 3

□ 4

□ 5

• Rate the first VR user experience from 1 to 5

□ 1

□ 2

□ 3

□ 4

□ 5

• How easy was it to analyze the data in the dashboards

□ 1

□ 2

□ 3

□ 4

Section B Lars Quentin 91

Interactive Data Center Digital Twin using Virtual Reality

□ 5

• How easy was it to analyze the data in VR

□ 1

□ 2

□ 3

□ 4

□ 5

• How did the VR version change the quality of the experience?

□ Strongly Reduced

□ Reduced

□ Neither Reduced nor Improved

□ Improved

□ Strongly Improved

• What did you like the most about the VR version

<Text here>

• What did you like the least about the VR version

<Text here>

Section B Lars Quentin 92

Interactive Data Center Digital Twin using Virtual Reality

C Mocked Data used in UA Study
C.1 Test Case 1: Are the servers used optimally?

Frontend Servers

Figure 51: Test Case 1: Mocked Frontend Data

Storage Server

Figure 52: Test Case 1: Mocked Storage Data

Section C Lars Quentin 93

Interactive Data Center Digital Twin using Virtual Reality

CPU Nodes

Figure 53: Test Case 1: Mocked CPU Node Data

Section C Lars Quentin 94

Interactive Data Center Digital Twin using Virtual Reality

GPU Nodes

Figure 54: Test Case 1: Mocked GPU Node Data

Section C Lars Quentin 95

Interactive Data Center Digital Twin using Virtual Reality

C.2 Test Case 2: How does the scheduler work?

Frontend Servers

Figure 55: Test Case 2: Mocked Frontend Data

Storage Server

Figure 56: Test Case 2: Mocked Storage Data

Section C Lars Quentin 96

Interactive Data Center Digital Twin using Virtual Reality

CPU Nodes

Figure 57: Test Case 2: Mocked CPU Node Data

Section C Lars Quentin 97

Interactive Data Center Digital Twin using Virtual Reality

C.3 Test Case 3: Long Term Decision Making (Data Set 1)

Frontend Servers

Figure 58: Test Case 3.1: Mocked Frontend Data

Storage Server

Figure 59: Test Case 3.1: Mocked Storage Data

Section C Lars Quentin 98

Interactive Data Center Digital Twin using Virtual Reality

CPU Nodes

Figure 60: Test Case 3.1: Mocked CPU Node Data

Section C Lars Quentin 99

Interactive Data Center Digital Twin using Virtual Reality

GPU Nodes

Figure 61: Test Case 3.1: Mocked GPU Node Data

Section C Lars Quentin 100

Interactive Data Center Digital Twin using Virtual Reality

C.4 Test Case 3: Long Term Decision Making (Data Set 2)

Frontend Servers

Figure 62: Test Case 3.2: Mocked Frontend Data

Storage Server

Figure 63: Test Case 3.2: Mocked Storage Data

Section C Lars Quentin 101

Interactive Data Center Digital Twin using Virtual Reality

CPU Nodes

Figure 64: Test Case 3.2: Mocked CPU Node Data

Section C Lars Quentin 102

Interactive Data Center Digital Twin using Virtual Reality

GPU Nodes

Figure 65: Test Case 3.2: Mocked GPU Node Data

Section C Lars Quentin 103

	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Goals
	Contributions
	Structure

	Background
	Virtual Reality
	Devices
	Game Engines
	Interaction Guidelines and Cybersickness

	HLRN
	Usage and Monitoring of HPC Systems

	Related Work
	Dashboards and Visualisation
	VR Data Visualisation
	Data Center VR

	Methodology and Design
	VR Technology Stack
	VR Headset
	Game Engine

	VR Environment and Interaction
	2D Plotting in VR
	Evaluation of Existing Libraries
	Implementation Approaches

	Live Metrics
	Metrics Used

	UA Study

	Implementation
	Unity and Virtual Environment
	Plotting Library
	Live Metrics
	Query Design
	Singleton Structure
	Fetching and Parsing Metrics
	Event Subscribers
	Offline Usage

	UA Study
	Data Generation
	Test Cases

	Evaluation
	Participants and Study Structure
	Analysis Methodology
	Results
	Discussion

	Conclusion
	References
	Grafana Proxy Queries
	CPU Data Query
	CPU Data Example Response (Truncated)
	Memory Data Query
	Memory Data Example Response (Truncated)
	GPU Data Query
	GPU Data Example Response (Truncated)
	Storage Data Query
	Storage Data Example Response (Truncated)

	UA Study Template
	Part 1. Topic Explaination
	How the GWDG HPC System works
	How to submit a job
	VR Environment

	Part 2. Pre-Questionaire
	Part 3. Test Cases
	Test Case 1: Are the servers used optimally?
	Test Case 2: How does the scheduler work?
	Test Case 3: Long Term Decision Making

	Part 4. Post Questionaire

	Mocked Data used in UA Study
	Test Case 1: Are the servers used optimally?
	Test Case 2: How does the scheduler work?
	Test Case 3: Long Term Decision Making (Data Set 1)
	Test Case 3: Long Term Decision Making (Data Set 2)

