
Masterarbeit

Characterizing Literature Using
Machine Learning Methods

vorgelegt von

Jan Bílek

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Informatik
Matrikelnummer: 6644825

Erstgutachter: Dr. Julian Kunkel
Zweitgutachter: Prof. Thomas Ludwig

Betreuer: Dr. Julian Kunkel

Hamburg, 2016-10-14

Abstract
In this thesis, we explore the classical works by famous authors available in Project
Gutenberg – a free online ebook library. The contemporary computational power enables
us to analyze thousands of books and find similarities between them. We explore the
differences between books and genres with respect to features such as proportion of stop
words, the distribution of part of speech classes or frequencies of individual words. Using
this knowledge, we create a model which predicts book metadata, including author or
genre, and compare the performance of different approaches. With multinomial naive
Bayes model, we reached 74.1 % accuracy on the author prediction task out of more than
1 400 authors. For other metadata, the random forest classifier achieved the best results.
Through most predictive features, we try to capture what is typical for individual genres
or epochs. As a part of the analysis, we create Character Interactions model that enables
us to visualize the interactions between characters in the book and define the main or
central character of the book.

Contents
1 Introduction 5

1.1 Motivation . 5
1.2 Goals . 5
1.3 Outline . 6

2 Background and Related Work 7
2.1 Project Gutenberg (PG) . 7
2.2 Literature Classification and Tags . 8

2.2.1 Library of Congress Classification (LCC) 8
2.2.2 Library of Congress Subject Headings (LCSH) 8

2.3 Text Analysis . 10
2.3.1 Vector Space Model . 10
2.3.2 Bag of Words Model (BOW) . 10
2.3.3 Term Frequency–Document Inverse Frequency (tf–idf) 11
2.3.4 Part of Speech (POS) . 12
2.3.5 Stemming & Lemmatization . 12
2.3.6 Stop Words . 14
2.3.7 N-gram . 14
2.3.8 Named Entity . 15

2.4 Machine Learning Models & Algorithms 15
2.4.1 Naive Bayes Classifier . 15
2.4.2 Decision Trees . 16
2.4.3 K-mean Clustering . 17

2.5 Related Work . 17

3 Design 19
3.1 Data Processing Pipeline . 19

3.1.1 Preparing Metadata . 19
3.1.2 Preparing Documents . 23
3.1.3 Document Processing . 25

3.2 Creating feature vectors . 26
3.2.1 Text features . 26
3.2.2 Word Features . 29
3.2.3 Combined features . 29
3.2.4 Feature Vector Normalization . 29

3.3 Classification Task . 29

3

3.4 Main Characters Extraction and Exploration 30
3.4.1 Identifying Character Names . 30
3.4.2 Character Grouping . 31
3.4.3 Computing Interaction . 32

4 Implementation 34
4.1 Downloading the Data . 34

4.1.1 Documents . 34
4.1.2 Metadata . 34

4.2 Used python Modules . 34
4.2.1 nltk . 34
4.2.2 spacy . 35
4.2.3 sklearn . 35
4.2.4 pandas . 35

4.3 Own Implementation . 35
4.3.1 Prediction Model . 35
4.3.2 Character Interaction Model . 36

5 Evaluation 37
5.1 Document Exploration . 37

5.1.1 Document Selection . 38
5.1.2 Metadata Exploration . 38
5.1.3 Text Feature Exploration . 46

5.2 Feature Vectors . 55
5.2.1 Feature Vector Correlation . 55

5.3 Document Clustering . 62
5.3.1 Evaluating the Clusters . 63

5.4 Predictive Model Evaluations . 66
5.4.1 Author Prediction . 67
5.4.2 Epoch Prediction . 68
5.4.3 LCC class prediction . 70
5.4.4 Subject prediction . 74

5.5 Character Interactions . 76
5.5.1 Character Interaction Visualization 76

5.6 Performance Analysis . 81

6 Summary 83
6.1 Summary and Conclusions . 83
6.2 Future Work . 84

Bibliography 85

4

1 Introduction
This chapter explains the motivation for this work, introduces its goals and presents an
outline of the thesis.

1.1 Motivation
There are multiple applications of text analysis in the real world. It enable us to use
search engines or get information interesting to us using recommendation systems. There
is also high demand for automatic summarization and adding tags and keywords, as it
makes the orientation easier for a human.

In this thesis, we explore the books using machine learning. We want to know which
books are similar, and when they are similar, what is the reasoning behind that. Can we
create a mathematical model which describes a given genre like a human would?

People are quite good at some tasks using their intuition. They can easily describe the
genre of the book after they read it. The interesting question is how did they know. Is it
the specific word choice in the text or more the style of writing? Such information would
be valuable to the automatic processes, as they not only don’t have any intuition, but
also don’t understand the underlying data.1 The classifications are made using statistical
methods. Neverthless, there are tasks where algorithms outperform humans, as there
already exist algorithms on capturing pseudonymes or plagiarism. To do it manually, lot
of expert knowledge is usually required.

1.2 Goals
The main goal of this thesis is to explore the English books from the large corpus
available in Project Gutenberg and gain some insight on their similarities and differences.
We extract multiple types of features from the texts and evaluate their contribution to
explaining the variance in the data. The further goals include the following ones:

1. Inspect what kind of books are available in Project Gutenberg and what metadata
are provided. Explore how do some interesting statistics, such as propotion of
stopwords or lengths of words and sentences, vary among different books, genres
and authors.

1The algorithms don’t understand individual words in general, but some can already capture
relationships between them as in case of word2vec.

5

2. Create a model which automatically classifies unknown books, identifies its charac-
ters and displays interactions between them.

1.3 Outline
In the next chapter, we introduce Project Gutenberg as well as some key principles of
Natural Language Processing. In Chapter 3, we describe the process and design of the
analysis. Chapter 4 shows some details and examples of the implementation. The core of
this thesis is Chapter 5, where we explore the books, discuss obtained results and create
a prediction model for the book metadata. Finally, Chapter 6 summarizes everything
up and discuss the overall approach and results as well as possible future work and
improvement.

6

2 Background and Related Work
In this chapter, we first introduce Project Gutenberg and its history along with classifica-
tion systems they use, introduced in Section 2.2. Next, Section 2.3 gives an overview of
the methods and concepts in the Text Analysis. In Section 2.4, we mention the models
we use in the analysis. Finally, Section 2.5 refers on some related work in this field.

2.1 Project Gutenberg (PG)
Project Gutenberg [8] is an online library of free books. It was founded in 1971 by
Michael S. Hart and the main idea behind the project was to collect works with expired
or free copyright1. For the first 20 years, Michael S. Hart was the main contributor when
he got access to a computer at the University of Illinois being one of the first people
creating an ebook in the world. The amount of the books in Project Gutenberg started
to grow rapidly in the 90’s2 with the spread of the Internet. The project rose rapidly
thanks to many volunteers who transcribed, digitized, formatted and proofread the texts
as well as looked for potential books with confirmed copyright clearance.[12]

Project Gutenberg’s philosophy is to make its books available to the wide audience.
Therefore it focuses on two objectives,[9]:

• Provide the books for as little costs as possible that everyone can afford them.

• Keep the format of the etexts as simple as possible that they can be read and
searched in on all platforms.

The basic format of the etexts is a 7-bit ASCII text which is still kept although there
are more modern formats, such as UTF-8 today. For languages with accents and special
characters, such as German or French, the 8-bit extended ASCII text is used, however
the etext version in ASCII with accents stripped is also added to the book repository.
Apart from that, the community is encouraged to add other formats, such as UTF-8,
AsciiDoc, EPUB or HTML to improve the user experience of the readers by adding, e.g.,
illustrations.[9]

Project Gutenberg collects, apart from books, also other materials which might be
interesting to the general public or future generations – there are over 1000 audiobooks.

1According to the U.S. copyright law, all books created before 1923 are in the public domain, books
written between 1923 and 1977 are protected by copyright for 95 years after the author’s death (if the
copyright was prolonged during the 28th year) and for 70 years for books written after 1978.

2The 10th book was completed in August 1989. By the end of the year 2000, they were already
3000 books.

7

Project Gutenberg contains also files totally unrelated to books, such as datasets (e.g.,
first 1 000 000 decimals of π[10]) or several videos capturing, e.g., Apollo 11 landing on
the Moon[6].

At the moment (January 2017), Project Gutenberg has over 54 000 repositories, almost
53 000 of those being etexts of books. Project Gutenberg contains books in 54 languages.
The most common language is English (82% of all books), followed by French (5%),
Finnish and German (both 3%).

Project Gutenberg provides a Complete Project Gutenberg Catalog, which can be
downloaded from their website[7].3

The metadata in the catalog provide lots of administrative information on the repository
itself, e.g., format description, created and modified timestamps, number of downloads
or copyright licenses. Apart from that, it also contains some descriptive metadata of the
book. These contain title, author information, as well as some book classification tags.

2.2 Literature Classification and Tags
Project Gutenberg uses two systems of book classifications. Both are maintained by the
Library of Congress (LOC), the research library of the United States Congress and the
largest library in the world[16]. The first system, Library of Congress Classification[17],
describes the category of the book, such as History, Science or Law. The second system,
the Library of Congress Subject Headings[18], provides more information on genres and
topics of the book.

2.2.1 Library of Congress Classification (LCC)
The Library of Congress Classification system was introduced by the American librarian
Herbert Puntnam in 1897. As the classification system comes from the United States
Congress’ library, it focuses a bit more on the American literature, which is finer
granulated than other literature4. The LCC category usually consists of 2 letters. The
first letter states the parent class, the second letter defines its subclass. The LCC system
has 21 parent classes, which are shown in Listing 2.15. Several selected subclasses of LCC
parent class P are shown in Listing 2.2. Each book can have multiple LCC categories,
although most of them have just one.

2.2.2 Library of Congress Subject Headings (LCSH)
The LCSH tags are more specific than the LCC categories and provide more information
on subjects, topics and genres of the book. Every tag can be hierarchically organized

3There is a rdf file for each document containing the metadata information in a structured form.
Every night, all the rdf files are compressed and added to a single archive in ZIP and BZIP2 format.

4An example might be the History category – classes E and F both cover the history of America,
whereas history of the rest of the World is all in one category – D.

5We adopt the LOC’s notation, which writes the parent classes names in capitals. It is then easier
to differentiate the parent classes from subclasses, which are written in first letter capitals only.

8

1 A -- GENERAL WORKS
2 B -- PHILOSOPHY , PSYCHOLOGY , RELIGION
3 C -- AUXILIARY SCIENCES OF HISTORY
4 D -- WORLD HISTORY
5 E -- HISTORY OF THE AMERICAS
6 F -- HISTORY OF THE AMERICAS
7 G -- GEOGRAPHY , ANTHROPOLOGY , RECREATION
8 H -- SOCIAL SCIENCES
9 J -- POLITICAL SCIENCE

10 K -- LAW
11 L -- EDUCATION
12 M -- MUSIC AND BOOKS ON MUSIC
13 N -- FINE ARTS
14 P -- LANGUAGE AND LITERATURE
15 Q -- SCIENCE
16 R -- MEDICINE
17 S -- AGRICULTURE
18 T -- TECHNOLOGY
19 U -- MILITARY SCIENCE
20 V -- NAVAL SCIENCE
21 Z -- BIBLIOGRAPHY , LIBRARY SCIENCE

Listing 2.1: LCC parent classes

1 PA -- Greek & Latin language and literature
2 PG -- Slavic , Baltic & Albanian language
3 PQ -- French , Italian , Spanish & Portuguese literature
4 PR -- English literature
5 PS -- American literature
6 PT -- German , Dutch & Scandinavian literature
7 PZ -- Fiction and juvenile belles lettres

Listing 2.2: Several subclasses of the LCC class P

9

1 Great Britain -- History -- Anglo -Saxon period , 449 -1066
2 United States -- Foreign relations -- 1945 -1989
3 Private investigators -- England -- Fiction
4 Mississippi River Valley -- Fiction
5 Runaway children -- Fiction

Listing 2.3: Examples of LCSH tags

based on genre, region, time period or others by double dash. Some examples of LCSH
tags are listed in Listing 2.3. A book has usually several subject tags.

2.3 Text Analysis
In text analysis, the goal is to process text data in order to derive some useful knowledge.
The aim may be to classify the text into different categories, extract the sentiment6 or
add useful tags. Another goal could be to find similarities between the given texts.

The texts in the text analysis are usually called documents and the set comprising
of all documents is called corpus. Individual words in the document are created by the
tokenization process and thus called tokens or terms.

2.3.1 Vector Space Model
Vector space model is a model often used in information retrieval. Each document is
represented as a vector of identifiers. Every vector dimension corresponds to one term.
The value in the vector is non-zero if the term occurs in the document. The model
enables an easy computation of the document similarity. The cosine similarity of two
vectors u and v can be computed as:

u · v
||u|| ||v||

For normalized vectors, the similarity equals to their dot product. The Vector space
model was first used in the System for the Mechanical Analysis and Retrieval of Text
(SMART) developed at Cornell University in the 1960s.

2.3.2 Bag of Words Model (BOW)
The Bag of words model is an application of Vector space model. Each dimension of the
document vector corresponds to one word. The value in the vector is then number of
occurrences of the word in the document. Instead of absolute number of occurrences, a
relative frequency is used, i.e., number of word occurrences divided by the total number

6Goal of the sentiment analysis is to determine the attitude of the writer. We want to know, e.g., if
the review of a product is overall positive or negative.

10

measure doc id a black dog has he his is the

BOW doc1 0 0.25 0.25 0 0 0 0.25 0.25
doc2 0.125 0.125 0.25 0.125 0.125 0.125 0.125 0

BOW (l2 norm) doc1 0 0.5 0.5 0 0 0 0.5 0.5
doc2 0.316 0.316 0.632 0.316 0.316 0.316 0.316 0

Table 2.1: BOW example

of all words in the document. Table 2.1 shows the BOW representation of a corpus with
two documents, each containing one sentence as follows:
doc1: The dog is black.
doc2: He has a dog. His dog is black.

The document vectors can be also binary. The vector values are equal to 1 if the
corresponding word occurred at least once in the document. Even though it is a simplified
version of the BOW with relative frequencies, it might be useful for some tasks. A popular
one is the usage in filtering out spams[21].

2.3.3 Term Frequency–Document Inverse Frequency (tf–idf)
The vectors in the BOW model get easily dominated by the high frequency words. Many
similarity and distance metrics are then determined by the frequencies of these words
ignoring the low frequency ones. Tf–idf term weighting introduces a measure to boost the
importance of words in the model that don’t occur very often and, conversely, reduce the
significance of frequent words. The tf–idf is a product of two statistics – term frequency
and inverse document frequency. The inverse document frequency was first formulated
in 1972 by K. S. Jones[11].

Term Frequency (tf)

The term frequency is usually computed as a simple number of occurrences in the
document, i.e., the same as in the basic BOW model without vector normalization. We
denote the term frequency of term t in document d as tf(t, d).

Inverse Document Frequency (idf)

Inverse document frequency can be seen as a uniqueness measure of the term t. The
fewer documents containing t, the higher the idf value of t. There exist various definitions
of the idf computation. Let D be the set of all documents. The classical definition is
then:

idf(t,D) = log(|D|
|{d ∈ D : t ∈ d}|)

The idf score is computed as the logarithm of the total number of documents divided by
the number of documents containing t. In this thesis, we use the smoothed version of idf

11

measure doc id a black dog has he his is the

tf doc1 0 1 1 0 0 0 1 1
doc2 1 1 2 1 1 1 1 0

idf - 1.405 1.0 1.0 1.405 1.405 1.405 1.0 1.405

tf–idf doc1 0 1 1 0 0 0 1 1.405
doc2 1.405 1 2 1.405 1.405 1.405 1 0

tf–idf (l2 norm) doc1 0 0.448 0.448 0 0 0 0.448 0.630
doc2 0.377 0.268 0.536 0.377 0.377 0.377 0.268 0

Table 2.2: Tfidf example

defined as:
idf(t,D) = log(|D|+ 1

|{d ∈ D : t ∈ d}|+ 1) + 1

The idf value is computed as if we added one extra document that contains the whole
vocabulary (all terms). Moreover, 1 is added to the idf value.

Tf–idf Score

The tf–idf value of a term t and document d in the context of documents D is computed
as:

tfidf(t, d,D) = tf(t, d) · idf(t,D)
After that, each document vector is usually normalized to uniform length – l2 norm.
Table 2.2 shows the values of all tf–idf related measures7 on the two sample documents:
doc1: The dog is black.
doc2: He has a dog. His dog is black.

2.3.4 Part of Speech (POS)
Each word in the English language is assigned one part of speech category, such as
noun or verb. This category describes word’s grammatical properties. The current part
of speech taggers achieve an accuracy of more than 97 %, which is comparable to the
human performance on that task[13]. In the implementation, we use the Penn Treebank
tag set[19] containing 36 POS tags. The python module spacy aggregates those tags
to classes, such as verb and noun, and adds a class for punctuation. It enables us,
e.g., to inquire into the usage of question marks or exclamation marks in the document.
Table 2.3 shows POS classes and tags for the sentence I saw two flies.

2.3.5 Stemming & Lemmatization
One word can occur in the document in different forms. These forms differ due to
grammatical reasons, but still carry the same meaning. An example might be a verb see.

7The smoothed version of idf is used.

12

token POS class POS tag
I PRON pronoun PRP personal pronoun
saw VERB verb VBD verb, past tense
two NUM numeral CD cardinal number
flies NOUN noun NNS noun, plural
. PUNCT punctuation . full stop

Table 2.3: Example of POS tagging

The words sees, saw and seeing have all different syntax but the same semantics. Both
stemming and lemmatization process focus on removing word inflections and map the
word to its common base form. Although they both have the same goal, the approach
differs a bit. We will show output8 of both algorithms for the following sentences:
1 I saw two flies.
2 He sees three mice.
3 A saw is a useful tool.

Stemming

A stemmer uses a fixed set of rules to chop off ends of words, therefore it may run into
problems for words with multiple meanings, such as saw, which can be both a noun and
a verb. The Porter Stemmer[20] modifies the words in the sentences as follows:
1 i saw two fli
2 he see three mice
3 a saw is a use tool

The stemmer stripped correctly the third person s from the verb sees. The word flies
was converted to fli9. It didn’t recognize that mice is a plural of mouse and saw in the
second sentence an irregular form of see. The word useful was changed to use.

Lemmatization

The goal of lemmatization is to turn each word to its lemma – the base form that can be
found in dictionaries. Lemmatization needs to know the POS of the lemmatized word
and does a vocabulary lookup to create the most accurate lemma. Therefore, it is more
computationally intensive than the stemming algorithm. The lemmas of the words in
the sentence are:
1 i see two fly
2 he see three mouse
3 a saw is a useful tool

8The punctuation is omitted and each word is turned to lowercase.
9Porter Stemmer changes the y at the end of nouns to i to capture the plurals more easily.

13

The lemmatization managed to convert all verbs and nouns correctly to its lemma. It
returned different lemmas for the same word saw based on its context (POS tag). Unlike
the stemmer, it didn’t change the adverb useful to the verb use, as the lemmatization
process maintains the POS tag of the word.

All in all, both processes try to turn verbs to their infinitive forms and nouns to
singular number. We need to keep in mind that we lose the information about the tense
of the verb. The used tense in the document might also be a good indicator if one author
writes, e.g., in past tense and the other in present tense.

2.3.6 Stop Words
The most common words in the document, such as the or it, usually don’t provide much
insight, as they occur in almost all documents. These words are called stop words. The
POS classes of stop words are usually articles, conjunctions, particles, auxiliary verbs or
pronouns. The length of the stop words list varies based on the text analysis task10. The
stop words list most be also compatible with the tokenization process. If the tokenization
splits don’t as do and n’t, the token n’t has to be on the stop words list. Other tokenizers
might split it to don and t without including the apostrophe – then the stop words list
should include the token t.

2.3.7 N-gram
The BOW model carries just the information of occurrences for each token. It doesn’t
capture the order of the tokens in the original document. Therefore, two following
documents has the same vector representation:
1 Cats eat mice.
2 Mice eat cats.

The information who likes whom gets lost. One way to deal with this is to save not only
single tokens, but also pairs or triples of words as they occur in the document. Pairs
of consecutive words are called bigrams and triples trigrams. The bigrams of the first
document are11:
1 (cats , eat)
2 (eat , mice)

A good practice is to include in the model terms consisting of both single words (unigrams)
and bigrams. The drawback of this approach is that the model can get much bigger as
the number of bigrams grows quadratically with the number of words. The model needs
to be then limited to n most frequent terms.

10Search engines or related questions queries usually filter out the most used words including words
with a meaning - the word want, for example, to find the semantically most similar content. These
might, however, cause problems when the query consists only of stop words, such as the band name The
Who.

11In this example, tokens are just turned to lowercase, stemming or lemmatization is not used.

14

Skip-gram

Skip-gram is a generalization of n-gram where the words doesn’t have to occur in a
sequence. Instead, the k-skip-n-gram is defined as a subsequence of the document where
all n words occur in the document order, but, unlike n-grams, can skip up to k words for
each skip-gram component. The n-gram can be then seen as a 0-skip-n-gram as no skips
are allowed. For the sentence I saw two flies, all 1-skip-2-grams would be:

I saw , I two , saw two , saw flies , two flies

This sentence and a sentence He saw three flies has no n-grams in common. However, both
sentences contain an 1-skip-2-gram saw flies which might provide valuable information.

2.3.8 Named Entity
Named entities are one or more words in text that can be classified into categories
such as person names (Sherlock Holmes), locations (London) or organizations (Scotland
Yard). Apart from that, there is a general agreement in the Named Entity Recognition
Community on the inclusion of temporal expressions (e.g. Monday, two years ago, at
3 p.m.) and some numerical expressions such as amounts of money and other types of
units[15]. The process which extracts the named entities from the text is called Named
entity recognition (NER).

2.4 Machine Learning Models & Algorithms
We expect reader is familiar with the basic Machine Learning methods and concepts, so
we just briefly introduce each method and provide references for further reading.

2.4.1 Naive Bayes Classifier
Naive Bayes Classifiers are quite popular in text processing. It is called naive as the
classifier works with features as if they were independent. When the classifier makes a
prediction it chooses the hypothesis (i.e., the sample comes from the given class) with
maximum a posteriori (MAP) decision rule. Let n be number of features, K number of
classes, then the prediction is made as:

y = argmaxk∈{1,...,K} p(Ck)
n∏

i=1
p(xi|Ck)

. In other words, compute the probability that x comes from the class Ci when we know
the distribution of feature values for each class. The predictions are made for every
feature independently and then multiplied together. The result is then multiplied by the
a priori probability of the given class. The prediction is then the class with the maximum
value.

Even though the independence criteria is rarely fulfilled, the algorithm is usually a
good base classifier. It can choose the most probable class, but can’t deliver a good
confidence guess on how good the prediction is.

15

Gaussian Naive Bayes Classifier

Gaussian Naive Bayes classifier can be used also for non-integer values. If it can be
expected that the features are normally distributed, we can compute the probability of
feature coming from a given normal distribution. For each class, means µc and standard
deviations σ2

c of all features are computed. The probability that x has value v when the
observation comes from the class c is then:

p(x = v|c) = 1√
2πσ2

c

e
(v−µc)2

2σ2
c

This formula normalizes the value v based on the underlying distribution. Than it com-
putes the probability of v coming from this distribution. For more detailed information
see [22].

2.4.2 Decision Trees
Decision trees are a popular class of algorithms for classification and regression. Their
main advantage is that they provide complete reasoning for the given prediction, which is
desirable for some applications. Apart from that, a decision tree can use a heterogeneous
set of features, including, e.g., categorical or ordinal types, without an explicit need
for normalization. The reason is that the decision (split) is made independently on
other features. This is also the main disadvantage of decision trees that they can’t learn
some concepts which require decisions based on a combination of multiple features – e.g.
XOR[?].

Random Forest

Random forests are an ensemble learning method which creates multiple decision trees
and predicts the mode of the predictions of individual trees[3]. For each decision tree,
when the feature for making the split is being chosen, it doesn’t choose the best feature
out of all features which reduces the entropy the most. Instead, it chooses the best
feature of a randomly chosen subset of features available. Usual value is

√
n with n bring

total number of features. There are two reasons for this approach:

1. The model creates a different decision tree every time and is more robust and less
prone to overfit on the training set.12

2. The time needed to train the random tree classifier is reduced greatly, as not all
features are tried every time.

12The extreme situation would be if the algorithm created all decision trees the same. Then the
advantage of the variability is gone.

16

2.4.3 K-mean Clustering
K-mean clustering is a unsupervised algorithm, which splits the data points into k
clusters with cluster centers called means, as they are the geometric centre of all data
points assigned to the cluster.

The training process is done iteratively. In the beginning, the centers are chosen
randomly13. Next, in each iteration, every data point from the training set is assigned to
its nearest center. After that, centers are moved to be in the middle of the data points
assigned to this center. These two steps are repeated until no data point changes its
cluster.

K-means clustering algorithm is popular due to its simplicity. Its drawbacks are that
different ks have to be tried out, or expert knowledge incorporated, to find the optimal
k for the number of clusters.

2.5 Related Work
The Utility of Information Extraction in the Classification of Books

In The Utility of Information Extraction in the Classification of Books[2], Betts also
analyzed the books in PG. However, the analysis more specialized. The focus was on
the LCC categories B (Philosophy, Psychology, Religion) and D (History). The goal
was to predict correctly both the parent class as well as the specific LCC tag. In the
extended version, classes H (Social Sciences) and Q (Science) were included as well. The
paper compares multiclass and one-vs-all approaches to multivariate predictions. Betts
combines different approaches and concludes with the best classifier using methods of
both Text Categorizing and Named Entity Recognition models. The F1 score of 0.81 is
reported.

Word2vec

In 2013, Tomas Mikolov with his Google research group introduced a new model for
text analysis – word2vec[14]. This approach assigns each word in the document a vector
in a high dimensional space. The coordinates of the vector are computed looking at
the words, which are often in its neighbourhood. In other words, it looks for various
skip-grams. The model is trained on the continuous bag of words (CBOW) – in this
task, the word is to be guessed based on its context, i.e., its surrounding words. It has
been shown that words with similar meanings are also close to each other in word2vec
representation, which raised the popularity of the model.

Summary:
In this chapter, we provided an introduction on PG along with some basic knowledge

regarding Text analysis, which is used in the next chapter where we create a processing

13Or using some heuristics which spreads the initial centers more evenly with respect to the underlying
data.

17

pipeline. At the end of the pipeline are the feature vectors we can use for exploration and
prediction.

18

3 Design
In this chapter, we first describe the data processing pipeline – from downloading data
to extracting document features. Section 3.2 provides information on types of features
that are used for exploration and prediction. Section 3.3 discusses the specifics of the
prediction task and overall methodology and approach of the analysis. Finally, Section 3.4
introduces the algorithm for capturing the interactions between characters.

3.1 Data Processing Pipeline
First part of the processing part is to collect metadata. Based on them, we can choose
documents we want to download. After that, we process the documents and create
feature vectors. All steps in the pipeline can be seen in Figure 3.1.

3.1.1 Preparing Metadata
There are two reasons why we need metadata. First, it helps us to select the documents
we are interested in. Second, the metadata provides us with labels, such as author names,
which we need to train the corresponding classifier. The metadata fields of interest are:

• title

• author information – name, year of birth, year of death

• subjects – some content information in form of LCC and LCSH tags (see below)

• language

• repository type – text, audiobook . . .

In the analysis, we are interested only in the English text documents. Metadata
language and repository type can be used to select the desired documents. However, as
we see later during the data exploration (Section 5.1), such filtering is not sufficient. The
text label for the repository type means only that it is a text document – these can be
also foreign language dictionaries or lists of people or books etc., which are not in our
area of interest.

In the following, we discuss the usage of the metadata fields mentioned above.

19

PG metadata

raw texts

unigrams bigrams

(lemma,POS)

text features

cleaned texts

BOW matrix

word features

Figure 3.1: Overview of all steps in the data processing pipeline

Title

The title label is used for exploring and understanding the data. In a few cases, it can be
used for data filtering, e.g., to exclude all repositories relating to Copyright Extensions1.

Author

Each author in PG is assigned a unique id. This id relates to the person, not the
pen name. It means that authors who published under multiple names are aggregated
together and assigned one name. Later, we train an author classifier on the popular
authors. An author’s name is stored in the format surname, name, such as:

Shakespeare , William

Year

The metadata doesn’t contain any information on document’s publish date2. Therefore,
for year predictions, we use the year of the author’s birth.

1These lists aggregate for every year the book names whose author applied for the copyright extension.
This enables PG to see which books are (or will be soon) in the public domain and can be legally
included in the project.

2The catalog actually contains the field publish date, but it relates to the date the document was
published to PG.

20

Epoch

As we want to predict an epoch for the given document, we partition author’s birth years
into 9 classes trying to approximately capture the individual literary movements. Such
an attempt is ambicious, however, as the literary movements were not in all places at
the same time. Moreover, during the periods of a literary movement change, there had
to exist multiple literary movements at the same time. We define the birth year borders
of the eras so that we capture important and influential authors in their most significant
epochs:

• Ancient literature (750 BC - 499 AD)

• Medieval literature (500 - 1449)

• Renaissance (1450 - 1549)

• Baroque (1550 - 1684)

• Enlightenment (1685 - 1749)

• Romanticism (1750 - 1799)

• Realism (1800 - 1849)

• Late 19th century (1850 - 1899)

• Modern literature (authors born 1900 and later)

Language

Project Gutenberg contains books in more than 50 languages. One book can be written
in one or more languages. We are interested in books that are written in English only.
Based on this label, we filter out all books that are not in English or are written in
multiple languages.

Type

As not all repositories in Project Gutenberg are book texts, this field states if the
repository is a dataset, audiobook, video or another format. We are interested only in
repositories with the label Text.

Library of Congress Classification (LCC) Tags

Each document is assigned a set of LCC tags (see Section 2.2.1). This set can be also
empty if no tag was assigned. For example, Leviathan by Thomas Hobbes has the
following tag:

{JC}.

21

The book is classified as Political Science (the main category J) and subclass Political
theory (JC)

An example of a book with multiple tags is The Adventures of Tom Sawyer by Mark
Twain, which has following tags:

{PS , PZ}

That means the book belongs to the main category Language and Literature (as both tags
start with P). Within this category, it can be further classified as American Literature
(PS) and Fiction and juvenile belles lettres (PZ).

Categories

As there are 21 LCC parent classes and many more LCC tags, we need to aggregate
them somehow, so that it enables us to explore the data more convieniently. Therefore,
we create 6 super categories3:

• Language and Literature

• History and Geography

• Science and Technology

• Philosophy, Psychology, Religion

• General works

• Social science and Arts

Subjects

Subjects are described by the LCSH tags as defined in Section 2.2.2. Each book has a set
of subjects. For example The Adventures of Tom Sawyer by Mark Twain has following
subjects:

Adventure stories ,
Bildungsromans ,
Boys -- Fiction ,
Child witnesses -- Fiction ,
Humorous stories ,
Male friendship -- Fiction ,
Mississippi River Valley -- Fiction ,
Missouri -- Fiction ,
Runaway children -- Fiction ,
Sawyer , Tom (Fictitious character) -- Fiction

We extract those subjects which we are going to predict a classifier for:
3We refer to these artificially created categories as super categories if the term categories could arise

confusion with the LCC’s main class or other metadata.

22

• science fiction

• adventure stories

• love stories

• short stories

• historical fiction

• poetry

• drama

• detective and mystery stories

3.1.2 Preparing Documents
Next, we collect texts of all English documents – i.e., documents with metadata labels
being en for language and Text for type. The files contain headers and footers added by
PG which need to be stripped. We also do some minor changes regarding the formatting
of the document.

Stripping Headers and Footers

The documents contain headers and footers that are not related to the content of
the original book. These might be, e.g., copyright notes or comments relating to the
transcription of the book. As the headers and footers developed during the time, we
maintain a list with header and footer beginnings. When the document is read, the last
occurrence of a header and first occurence of a footer is marked. The cleaned text of the
document is the text between the markers.

Listing 3.1 shows the header and beginning of the footer for the most popular4 text
in Project Gutenberg - Pride and Prejudice by Jane Austen. The last header in this
case would be Produced by Anonymous Volunteers. Documents usually end with line
beginning with End of the Project Gutenberg Ebook.

Minor Formatting Changes

The documents in ASCII format are usually written using only 80 characters per line.
The line is then ended by the new line symbol. This might arise problems for the POS
tagger, as it considers newlines as a separator, which might reduce the tagging accuracy.
Therefore, we replace all newlines having an alphanumeric symbol to the left and right5

with single space.

4Based on the number of downloads in the last 30 days in January 2017.
5That means that the new line character was used instead of space.

23

1 The Project Gutenberg EBook of Pride and Prejudice , by Jane Austen
2
3 This eBook is for the use of anyone anywhere at no cost and with
4 almost no restrictions whatsoever . You may copy it , give it away or
5 re -use it under the terms of the Project Gutenberg License included
6 with this eBook or online at www. gutenberg .org
7
8 Title: Pride and Prejudice
9 Author : Jane Austen
10 Posting Date: August 26, 2008 [EBook #1342]
11 Release Date: June , 1998
12 Last updated : February 15, 2015]
13 Language : English
14 Character set encoding : ASCII
15
16 *** START OF THIS PROJECT GUTENBERG EBOOK PRIDE AND PREJUDICE ***
17 Produced by Anonymous Volunteers
18
19 PRIDE AND PREJUDICE
20 By Jane Austen
21
22 Chapter 1
23
24 It is a truth universally acknowledged , that a single man in possession
25 of a good fortune , must be in want of a wife.
26
27 However little known the feelings or views of such a man may be on his
28 first entering a neighbourhood , this truth is so well fixed in the minds
29 of the surrounding families , that he is considered the rightful property
30 of some one or other of their daughters .
31
32 "My dear Mr. Bennet ," said his lady to him one day , "have you heard that
33 Netherfield Park is let at last?"
34
35 (...)
36 End of the Project Gutenberg EBook of Pride and Prejudice , by Jane Austen
37 *** END OF THIS PROJECT GUTENBERG EBOOK PRIDE AND PREJUDICE ***
38 ***** This file should be named 1342. txt or 1342. zip *****
39 This and all associated files of various formats will be found in:
40 http :// www. gutenberg .org /1/3/4/1342/
41
42 (...)

Listing 3.1: Raw text of Pride and Prejudice by Jane Austen

24

Apart from that, we replace locale-specific quotation marks, which occur in ASCII-8bit
documents, by the default ones from the base set of ASCII.

After the preprocessing, the document would look like this:
1 PRIDE AND PREJUDICE
2 By Jane Austen
3
4 Chapter 1
5
6 It is a truth universally acknowledged , that a single man in

possession of a good fortune , must be in want of a wife.
7
8 However little known the feelings or views of such a man may be on

his first entering a neighbourhood , this truth is so well fixed in
the minds of the surrounding families , that he is considered the
rightful property of some one or other of their daughters .

9
10 "My dear Mr. Bennet ," said his lady to him one day , "have you heard

that Netherfield Park is let at last?"
11 (...)

Listing 3.2: Stripping headers and footers

3.1.3 Document Processing
In the next steps, we process the text in order to be able to compute the feature vector.
The text is tokenized, lemmatized and POS are computed. After that, we transform the
lemmatized tokens to unigrams and bigrams and compute their occurences.

Tokenization, Lemmatization, POS Tagging

The python module spacy does all three steps in one go. It takes a text and outputs list
of tokens with their linguistic properties, including token’s lemma, POS class and POS
tag. At this stage, punctuation, such as commas or quotation marks, are also tokens.
The tuples are shown in the following order:

(original word , lemma , POS class , POS tag)

For sentence Violets are red, roses are blue., tokenization gives following output:
Violets violet NOUN NNS
are be VERB VBP
red red ADJ JJ
, , PUNCT ,
roses rose NOUN NNS
are be VERB VBP
blue blue ADJ JJ
. . PUNCT .

In the previous list, JJ denotes adjactive in the basis form, NNS a plural noun and VBP
a verb in the present tense not in the 3rd person singular form.

25

Unigrams, Bigrams

All the tokens from the tokenization process are not necessarily real words, as it can
also be a punctuation symbol. Tokens not consisting of alphanumeric characters are
discarded. We are left with following unigrams (we write only lemmas):

violet , be , red , rose , be , blue

To create list of bigrams, we take every consecutive couple from the list of tokens
where both tokens are words (i.e., they are both on the unigram list):

(violet , be), (be , red), (rose , be), (be , blue)

Now we merge both unigrams and bigrams to a single list of terms:
'violet ', 'be ', 'red ', 'rose ', 'be ', 'blue ', 'violet , be ', 'be ,

red ', 'rose , be ', 'be , blue '

Term Counts

In the next step, we count all the terms in the whole document:
'be ' 2
'be , blue ' 1
'be , red ' 1
'blue ' 1
'red ' 1
'rose ' 1
'rose , be ' 1
'violet ' 1
'violet , be ' 1

The term counts are computed for every document. The terms are then sorted based on
the total occurrence in the whole corpus. Only n most common terms are stored, others
are discarded. We used n = 50000. In that way, we keep all possibly important terms
and can choose a smaller subet of features later along with customizable stop words
filtering.

3.2 Creating feature vectors
To apply machine learning methods on the documents, we need to create some features
which can thoroughly describe a document. Therefore, we extract two types of features
from the text. First, we compute some overall statistics relating to the document text as
a whole. These might be the average word length in the document, proportion of stop
words or frequency of verbs. Second type of features is based on the frequencies of the
individual words.

3.2.1 Text features
In total, we create 51 text features. Two of them can be extracted direct from the cleaned
text without any need of further processing:

26

1. Average word length. A word is a sequence of alphanumerical symbols.

2. Proportion of stop words6.

Before computing the next batch, we need to tokenize the cleaned document into
sentences. As the sentence tokenization is not a trivial task, we let nltk’s function
sent_tokenize do the job. It can distinguish, full stops from dots in the abbreviations
such as Mrs. and split the document into sentences more reliably than naive split on a
dot or question marks. Then we can compute following features:

3. Average number of words per sentence.

4. Proportion of sentences starting with quotation marks.

5. Proportion of sentences ending with quotation marks.

6. Proportion of sentences ending with a dot (i.e. full stop).

7. Proportion of sentences ending with a question mark.

8. Proportion of sentences ending with an exclamation mark.

For the previous three features, quotation marks are ignored. It means, in case the
sentence ends with quotation marks, we look at the symbol in front of them.

For the rest of the features, the POS tagging is needed. Following 11 features describe
the proportion of tokens in the document being in this class. Even though punctuation
is not counted as a POS, we include it as well to see the usage of commas and other
punctation marks in the document. As each token belongs to exactly one class, the
values of these 11 features sum up to 1. These are the POS class features:

9. Proportion of adjectives.

10. Proportion of adpositions. This class contains prepositions and postpositions7.

11. Proportion of adverbs.

12. Proportion of conjunctions.

13. Proportion of determiners.

14. Proportion of nouns.

15. Proportion of particles.

6The stop words list is taken from nltk.corpus.stopwords.words(’english’). This list was chosen as
it seems to contain all important stop words and is also compatible with the way we create the word
tokens (he’s is tokenized to he and s both beeing on the stop words list).

7Postpositions are the same as prepositions except that they come after the word. The examples are
ago or aside.

27

16. Proportion of pronouns.

17. Proportion of proper nouns.

18. Proportion of verbs.

19. Proportion of punctuation.

The remaining 32 features relate to the distributions of specific POS tags with their
POS class. The complete list of POS tags can be found in [19]. Here is an example of
POS tags which belong to the POS class VERB:

20. MD – modal verb

21. VB – verb in base form

22. VBD – verb in past tense

23. VBG – verb in gerund or present participle

24. VBN – verb in past participle

25. VBP – verb in present tense, non-3rd person singular

26. VBZ – verb in present tense, 3rd person singular (inf. + s)

It means that based on different verb classes, we should be able to determine the
prevailing tense of the document. The used tense and the frequency of using the modal
verbs can be a good style identifier. Moreover, the frequency of modals might imply a
particular style such as law literature or educational literature for children.

The non zero features for the sentence Roses are red, violets are blue are:
avg word length 4.17
stop words proportion 0.33
avg sentence length 6.00
ends with quot. marks 1.00
adjective proportion 0.25
noun proportion 0.25
punctuation proportion 0.25
verb proportion 0.25
// following 5 features are those regarding the POS tags
adjectives , in base form 1.00
verbs , in present tense 1.00
nouns , plural out of nouns 1.00
commas , out of punctuation 0.50
full stops , out of punct. 0.50

28

3.2.2 Word Features
In Section 3.1.3, we already computed the document-term occurence matrix – rows
correspond to individual documents and columns to terms. A word vector is specified by:

1. n most common terms

2. type – either tfidf term weighting or binary

3. list of stop words to be excluded8

For example, tfidf-2000 model contains 2 000 most common terms from the corpus
which are not on the stop words list9. The vector values are computed using the tfidf
term weighting (example was shown in Section 2.3.3). Therefore, the word feature vector
can be adapted based on the classification model used for the given prediction task.

Some algorithms profit from training on many features (such as Naive Bayes Clas-
sifier), some algorithms have to cope with the Curse of Dimensionality (e.g. K-mean
clustering[1]).

The best n is used for each task based on crossvalidation.

3.2.3 Combined features
We can also combine text and word features into a single feature vector. A combined
tfidf-2000-combined model has 2 051 features. First 2 000 values are the same as in the
previous example. The last 51 features are the appended text features.

3.2.4 Feature Vector Normalization
The tfidf feature vectors are l2 normalized. For text features, when the algorithm requires
normalized features, we normalize each feature using z-score.

3.3 Classification Task
We create a seperate model for each text-feature we want to predict. By doing this, each
model can be specialized to accurately predict a single document attribute.

Naive Baseline Estimate

For each document attribute we want to predict, we first formulate a base classificator
which predicts always the same class based on apriori distribution. For classification
tasks, this predicts the largest class (modus). For regression tasks, it predicts a mean of

8The stop words are excluded after the word count as creating the Count vectorizers is a quite costly
operation. The stop words set can be then adapted based on explorations.

9Bigrams are discarded if at least one word is on the stop word list. Otherwise, the feature vector
would be polluted by pairs such as (determiner, noun).

29

the values of this document attribute. The base classificator helps us to estimate the
real quality of the predictors.

Choosing Parameters

When training a model, we try out and compare Naive Bayes models and Decision
Trees with different parameters. At the end, we choose the algorithm and feature type
which performed the best on the crossvalidation set – out of all data, we save 10 %
data for training and create the best possible classifier using these 90 % with 10-fold
crossvalidation.

Naive Bayes Models

We can use two versions of NB. The multinomial version is used for the binary features,
the gaussian for all others.

Decision Trees

For decision trees, we can include all possible features, as each feature is split based on
its scale independently on other features. Therefore, we use often the combined features
consisting of both text features and word features for decision trees and random forests.

3.4 Main Characters Extraction and Exploration
In this section, we introduce a Character Interaction model. For each character, it
computes number of occurrences in the document and how often they interact with other
characters. Two characters interact with each other every time when there are less than
maxd sentences between the name occurrences. The process can be split into 3 tasks:

(a) Identify the character names in the book. Add titles Mr. and Mrs. if possible.

(b) Group different names of the same characte together.

(c) Compute the interaction strength between each two characters and visualize it.

3.4.1 Identifying Character Names
Python module spacy has an entity extractor. It tries to capture entities with a specific
meaning – e.g. a person name, time details or street name. An entity can consist of
multiple words. The entity extractor assigns each entity a type, the most common being:

• Person – Holmes, Sherlock Holmes

• Organization – Scotland Yard

• Location – London, Great Britain

30

• Cardinal and Ordinal numbers – half, two, first, 3rd

• Date and Time – yesterday, Monday, this morning, a few minutes ago

We are interested in the entities of the type Person. The entity extraction process is
not perfect, of course – for example, it might consider Scotland Yard to be a Location
instead of Organization, because it contains the word Scotland. The accuracy of the
entity extractor is dependant on the similarity of the document to the corpus it was
trained on. The entity extractor takes capitalization into account. Because of that, it
can classify words with capital letters without a spelling reason as a named entity. As an
example might serve a snippet from The Constitution of The United States of America,
Article 1, Section 3:
But the Party convicted shall nevertheless be liable and
subject to Indictment , Trial , Judgment and Punishment ,
according to Law.

Due to word capitalization, the entity extractor returns Law as a person entity and
Indictment, Trial, Judgment and Punishment as an organization entity. Conversely some
named entities being at the beginning of the sentence might not be recognized.

As the entity extractor doesn’t consider titles Mr., Mrs. and Miss to be part of the
name, we look at the preceding word of every person name and add the word to the
name if it is a title. It is important to add these titles as some names are identical except
for the title, e.g., Mr. Darcy and Mrs. Darcy. If we didn’t include the title, we wouldn’t
know that these are actually two different people.

3.4.2 Character Grouping
One person usually occurs in the book under different named entities. Sherlock Holmes is
called Sherlock by his friend Dr. Watson, his clients call him Mr. Holmes and a letter to
him is addressed to Mr. Sherlock Holmes. To correctly capture the interactions between
the characters, we need to know which named entities represent the same person.

The algorithm describing the grouping of names is shown in Listing 3.3. It takes all
names one by one – sorted in the descending order by the name length10 – and finds
for the given name N all names that contain N in itself. These are called super names.
Delete all super names which occur less than k times11 in the whole document . After
deleting super names with low occurrence, if there is only one super name left, replace all
occurrences of the original name N by this super name. If there are more super names,
we can’t choose the right one, so leave N as is.

10The names have to be pre-sorted. As an example, if we had names Watson, John Watson and Dr.
John Watson and the algorithm took Watson first, it doesn’t know if Watson should be assigned to John
Watson or Dr. John Watson. However, if we process them in the right order, at the time the algorithm
first sees the name Watson, the name John Watson doesn’t exist anymore as it was already replaced by
Dr. John Watson.

11A reasonable k turned out to be somewhere between 3 and 10 based on the length of the document.
If the k is too low, it might map names to too detailed or misclassified entities, e.g., Sherlock to Sherlock
the Wise. If the k is set too high, some names are not grouped together as there are considered too rare.

31

1 def group_names (document ,k):
2 S <- set of all names in the text , sort in desc. order by

name length
3 for Name in S: # taking longest names first
4 # all names that contain more information than the Name

and have at least k occurences (excl. self)
5 Super_names <- all names from S - {Name} which contain

all words from Name and have at least k occurences
6 if size(Superset_of_name) ==1:
7 # only one candidat for being the same person
8 replace all occurrences of Name with the element of

this set
9 remove Name from S

10 else :
11 # if there are 0 or 2 and more names that contain

Name , we can 't easily replace Name by another
entity , so do nothing

12 c o n t i n u e

Listing 3.3: Algorithm describing the grouping of names of the same characters together.

3.4.3 Computing Interaction
To compute interactions between characters, we assign an id-sentence to each occurrence
of the character. Next, for every occurrence of N , find all names which occur in the
distance at most m sentences from N . Such pair of names are called interaction. We
compute the strength of an interaction as ad where a is a number smaller than 1 and
d ∈ [0,m] is a distance in number of sentences from the sentence having N . This function
has a decay effect which makes the strength of interactions weaker with the higher
distance between sentences. Finally, the strength of interaction between characters N1
and N2 is sum of all their interactions. The algorithm is described in Listing 3.4.

Summary:
In this chapter we saw the processing pipeline and how the features are created. Next,

we briefly discussed some basis for the classification task and intorduced the Character
Interaction Algorithm.

32

1 def compute_interactions (T, max_d , a):
2 # T are tuples (of name , sent_id)
3 # M is a matrix which sums up all interactions
4 M=[]
5 for N, sent_id in T:
6 # find all interactions at most max_d sentences away
7 # ignore self - interactions
8 Interact <- {(name , id) in T : abs (id , sent_id) <= max_d
9 & name != N}

10 for I in Interact :
11 # compute the strength of the interaction and add to M
12 M[N,I.name] += a^(I. dist_from_N)
13 r e t u r n M

Listing 3.4: Algorithm describing the grouping of names of the same characters together.

33

4 Implementation

4.1 Downloading the Data
4.1.1 Documents
Project Gutenberg’s website doesn’t enable users to robot the site directly but redirects
to a repository[5] where all data can be freely downloaded wihout receiving a ban. Several
addresses are tried out if the book text is not find as books using different encodings
uses slightly different URLs1. We download all documents defined as Text and English
by the metadata catalog. After downloading data, we stripped each book of its Project
Gutenberg’s headers and footers using the gutenberg for python package which includes
an exhaustive list of headers and footers available in different documents.

4.1.2 Metadata
The metadata file can be obtain from Project Gutenberg’s website as well. It is updated
daily to include the newest books added to the project. The content of the metadata
file was described in detail in Section 3.1.1. We stick to the data from the catalog as
the only source of metadata as obtaining reliable data by either scrapping Wikipedia or
online book databases would be to costly. The catalog contains few mistakes2, but they
are not important in the scope of the whole analysis.

4.2 Used python Modules
The implementation of the prediction task and Character Interaction model is done in
python3. In the analysis, we used mainly python modules relating text processing and
machine learning.

4.2.1 nltk
Nltk is a popular module for text analysis. It provides user with various tokenization
processes, stemming algorithms as well as with POS tagging. However, the lemmatization
process was not as good as the one in the module spacy.

1e.g. instead 1.txt, they are stored as 1-0.txt or 1-8.txt
2e.g. wrong language field, or bad author assigned

34

4.2.2 spacy
Spacy is module for text processing which focuses on efficiency and robustness, as many
parts of the module are programmed in cython to achieve better performance. It is
available for English and German language. For a given text, it creates tokens and
computes many kinds of token properties, such as POS tags, entity extraction3 and
others. Its drawback is a bit longer loading times as it needs the whole English dictionary
to perform accuratelly, which is rather large.4

4.2.3 sklearn
Sklearn provides us with all machine learning algorithms we used. It covers decision trees,
naive Bayes classifiers, but also ensemble methods , such as, random forests or boosting
algorithms. Apart from that, we used the PCA module and K-clustering module. Last
but not least, the algorithms needed to compute the BOW (CountVectorizer) or convert
it to tfidf representation (TfidfTransformer or Vectorizer if the user wants to skip the
CountVectorizer step) are also provided.

4.2.4 pandas
We used pandas to conveniently work with the feature vectors as it implements DataFrames
and support indexing based the column and index names.

4.3 Own Implementation
In this section, we shortly introduce the included implementation. It is also available at
https://github.com/hobil/gutenberg where the future updates will appear.

4.3.1 Prediction Model
To predict the author, epoch, category and genres of a text stored in [filename], run

1 python3 inspect_text .py -f [filename]

or
1 python3 inspect_text .py [text]

to hand over the text directly.
It requires spacy to be installed in order to be able to compute the feature vectors.

The output is done to the standard output.

3Which we use in the Character Interaction Algorithm
4That is also the reason why a simple prediction in our implementation takes a bit longer then

necessary, as the whole dictionary is loaded.

35

4.3.2 Character Interaction Model
The Character interaction model can be run in the same way as the prediction model:

1 python3 character_interaction .py -f [filename]

By default, it outputs the graph into a pdf file in the working directory.

36

5 Evaluation
This chapter contains the results of the analysis. First, in Section 5.1, we explore
the documents and their attributes as well as the descriptive text features and their
distributions. Section 5.2 introduces the feature vectors we use in the analysis and looks
at correlation between features. In Section 5.3, we divide the documents into several
clusters and inspect them. Next, in Section 5.4, we create classifiers for several document
attributes. ?? presents the results in character extraction and description. Finally,
Section 5.6 discusses the overall runtime of the steps in the analysis.

5.1 Document Exploration
We start the analysis with document exploration. The gained information can be then
exploited in the prediction task and thus, obtain better results. As for the document
metadata, it is interesting to know what kind of documents are actually in the Project
Gutenberg. Before coming to the predictive analysis, it is also essential to know the sizes
of the underlying classes. The document metadata we focus at are:

• author

• epoch (extracted from author’s year of birth)

• category (described by LCC tag, e.g., Q – Science)

• genres, subjects and topics (described by LCSH tags, e.g., Poetry or Fantasy)

Next, we inspect the text features introduced in Section 3.2.1. We focus on their distri-
butions, which might, apart from others, help us to find outliers among the documents,
e.g., documents with too long or short words. Such documents are usually somehow
special and not representative of the real texts we focus on. An example might be a
children book full of illustrations. Even though the illustration book is classified by the
PG catalog as an English text, it is of no use for us as those books contain only several
sentences. Text features can also show the differences between the document classes.
One could expect that scientific literature contains longer words and sentences than
fiction literature or that it has different share of meaningful words (non stop words).

37

5.1.1 Document Selection
Project Gutenberg does not only contain books but also video and audio files. This
makes the size of the project quite large. The ftp mirror of the project has 650 GiB.1 As
already mentioned, we are interested only in English text documents. Project Gutenberg
has a txt file even in the non-text repositories – a readme file explaining the contents of
the repository. Therefore it is not possible to rely on the txt file in the repositories to be
the book’s text. Some txt files only state that it doesn’t make sense to transcript the
book to plain text, as it may contain lots of tables or illustrations, and link to the HTML
version instead. After filtering out the non-english and non-text repositories based on
the PG catalog, we get 42 823 documents of a total size 16.07 GiB.

However, there are some documents classified by the catalog as English texts which are
actually not a typical text of a book. We filter these out, as they are not representative
for the actual documents we want to classify. Nevertheless, it is hard to draw a line what
is still a text document and what is not – we filtered out documents which consist only
of:

• illustrations and their captions

• tables (e.g. census results)

• decimal places of mathematical constants

• logs of chess games in the chess notation

• dictionaries to foreign languages and various lists

These documents are outliers due to having too long words (containing decimal places
of mathematical constants), too short words (chess games logs as chess notation usually
consists of two to three letters) or too long sentences (tables with census data or list of
synonyms which miss full stops).

After filtering out such documents, we end up with 42 404 documents. We store them
without headers and footers to speed up working with them as well as saving a bit of space
– the total size is then 14.6 GiB. Table 5.1 shows the number of documents and their
total sizes throughout the process. The analysis on document metadata (Section 5.1.2)
and text features (Section 5.1.3) are performed on those 42 404 cleaned documents.

5.1.2 Metadata Exploration
In the following, we look at each document attribute one by one. Based on the observa-
tions, we determine the strategy for the classification task.

1The data in the ftp collection is redundant as it also contains ISO files aggregating the repositories
to one downloadable format. Apart from that, historical versions of the files are also kept there for
future references.

38

Number of repositories Size
English text documents of PG in zip format 42 823 6.0 GiB
Unpacked documents 42 823 16.1 GiB
Remaining non-text docs manually filtered out 42 404 15.8 GiB
Removed headers and footers 42 404 14.6 GiB

Table 5.1: Amount of data in the pipeline during document fetching

Author

In total, there are 14 215 unique author labels.2 However, not all of them are an actual
name of an author. When we sort the authors based the number of documents in PG,
three most common author labels are Various, N/A and Anonymous. The most common
author labels can be seen in Table 5.2.3

Documents written by Various authors are mainly collective works such as periodicals
(60 %), dictionaries (7.5 %)4 or encyclopedias (4.6 %). The most common LCC tags of
documents written by Various authors can be seen in Table 5.3.

Documents written by Anonymous authors refer often to biblical topics (25 %). Another
big group is the literature for the youth, which contains lots of oral literature and fairy
tales (24 %). The most common LCC tags of documents written by Anonymous are
shown in Table 5.4.

When creating the author classifier, we exclude documents with author labels Various,
N/A, Anonymous and Unknown5. Even though these labels carry some information
about the content (as we saw for Various and Anonymous), classifying a book as written
by Various authors would be too general and not entirely satisfying.

Author name No. of documents
Various 2874
N/A 1543
Anonymous 566
Lytton, Edward Bulwer Lytton, Baron 214
Shakespeare, William 178
Ebers, Georg 163
Twain, Mark 148
Kingston, William Henry Giles 132

Table 5.2: Eight most common author tags

2If an author published under multiple names, PG considers them as one author.
3PG contains different versions of some works, therefore the total number of documents of some

authors might seem too high.
4PG contains even more dictionaries by Various, but they were filtered out as they did not match

the criteria of having fluent text with sentences.
5The Unknown author tag is present for 100 documents. It is the same as N/A as some transcribers

leave the author label blank rather than filling Unknown in there.

39

LCC tag No. of documents
AP – Periodicals 1714
AG – Dictionaries and other general reference works 215
AE – Encyclopedias 133
PZ – Fiction and juvenile belles lettres 109
T – Technology General 89

Table 5.3: Five most common LCC tags of books written by Various authors

LCC tag No. of documents
BS – The Bible 143
PZ – Fiction and juvenile belles lettres 136
PR – English literature 20
DA – History of Great Britain 16
BX – Christian Denominations 15

Table 5.4: Five most common LCC tags of books written by Anonymous author

After excluding these four author labels, there are 14 211 unique authors left. The
distribution of documents written per author is captured in Figure 5.1. There are several
authors with over 100 books (five of them were already shown in Table 5.2). However,
the majority (13 639, which is 96 % of all authors) wrote less than 10 books. In order to
see better the numbers of all authors who wrote only few books, Figure 5.2 shows the
cumulative sum of authors who wrote only n documents or fewer. It can be seen that
9 908 authors, corresponding to almost 70 % of all authors, have only one document in
Project Gutenberg. When adding authors with two (12 %) and three books (5 %), we
see that 87 % of all authors wrote 3 books or fewer.

Because of that, creating the author classifier might be very challenging. Therefore,
we focus on authors who wrote at least 5 books, as we need several different documents
to reliably capture the author’s style. Otherwise, we would just identify the authors with
the one book in PG wrote by them and compute the similarity to their one book.

Author’s Birth Year

As already mentioned in Section 3.1.1, as a year entry, the author’s year of birth is used.
Therefore, there will be no year labels for the documents written by the 4 author groups
mentioned above – Various, N/A, Anonymous and Unknown. Apart from those, year
labels are also not available for documents written by groups of people such as United
States.

In total, there are 30 684 documents with an author’s birth year available. Figure 5.3
shows the number of documents written by authors born in the given century.

When we look closer at the year distribution, there are almost 200 documents from
the Ancient Greek and Roman Era. After that, PG contains close to no documents from
the Dark Age period (5th to 10th century). From the 15th century on, the number of

40

0 50 100 150 200
Documents per Author

0

100

101

102

103

104

N
o
.

o
f

A
u
th

o
rs

 (
Lo

g
a
ri

th
m

ic
)

Figure 5.1: Histogram: Number of authors
with the given number of doc-
uments written

0 5 10 15 20 25
No. of Documents Written by Author

9000

10000

11000

12000

13000

14000

15000

N
o
.

o
f

A
u
th

o
rs

 w
h
o
 w

ro
te

 m
a
x
.

n
 d

o
cu

m
e
n
ts

Figure 5.2: Cumulative number of authors
based on number of documents
written

500 0 500 1000 1500 2000
Author's Birth Year

0

100

101

102

103

104

N
u
m

b
e
r

o
f

D
o
cu

m
e
n
ts

 (
Lo

g
a
ri

th
m

ic
)

Figure 5.3: Histogram: Number of docu-
ments per century

ANC MED REN BAR ENL ROM REA L19 MOD
Epoch

0

2000

4000

6000

8000

10000

12000

14000

N
u
m

b
e
r

o
f

D
o
cu

m
e
n
ts

Figure 5.4: Number of documents per
epoch

41

documents grows rapidly. The vast majority of documents come from the authors born
in the 19th century (83 %).

Due to the unbalanced year distribution, we don’t create a regressor which predicts
a year label directly. Instead, we train a classifier which predicts one of the 9 epochs
introduced in Section 3.1.1. Figure 5.4 shows number of documents in each epoch. We
can see that the epochs Realism and Late 19th century each contain almost half of all
documents. However, it doesn’t make sense to divide them into classes smaller than 50
years period to reduced the class imbalance at all costs.

Document category (LCC)

We describe the document categories by the Library of Congress Classification tags which
were already introduced in Section 2.2.1. Document can belong to multiple categories.
Table 5.5 shows the number of LCC tags per document. For 10.9 % of documents, there
is no category information available. Out of documents having at least one category
assigned, 95.5% have exactly one LCC tag.

Table 5.6 shows number of documents in each category.6 The majority of documents
(57 % of documents with an assigned category) belong to the class P, which represents
classic fiction books, such as novels, short stories or poetry. Table 5.7 shows the most
common LCC tags (LCC classes including subclasses); the most documents come from
subclasses of P – American literature, English literature and literature for children.

In Section 3.1.1, we grouped several LCC parent classes together and created 6 super
categories. Table 5.8 shows the number of documents in each of them.

No. of LCC classes No. of documents % of all documents
0 4620 10.9 %
1 36070 85.1 %
2 1676 4.0 %
3 37 0.1 %
5 1 0.0 %

Total 42 404 100.0 %

Table 5.5: Number of documents with a given number of LCC classes

6If the document is classified into multiple categories, it is counted towards both of them.

42

LCC parent class No. of documents
P – LANGUAGE AND LITERATURE 21 617
D – WORLD HISTORY 3 534
B – PHILOSOPHY, PSYCHOLOGY, RELIGION 2 722
A – GENERAL WORKS 2 146
E – HISTORY OF THE AMERICAS 1 436
Q – SCIENCE 1 235
H – SOCIAL SCIENCES 968
F – HISTORY OF THE AMERICAS 955
T – TECHNOLOGY 769
G – GEOGRAPHY, ANTHROPOLOGY 683
N – FINE ARTS 554
S – AGRICULTURE 428
M – MUSIC AND BOOKS ON MUSIC 272
R – MEDICINE 266
J – POLITICS 263
C – AUXILIARY SCIENCES OF HISTORY 232
L – EDUCATION 200
Z – BIBLIOGRAPHY, LIBRARY 186
K – LAW 125
U – MILITARY SCIENCE 80
V – NAVAL SCIENCE 53

Table 5.6: Number of documents in LCC parent classes

LCC class (incl. subcategory) No. of documents
PS – American literature 7120
PR – English literature 6935
PZ – Fiction and juvenile belles lettres 5051
AP – Periodicals 1740
PQ – French, Italian, Spanish & Portuguese literature 1070
DA – History of Great Britain 977
PT – German, Dutch & Scandinavian literature 667

Table 5.7: Number of documents in LCC classes (incl. subclasses)

Super category Number of documents
Language and Literature 21 617
History and Geography 6 735
Science and Technology 3 352
Philosophy, Psychology, Religion 2 722
General works 2 332
Social science and Arts 1 807

Table 5.8: Number of documents in each super category

43

Topics and genres (LCSH)

The best source of document topics and genres available for PG texts are LCSH tags,
which were introduced in Section 2.2.2. There are no limitations on the number of tags
per document – the detailed distribution can be seen in Figure 5.5. The most documents
have one or two tags (61 % of documents), 10.8 % have no LCSH tag and 4.5 % have
more than 5 tags.

In total, there are 23 407 unique LCSH tags. Table 5.9 shows that the LCSH tags
are rather too specific as many of them occur in only one or two documents. Listing 5.1
shows the LCSH tags with most occurrences – Short stories followed by Fiction and
Science fiction.

In order to simplify the too specific tags, we could split each tag into the set of tags
on commas or double dashes, which signal the hierarchy separator. For example English
wit and humor – Periodicals would be split into two tags English wit and humor and
Periodicals. The total amount of unique tags reduces from 23 407 to 15 791. The most
common simplified LCSH tags are listed in Listing 5.2. The tags which increased the most
are those regarding general style of the book (Fiction, Biography) and tags regarding
geographical location (United States, Great Britain, England).

To predict the subjects of the book, we create binary classifiers for several often used
subjects, such as Science fiction or Adventure stories.

LCSH tag occurrences No. of LCSH tags % of all LCSH tags
1 14 969 64.0 %
2 3 266 14.0 %
3 1 520 6.5 %

4 - 5 1 392 6.0 %
6 - 10 1 106 4.7 %
11 - 20 590 2.5 %
21 - 100 494 2.1 %

101+ 70 0.3 %
Total 23 407 100.0 %

Table 5.9: Number of occurrences per LCSH tag

44

0 5 10 15 20 25
Number of LCSH tags

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m

b
e
r

o
f

D
o
cu

m
e
n
ts

Figure 5.5: Number of LCSH tags per document

1 1430 , Short stories
2 1242 , Fiction
3 1211 , Science fiction
4 705, Adventure stories
5 632, Conduct of life -- Juvenile fiction
6 565, Love stories
7 555, English wit and humor -- Periodicals
8 519, Detective and mystery stories
9 470, Historical fiction

10 420, Western stories

Listing 5.1: Most used LCSH tags

1 9642 , Fiction
2 4411 , History
3 3645 , Juvenile fiction
4 2216 , United States
5 2051 , Periodicals
6 1964 , Social life and customs
7 1892 , 19th century
8 1705 , Great Britain
9 1644 , England

10 1466 , Biography

Listing 5.2: Most used simplified LCSH tags

45

5.1.3 Text Feature Exploration
In this section, we explore the text features that were described in Section 3.2.1. For
selected text features, we look at their value distributions and try to explain the underlying
variance in the distribution (e.g., why do some documents have so long sentences). The
exploration helps us to identify outlier documents and provides some interesting pieces
of information and insight into the English language. The cleaned versions of documents
(i.e., without headers and footers) are used for the following analysis with only exception
being the document sizes where we use the sizes of the original text documents as
provided by PG.

Document Size

As stated in Table 5.1, the total size of all 42 404 raw documents is 15.8 GiB. There
are some documents with size over 10 MiB. These are mainly collected works of one
author – the largest document with the size of 15.3 MiB contains all works available in
PG by Mark Twain, who, as we already saw by the author exploration, wrote almost
150 documents. Even though these documents are not a text of a single book as the
rest, they could help us a lot with the author style classification. Another group of large
files are the CIA World Factbooks. These books are almanacs released every year by
the U.S. Government providing several pages of summary on every country in the world.
However, the vast majority of documents have less than 0.5 MiB. To explore the sizes
of these documents, we plot another histogram (see Figure 5.7) with only those books
having less than 1 MiB (which corresponds to 94 % of all documents). It can be seen
that the highest density of documents is between 50 and 100 kiB. The overall median
size of a document is 300 kiB.

The document size feature is the only feature we extracted from the document which
takes the actual text length into account. All other features are relative as we look at
the proportions or normalized values based on the document length. Therefore, we won’t
use this feature in any classifier, as we don’t want them to make decisions based on the
length of the given sample.

Average Word Length

Next, we look at the document’s average length of the word. For this purpose, the word
is defined as an sequence of alpha-numeric symbols. The mean of the average word
length is 4.32 with 95.8 % of values being within half of word distance from the mean.
The distribution of the average word length can be seen in Figure 5.8

The average word length differs based on document category – the LCC class P has
the shortest words. Interestingly, all other categories have the mean word length higher
than the corpus average (see Listing 5.3) – it is possible due to the big size of class P with
short words. This could greatly help to distinguish P from other classes. The longest
words have documents from categories Politics, Medicine and Law (see Listing 5.4).

Figure 5.9 shows the distribution of the average word length based on document
categories, which can show us more information than the mean statistics. We can see

46

that the average word length distribution for Science and Technology, Social Science
and Arts and History and Geography is almost the same. The smallest variance have
General Works and the biggest Philosophy, Psychology and Religion, which has an equal
amount of documents for the average word length interval from 4.3 to 4.6. As we already
expected from the mean statistics, the category Language and Literature has significantly
smaller word lengths than other categories.

The average word length is also author-specific. Figure 5.10 shows the comparison for
the 3 most frequent authors in PG: novelist Mark Twain, playwright William Shakespeare
and novelist and politician Lord Edward Bulwer-Lytton. Shakespeare wrote the shortest
words with 4.05 average word length per document. The reason might be the nature of
drama genre, which usually contains lots of direct speech. Mark Twain’s average word
length per document is 4.16, which is slightly below the average of the Language and
Literature category. The Lytton’s word length per document is 4.36 in average, which
is significantly higher than the mean for the category Language and Literature, which
might indicate the usage of higher class English.

Average number of words in the sentence

The length of sentences could also help in distinguishing between document categories.
We define sentence length as number of words in a sentence.

Figure 5.117 shows the histogram of the average sentence length per document. Al-
though the mean is 20.9 words per sentence, there are several documents with the length
of sentence more than 100 words. Such documents do not stick to the conventional style
of writing and using full stops. An example are kinds of poetry which do not use dot at
the end of verses. Another class are dictionaries or almanacs consisting of long entries
without full stop. However, such an indicator that the document doesn’t follow classic
style of writing can be also useful.

When we compare the three categories with longest and shortest sentences (Listing 5.5
and Listing 5.6 respectively), we can see two interesting facts:

(a) Documents in category J – POLITICS and K – LAW seem to be written in quite
a complicated language – these documents have the longest sentences as well as
the longest words out of all LCC classes (see Listing 5.4).

(b) On the contrary, P – LANGUAGE AND LITERATURE, representing mainly
ordinary fiction books, has by far both the shortest words and sentences.

28.1 , J -- POLITICS
27.2 , K -- LAW
26.3 , D -- WORLD HISTORY

Listing 5.5: Three LCC classes with
longest sentences

18.8 , P -- LANGUAGE AND LITERATURE
19.7 , A -- GENERAL WORKS
19.9 , Z -- BIBLIOGRAPHY , LIBRARY

Listing 5.6: Three LCC classes with shortest
sentences

7Only values up to 70 words per sentence are shown for better clarity.

47

0 2 4 6 8 10 12 14 16
Size in MiB

0

100

101

102

103

104

N
u
m

b
e
r

o
f

D
o
cu

m
e
n
ts

 (
Lo

g
a
ri

th
m

ic
)

Figure 5.6: Number of documents per doc-
ument size in MiB

0 200 400 600 800 1000
Size in kiB

0

500

1000

1500

2000

2500

N
u
m

b
e
r

o
f

D
o
cu

m
e
n
ts

Figure 5.7: Number of documents under 1
MiB per document size in kiB

4.19 , P -- LANGUAGE AND LITERATURE
4.36 , G -- GEOGRAPHY , ANTHROPOLOGY
4.40 , A -- GENERAL WORKS

Listing 5.3: LCC classes with shortest avg word
length

4.71 , J -- POLITICS
4.59 , R -- MEDICINE
4.58 , K -- LAW

Listing 5.4: LCC classes with
longest avg word length

3.0 3.5 4.0 4.5 5.0 5.5 6.0
Average word length in the document

0

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r

o
f

D
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

Figure 5.8: Average word length in the document

48

3.5 4.0 4.5 5.0
Average word length per document

0.00

0.05

0.10

0.15

0.20

0.25

R
e
la

ti
v
e
 f

re
q
u
e
n
cy

Philosophy Psychology Religion
History and Geography
Language and Literature
General Works
Social Science and Arts
Science and Technology

Figure 5.9: Average word length split by category

3.5 4.0 4.5 5.0
Average word length per document

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
e
la

ti
v
e
 f

re
q
u
e
n
cy

Twain, Mark
Lytton, Edward Bulwer Lytton, Baron
Shakespeare, William

Figure 5.10: Average word length split by author

49

0 10 20 30 40 50 60 70
Average number of words per sentence in the document

0

500

1000

1500

2000

2500

N
u
m

b
e
r

o
f

D
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

Figure 5.11: Histogram: Average sentence length per document

Figure 5.12 shows us the distributions of the average sentence length based split by the
category. The category Language and Literature has its peak between 16 and 17 words
per sentence. Other categories have all the peak between 22 and 24 word per sentence.
The exception is the category General Works which has both of the maxima. It is caused
by the periodicals written by Various authors. The documents with the LCC tag AP –
Periodicals are very heterogeneous – from archived newspapers to humoristic stories.

Figure 5.13 shows the average sentence length for the three authors Twain, Lytton
and Shakespeare. The distribution for Lytton and Twain looks almost identical with the
highest frequency of sentence length ca. 20. On the contrary, Shakespeare’s mean is
only 11.9. The median is 10.3. The reason for the short average sentence length is the
dramatic style of writing. Shakespeare writes the character’s name which is speaking
with full stop as in this example:
Hamlet .
To be , or not to be ,--that is the question .

50

0 10 20 30 40 50
Average word length per document

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

R
e
la

ti
v
e
 f

re
q
u
e
n
cy

Philosophy Psychology Religion
History and Geography
Language and Literature
General Works
Social Science and Arts
Science and Technology

Figure 5.12: Average sentence length split by category

0 10 20 30 40
Average word length per document

0.00

0.05

0.10

0.15

0.20

R
e
la

ti
v
e
 f

re
q
u
e
n
cy

Twain, Mark
Lytton, Edward Bulwer Lytton, Baron
Shakespeare, William

Figure 5.13: Average sentence length split by author

51

Stop words share

The next feature we explore is the share of stop words in the document. It is computed
as the number of stop words divided by number of all words in the document. The stop
words share distribution is shown in Figure 5.14. The average rate is 50.0 %, which
means that every other word is a stop word. The median a bit higher at 50.8 %.

The stop words share can also help with identifying outlier documents. Documents
which have low proportion of stop words are usually not written in English or don’t use
proper sentences. Documents with the stop words share (under 0.2) are from one of the
following categories:

(a) Documents not written entirely in English. These were either misclassified by the
PG catalog or big parts of the document consist of original untranslated book. The
English stop words are then not found in the foreign language.

(b) Catalogs. They list facts without putting them into sentences. The documents
have higher share of meaningful words than usual.

(c) Dictionaries. Similar to catalogs, dictionaries (e.g. English synonyms) don’t contain
whole sentences and therefore have low share of stop words.

(d) Documents with many lists or tables. In this case, the document contains many
numbers or meaningful words which lowers the stop words share.

These documents can be seen in Figure 5.15, which shows the stop words share before
filtering out the outlier documents. The local peak8 near the value 0.16 is a rate typical
for catalogs and dictionaries. There are also 19 documents with zero stop words share,
which are all not in English. The highest share have the fiction books from LCC class P
– 0.513. The lowest has the literature regarding Technology and Science with 0.445.

Part of speech (POS)

Distributions of different POS classes could be a good indicator of the text type. Apart
from that, it enables further filtering of documents as well. The tokens in the text belong
to one of the following POS classes:9

Based on the relative frequency rates of the POS classes, we can also filter out bad
documents. The documents with high frequency of PROPN class are usually catalogs
or lists of people. Documents with high frequency of PUNCT usually contain tables,
illustrations or diagrams – the rate of PUNCT is high because of many brackets, dots
and commas.

The Figure 5.16 shows the distributions of all POS classes. Most of the relative
frequencies seem to be be normally distributed, however, we can observe several interesting
phenomena:

8This peak can’t be seen in the Figure 5.14 as that histogram shows only the 42 404 documents left
for analysis.

9We use classes as defined in the module spacy. Punctuation is usually not considered a POS, but
we include as it helps us to capture the usage of e.g. commas, exclamation marks or brackets.

52

0.2 0.3 0.4 0.5 0.6
Share of stop words in the document

0

1000

2000

3000

4000

5000

N
u
m

b
e
r

o
f

D
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

Figure 5.14: Stop words share per doc-
ument (without filtered out
docs)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Share of stop words in the document

0

20

40

60

80

100

N
u
m

b
e
r

o
f

D
o
cu

m
e
n
ts

Figure 5.15: Stop words share (incl. filtered
out documents)

(a) The relative frequency of proper nouns in the documents is skewed to the right –
this might be caused by the corpus still containing some lists of names or catalogs.
The POS tagger also takes the capitalization of words into account so if the author
overuses capitalization, the tagger might misclassify some words as proper names.

(b) The numerals are also skewed to the right with some documents having over 5 %
numerals in the text. LCC class P has the lowest rate (0.8 %). The highest
rate have the documents regarding Science and Technology (3.3 %) followed by
Geography as well as Naval and Military Science all around 2.5 %.

(c) The verbs are slightly skewed to the left. The highest verb share have the P
documents with 16.5 % on average. All other categories have less than 15 % with
minimum being Science with 12 %.

(d) The most extraordinary distribution out of the POS classes are the pronouns.
There is no substantial peek. The most pronouns occur in the LCC class P –
6.9 %. It is significantly higher than the second category with most pronouns, B –
PHILOSOPHY, PSYCHOLOGY, RELIGION with 4.7 %. The lowest pronoun
share have the documents related to Science and Technology (2.5 %).

53

0.00 0.05 0.10 0.15 0.20 0.25
ADPOSITION

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.02 0.04 0.06 0.08 0.10 0.12
ADJECTIVE

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.05 0.10 0.15 0.20 0.25
DETERMINER

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.02 0.04 0.06 0.08 0.10 0.12
ADVERB

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.05 0.10 0.15 0.20 0.25
NOUN

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.02 0.04 0.06 0.08 0.10 0.12
CONJUNCTION

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.05 0.10 0.15 0.20 0.25
PROPER NOUN

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.02 0.04 0.06 0.08 0.10 0.12
NUMERAL

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.05 0.10 0.15 0.20 0.25
PUNCTUATION

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.02 0.04 0.06 0.08 0.10 0.12
PARTICLE

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.05 0.10 0.15 0.20 0.25
VERB

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

0.00 0.02 0.04 0.06 0.08 0.10 0.12
PRONOUN

0

1000

2000

3000

4000

5000

6000

7000

N
o
.

o
f

d
o
cu

m
e
n
ts

10 % quantile
mean
90 % quantile

Figure 5.16: Distribution of POS classes

54

5.2 Feature Vectors
The feature vectors we are going to work with were already introduced in Section 3.2.
They can be divided into two classes: text features, which we already explored in
Section 5.1.3, and features relating to the frequence of a specific word or bigram. Mainly,
we use the frequencies with tfidf term-weighting. In some parts of analysis or for some
prediction models where it could make sense, we also try out the binary version of the
word features. The binary word feature vectors just provide us with information if the
word was available in the document, no matter how many times. Mainly, we work with
the word feature vector of length 2 000 – carrying 2 000 most frequent (lemmatized)
words without stop words. Extra features usually don’t bring extra performance as the
algorithms tend to overlearn on the document specific words.

5.2.1 Feature Vector Correlation
Some algorithms are more sensitive to the correlation of features than others. For the
sensitive ones such as clustering with k-means, the highly correlated features can outweigh
other features and determine the outcome. For example if we had following features:

• number of words in document
• number of sentences in document
• number of paragraphs in the document
• total size in kiB

All four features would probably be highly correlated as they all somewhat describe the
document length. If we then compute the distance between feature vectors, the documents
similar in length would be much closer to each other than documents with different
lengths. To see if our features are highly correlated, we first do a principle component
analysis and inspect if dimension reduction is useful. Then, we create correlation matrices
for text features, tfidf word features and binary word features and explore the correlation
of various pairs of words.

Principle Component Analysis(PCA)

The Principle Component Analysis shows us how the feature vectors are correlated
overall. It transforms feature vectors into a lower dimensional space with maintaining
the maximum original data variance. We look at text feature vectors, binary word
feature vectors and tfidf feature vectors10 and how they can be reduced with the PCA.
Figure 5.17 shows us how many dimensions (relative to the original feature vector length)
are needed to explain the certain amount of variance in the data. In other words, value
100 % means the feature vector can be reconstructed without any loss from the lower
dimensional space. The rule of thumb is to take that many dimensions so that approx.
90 % of the original variance is kept.

10For both binary and tfidf feature vector, we consider the 2 000 most common words from the
vocabulary, i.e., these feature vectors have length 2 000.

55

0.0 0.2 0.4 0.6 0.8 1.0
relative number of feature vector's dimensions kept

0%

20%

40%

60%

80%

100%

%
 o

f
d
a
ta

 v
a
ri

a
n
ce

 k
e
p
t

binary word feature vector
tfidf feature vector
text features

Figure 5.17: Variance explained based on
the number of principle compo-
nents taken (relatively to the
original dimension)

0 10 20 30 40 50
No. of dimensions after PCA reduction

0%

20%

40%

60%

80%

100%

%
 o

f
d
a
ta

 v
a
ri

a
n
ce

 k
e
p
t

binary word feature vector
tfidf feature vector

Figure 5.18: Variance explained showing
the first 30 principle compo-
nents for the binary and tfidf
word feature vectors

All three feature vectors matrices can be transformed into space with ten times smaller
dimension than the original one (relative dimensionality 0.111) with keeping approx. 50 %
of the original variance. To keep 90 % of variance, the matrix with text features has to
be transformed from 51 to 21 dimensions (relative dimensionality 0.41). For the BOW
features, the relative dimensionality for 90 % variance is 0.53 (1 060 dimensions) for tfidf
and 0.61 (i.e. 1 220 dimensions) for binary word feature vectors.

Unfortunately, the popular 80-20 rule12 does not apply here as 20 % of dimensions
keep only about 65 % of the variance in the data. If we wanted to keep the 90 % of
variance, which is usual practice, we would reduce the dimensionality of the word feature
vectors from 2 000 to a space with more than 1 000 dimensions.

We can also see in the Figure 5.17 that there is around 30−40 % variance kept for very
few dimensions. Figure 5.18 shows the kept variance for the first 30 principle components
for both word feature vectors. It can be seen that the first few principle components
cover a lot of variance. The first component covers already 20% of the variance. The
first principle components then correspond to words that occur at least ones in most of
the documents. The first principle component for tfidf feature vector explains only 5%
of the variance.

We could also visualize the data based on the first two principal components. It is
already enough to distinguish books from the category Language and Literature from the
category History and Geography as shown in Figure 5.19. When splitting vectors based
on epoch, we can also visually distinguish individual epochs – see Figure 5.20. Baroque

11For example the value 0.1 on the x axis corresponds to 200 dimensions for the word features and 5
dimensions for the text features (10 % out of 51).

12It is also known as Pareto principle. It says that roughly 80 % of the effects come from 20 % of the
causes. In this case, it would mean that 20 % of the vector dimensions explain 80 % of variance.

56

40 30 20 10 0 10 20

30

20

10

0

10

20

Language and Literature
History and Geography

Figure 5.19: Tfidf feature vector with 2 000
words transformed to the first
two principal components

40 30 20 10 0 10 20

30

20

10

0

10

20

Baroque
Romanticism
Late 19th

Figure 5.20: Tfidf feature vector with 2 000
words transformed to the first
two principal components

literature and the literature from the end of the 19th century tends to stay both in an
own cluster. On the contrary, for Romantic literature, we can’t capture any pattern as
the data points are spread quite evenly along both axes.

Through the PCA, we saw there are some correlations between features, even though
not too high. In the following, we look at the correlation between individual features.
The inspected feature vectors are once again: text feature vector, tfidf word feature
vector and binary word feature vectors. For each feature vector, we analyze strong
positive and negative correlations and show a correlation plot for them.

Correlation of Text Features

First, we look at the text features. In Figure 5.21, we can see the correlation between
the majority of text features13.
Observations – positive correlations:

(a) The features with highest correlation are those regarding quotation marks. It is
not a big surprise that documents which start or end the sentence with a quotation
mark have higher proportion of quotation marks in the whole document.

13For better clarity, out of the text features relating to individual POS tags, we included only the
subclasses of verbs.

57

(b) The other highly correlated features relate to verbs and might not appear that
intuitive – the higher the proportion of verbs in the document, the higher the
proportion of pronouns.

(c) Documents with high frequencies of verbs tend to contain more stop words – this
makes sense in context with the previous pair as pronouns are mostly on the stop
word list.

(d) Verbs in past participle (VBN) appear more in documents with longer words.

(e) Adverbs are positively correlated mainly with verbs and pronouns.

(f) Last but not least, documents with high proportion of modal verbs have also high
proportion of verbs in the infinitive form. This makes sense from the grammatical
point of view as it is how are they used together.

Observations – negative correlations:

(a) Complementary features are usually negatively correlated – the higher the propor-
tion of sentences ending with dot, the lower the proportion of sentences ending
with question mark or exclamation mark. However, the proportions of sentences
ending with ? and ! are positively correlated. The reason might be that they
usually occur in the similar kind of documents – with lots of direct speech.

(b) Documents with high proportion of pronouns contain less verbs in the infinitive
form (VB).14

(c) Documents with longer words have lower share of pronouns – this seems logical as
the pronouns are usually very short

(d) The higher share of adpositions (ADP) class is negatively correlated with the
frequency of punctuation. The reason could be that the class ADP contains, apart
from prepositions, also some subordinating conjunctions, which are conjunctions
connecting sentences – often without needing a comma (e.g. as or if).

Correlation of Word Features

Next, we explore the correlations between tfidf features. Figure 5.22 shows us how
many pairs have the correlation coefficient lower than a given value. We sorted all
4 000 000 correlation pairs15. It means that if the curve goes through point [0.2,-0.035],
20 % of the correlation pairs have the correlation coefficient lower than −0.035. It can
be seen that approx. 60% of correlation pairs have correlation coefficient higher than
zero. However, only about top 0.5 to 1% are correlated so that we can speak about a
real correlation. The same is true for bottom 0.5 to 1% and negative correlation.

14It doesn’t contradict the high positive correlation of PRON with the whole VERB class, which we
saw in b]. The VB tag is the proportion of infinitives out of all VERBS, not all words in the document.

15We inspect a vector with 2 000 features – 2000 ∗ 2000 = 4000000.

58

ad
ve

rb
ve

rb
st

op
w

or
ds

 s
ha

re

pa
rt

ic
le

pr
on

ou
n

en
ds

 w
ith

 ?
be

gi
ns

 w
ith

 q
uo

ta
tio

n
m

ar
ks

en
ds

 w
ith

 q
uo

ta
tio

ns
 m

ar
ks

V
B
D

 -
-
pa

st
 t
en

se

pu
nc

tu
at

io
n

en
ds

 w
ith

 !
M

D
 -
-
m

od
al

 v
er

b

V
B
 -
-
ve

rb
 in

 b
as

e
fo

rm

V
B
Z
 -
-
pr

es
. t

en
se

, 3
rd

 p
. s

in
gl

.

nu
m

er
al

pr
op

er
 n

ou
n

no
un

ad
po

si
tio

n
de

te
rm

in
er

en
ds

 w
ith

 .
av

g
w

or
d

le
ng

th

V
B
N

 -
-
pa

st
 p

ar
tic

ip
le

V
B
P

--
 p

re
s.

 t
en

se
, n

on
-3

rd
 p

. s
in

gl
.

V
B
G

 -
-
ge

ru
nd

 o
r
pr

es
. p

ar
t.

co
nj

un
ct

io
n

av
g

se
nt

 le
ng

th
 in

 w
or

ds

ad
je

ct
iv

e

adverb

verb

stopwords share

particle

pronoun

ends with ?

begins with quotation marks

ends with quotations marks

VBD -- past tense

punctuation

ends with !

MD -- modal verb

VB -- verb in base form

VBZ -- pres. tense, 3rd p. singl.

numeral

proper noun

noun

adposition

determiner

ends with .

avg word length

VBN -- past participle

VBP -- pres. tense, non-3rd p. singl.

VBG -- gerund or pres. part.

conjunction

avg sent length in words

adjective

-1

-0.5

0

0.5

1

Figure 5.21: Correlation plot of text features

59

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of correlation pairs (sorted)

1.0

0.5

0.0

0.5

1.0

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n
 c

o
e
ff

ic
ie

n
t

bottom 1 %
top 1 %

Figure 5.22: The portion of correlation pairs with the correlation coefficient value lower
than y

As it is not possible to show the correlation matrix for all 2 000 features, we select the
features which appear in the extreme pairs with strong positive or negative correlation
and show the correlation plot for them (see Figure 5.23).
Observations – positive correlations:

(a) If bigrams are included, the most correlated features doesn’t come as a surprise
as the feature pairs usually consist of a bigram – a well known phrase or name –
and unigram which is one of the two words in the bigram – example: states and
united are both highly correlated with their combination being united states (0.98
for united ans 0.90 for states.

(b) Another group with high very high positive correlation are old English words. Thee,
thou and hast are all correlated with coefficients between 0.85 and 0.90.

(c) Other group are pairs relating to the same entity – me and my, she and her or
relating to country, irish and ireland

Observations – negative correlations:

(a) There are no bigrams among the highly negatively correlated pairs.

(b) The negative correlation pairs seem to somewhat capture the formality of the
documents. On the one side, there are words such as you, look or go, which occur
mainly in fiction literature. On the other side, words such as thus or various which
mainly appear in the technical literature.16

16That’s the reason we didn’t include personal pronouns and verb go in stop words as it can greatly
help with distinguishing fiction and technical or formal literature.

60

m
e
m

y
he

r
sh

e
yo

u
te

ll
go lo

ok
st

at
es

un
ite

d

un
ite

d
st

at
es

th
us
al
so

va
rio

us

sim
ila

r

fo
rm
nu

m
be

r

du
rin

g

ire
la
nd

iri
sh
ha

st
th

ee
th

ou

me

my

her

she

you

tell

go

look

states

united

united states

thus

also

various

similar

form

number

during

ireland

irish

hast

thee

thou

-1

-0.5

0

0.5

1

Figure 5.23: Correlation matrix for selected tfidf word features

61

co
lo
r

fa
vo

r

ho
no

r

un
ite

d

un
ite

d
st

at
es

st
at

es

fa
vo

ur

co
lo
ur

ho
no

ur

ire
la
nd

iri
sh
th

us
va

rio
us

sim
ila

r

fo
rm
al
so
nu

m
be

r

du
rin

g

ha
st
th

ee
th

ou
m

e
m

y
yo

u
te

ll
he

r
sh

e
go lo

ok

color
favor

honor
united

united states
states
favour
colour

honour
ireland

irish
thus

various
similar

form
also

number
during

hast
thee
thou

me
my
you
tell
her
she
go

look

-1

-0.5

0

0.5

1

Figure 5.24: Correlation matrix for selected binary word features

If we plot the correlation matrix for binary word features (see Figure 5.24), most
of the trends we saw in tfidf feature correlation stays the same. However, for words that
have more ways of spelling, American and British (color vs colour, favor vs favour etc.),
words spelled in British English are highly positively correlated with each other but
highly negatively correlated with the American versions of words.

5.3 Document Clustering
When clustering, we want the feature vectors to be in lower dimensional space. However,
as we saw in Section 5.2.1, the word features are not much correlated (to keep 90 % of
the data variance, the transformed feature vector matrix would have around 60 % of the

62

0 5 10 15 20 25 30
Number of clusters

5

10

15

20

25

30

P
e
rc

e
n
ta

g
e
 o

f
v
a
ri

a
n
ce

 e
x
p
la

in
e
d

Figure 5.25: Variance explained based on number of clusters in the clustering –k (tfidf, 1
000 features)

original number of dimensions). To keep the dimensionality as small as possible, we take
only 1 000 most frequent word features. Then, we transform them to 600-dimensional
space defined by first 600 principal components. It is still a very high-dimensional space
for clustering, but it is as much as we can get without losing too much information from
the feature vectors.

We use the elbow method to determine the number of clusters. It is a visual method
which chooses k so that higher ks don’t bring that much extra explained variance. The
Figure 5.25 shows the variance explained based on the number of clusters. We can see
that the curve has no apparent elbow and is not curved a lot. The best k seems to be
somewhere around 8 or 10. We try the k-mean clustering for k = 8.

5.3.1 Evaluating the Clusters
As the clustering in this case is a pure unsupervised task, it is hard to say if it actually
performed good. We look at each cluster and the distribution of documents based on
categories and epochs. The quality criteria would be then if the clusters are heterogeneous
and differ in epochs and categories. For each cluster we show the matrix of occurrences
where rows correspond to the text categories and columns to the epochs.

In the following, we list the clusters and provide what is typical for them or interesting
about them:

cluster 0 - 3319 documents (7.8 %)

• majority class Language and Literature

• 5 times higher share of philosophy, religion, psychology

• 3 times higher share of ancient literature

63

A
nc

ie
nt

M
ed

ie
va

l
R
en

ai
ss

B
ar

oq
ue

En
lig

ht
R
om

an
t

R
ea

lis
m

La
te

 1
9

M
od

er
n

N
/A

GenWorks

PhiPsyRel

HistGeo

SocSci&Art

Sci&Tech

Lang&Lit

N/A

cluster 0

A
nc

ie
nt

M
ed

ie
va

l
R
en

ai
ss

B
ar

oq
ue

En
lig

ht
R
om

an
t

R
ea

lis
m

La
te

 1
9

M
od

er
n

N
/A

GenWorks

PhiPsyRel

HistGeo

SocSci&Art

Sci&Tech

Lang&Lit

N/A

cluster 1

A
nc

ie
nt

M
ed

ie
va

l
R
en

ai
ss

B
ar

oq
ue

En
lig

ht
R
om

an
t

R
ea

lis
m

La
te

 1
9

M
od

er
n

N
/A

GenWorks

PhiPsyRel

HistGeo

SocSci&Art

Sci&Tech

Lang&Lit

N/A

cluster 2

A
nc

ie
nt

M
ed

ie
va

l
R
en

ai
ss

B
ar

oq
ue

En
lig

ht
R
om

an
t

R
ea

lis
m

La
te

 1
9

M
od

er
n

N
/A

GenWorks

PhiPsyRel

HistGeo

SocSci&Art

Sci&Tech

Lang&Lit

N/A

cluster 3

A
nc

ie
nt

M
ed

ie
va

l
R
en

ai
ss

B
ar

oq
ue

En
lig

ht
R
om

an
t

R
ea

lis
m

La
te

 1
9

M
od

er
n

N
/A

GenWorks

PhiPsyRel

HistGeo

SocSci&Art

Sci&Tech

Lang&Lit

N/A

cluster 4

A
nc

ie
nt

M
ed

ie
va

l
R
en

ai
ss

B
ar

oq
ue

En
lig

ht
R
om

an
t

R
ea

lis
m

La
te

 1
9

M
od

er
n

N
/A

GenWorks

PhiPsyRel

HistGeo

SocSci&Art

Sci&Tech

Lang&Lit

N/A

cluster 5

A
nc

ie
nt

M
ed

ie
va

l
R
en

ai
ss

B
ar

oq
ue

En
lig

ht
R
om

an
t

R
ea

lis
m

La
te

 1
9

M
od

er
n

N
/A

GenWorks

PhiPsyRel

HistGeo

SocSci&Art

Sci&Tech

Lang&Lit

N/A

cluster 6

A
nc

ie
nt

M
ed

ie
va

l
R
en

ai
ss

B
ar

oq
ue

En
lig

ht
R
om

an
t

R
ea

lis
m

La
te

 1
9

M
od

er
n

N
/A

GenWorks

PhiPsyRel

HistGeo

SocSci&Art

Sci&Tech

Lang&Lit

N/A

cluster 7

0

80

160

240

320

400

480

560

640

720

0

500

1000

1500

2000

2500

3000

3500

4000

0

80

160

240

320

400

480

560

640

0

40

80

120

160

200

240

280

320

360

0

150

300

450

600

750

900

1050

0

80

160

240

320

400

480

560

640

0

400

800

1200

1600

2000

2400

2800

0

80

160

240

320

400

480

560

640

720

Figure 5.26: VisualizationVariance explained based on k (text features)

64

cluster 1 - documents 11437 (27 %)

• classical fiction books

• mainly end of the 19th century

cluster 2 - documents 2975 (7 %)

• science and technology

• 45 % the author’s birth year not known

cluster 3 - 3914 documents (9.2 %)

• ld literature before the 19th century

• High coverage of biblical topics.

• high share of English and Germanic literature

cluster 4 - 4594 documents (10.8 %)

• encyclopedias, dictionaries, historical books

• law and political science

cluster 5 - 3405 documents (8 %)

• history and geography

• turn of 19th century

cluster 6 - 6952 documents (16.4 %)

• classical fiction books

• probably less complicated language (30 % children books)

• 19th - 20th century

cluster 7 - 5808 documents (13.7 %)

• general mixture of literature from 16th to 18th century

• 19 % periodicals, 36 % no author

65

Another interesting measure is to look if documents by one author are all clustered
into one cluster or rather spread across multiple clusters. William Shakespeare seems
to have very distinctive word choice17 – clustering labels almost all of his books to the
same cluster:

cluster 0 : 167 documents
cluster 1 : 10 documents
cluster 7 : 1 document

Edward Bulwer Lytton’s work is bit more spread among the clusters, when com-
pared to Shakespeare:

cluster 0 : 46 documents
cluster 1 : 67 documents
cluster 3 : 3 documents
cluster 4 : 102 documents
cluster 6 : 2 documents
cluster 7 : 6 documents

As Lytton wrote very diverse works, it makes sense that his documents are in multiple
clusters. In cluster 0 are his historical novels and in cluster 7 are his history non-fiction
documents about Athens and Ancient Greece. The rest of his work is distributed mainly
between clusters 1 and 4 with cluster 1 covering rather domestic topic and family topics
and cluster 4 novels.
Jane Austen wrote mainly novels focusing on social criticism. All her work by PG

was assigned into one cluster:
cluster 1 : 13 documents

All in all, the k-means clustering on tfidf vectors with 1 000 most common words with
8 clusters delivers surprisingly reasonable results.

5.4 Predictive Model Evaluations
In this section, we create classification models and evaluate them. The document
attributes we want to predict are mainly those explored in Section 5.1.2:

• author – domain in the order of thousands

• epoch – 9 classes

• category – 6 classes18

• topics – independent binary classifiers for each topic such as Science Fiction

17Mainly beacuse of old English words like thy or thou.
18One of the 6 aggregated LCC classes – Language & Literature, History & Geography, Science &

Technology, Philosophy & Psychology & Religion, Social Science & Art or General Works.

66

0 5 10 15 20
Minimum number of books written

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u
m

b
e
r

o
f

a
u
th

o
rs

Figure 5.27: Number of authors who wrote n or more books

Each classification task needs a different approach. When creating classifier, we choose
between two basic models – Naive Bayes Classifier and Decision Tree Classifier. Model
parameters are chosen through 10-fold crossvalidation. Results of these basic predictive
models can be then further improved by bagging – decision trees are combined into a
Random Forest Classifier. However, the cost for higher accuracy by the Random Forests
is losing the insight into the prediction and the reasoning behind it.

As some classes are very unbalanced, accuracy is not always the metric to be optimized.
Instead, we use the macro F1 score defined as:

F1 = 2PR
P +R

,

where P and R are precision and recall respectively averaged over all classes:19

Pmacro = 1
|C|

|C|∑
i=1

TPi

TPi + FPi

, Rmacro = 1
|C|

|C|∑
i=1

TPi

TPi + FNi

5.4.1 Author Prediction
Prediction of the document author is a very challenging task. First, the author can write
multiple types of literature - e.g. a poem and dictionary which makes it very hard to
capture the uniform author style from both works. Apart from that, the author domain
is much bigger than domain of any other attribute we are going to predict. In total, there
are 14 211 authors in the Project Gutenberg. How the number of authors reduces when
we filter out authors with less than n books can be seen in Figure 5.27. We decided to
focus only on authors with at least 5 books in Project Gutenberg to be able to capture
the author’s style. This reduces the amount of authors to 1 438.

19TP and TN stand for true positives and negatives, FN means false negatives.

67

Figure 5.28 shows the comparison of the author prediction accuracy for the Naive
Bayes Classifier with different feature vectors:

(a) Multinomial naive Bayes classifier with binary word features

(b) Gaussian naive Bayes classifier trained on tfidf features

(c) Gaussian naive Bayes classifier with all 51 text features

(d) Modus prediction – this model just predicts the most frequent label from the
training set

We can see that all three models perform quite good if we take into account that
random guess has accuracy less than 1 %.

The multinomial model (binary features) doesn’t improve much after 5 000 features.
The accuracy is the best for 8 000 features – 74 %. When increasing the number of
features further, the accuracy starts to drop.

The Gaussian naive Bayes model with tfidf features performs surprisingly good for
small lengths of feature vectors. The accuraccy grows when increasing the feature vector
length – up to 57 % for 500 features. After that, the accuracy drops down to 20 % for
5 000 features. When adding more features, the accuracy grows slowly again. The reason
is probably that the seldom author-specific words, such as character names and cities,
are also included in the vocabulary.

Based on the figure, it seems that only very few tfidf features are needed to make
a reasonable author prediction using Gaussian naive Bayes model. Accuracy for 100
features is 54 %. Surprisingly, based on even only 10 words, the classifier performs
significantly better than random (mode) guessing. Based on tfidf scores of words go,
good, her, know, make, me, my, she, time and you, the accuracy of the prediction is 12
times higher than the mode prediction.20

The author can also be predicted using decision trees on text features. A simple
decision tree yields 24.1 % accuracy. Using random forest of such decision trees, we can
boost the accuracy up to almost 70 %. The accuracy based on the number of trees in the
forest can be seen in Figure 5.29. Although the accuracy still slowly grows for 1 000 trees,
we didn’t try forests with more trees as the training process gets very computationally
intensive and around 1 GiB is needed for storing such a forest.

5.4.2 Epoch Prediction
In Section 3.1.1 we divided the documents in 9 groups based on the birth year of the
author. We wanted to approximately capture the literary styles. The classes are very
uneven – 47 % documents are in the Late 19th Century epoch and 36 % in Realism
period.

Therefore, we optimalize the F1 score instead accuracy – we were able to achieve
accuracy of 80 % for random forest classifier, however, several epochs were almost ignored.

20The tfidf scores are computed out of the ten words in the vocabulary, ignoring all other words.

68

0 2 4 6 8 10 12 14
Feature vector length [in thousands]

0.0

0.2

0.4

0.6

0.8

1.0

A
u
th

o
r

cl
a
ss

if
ic

a
ti

o
n
 a

cc
u
ra

cy
 (

b
a
y
e
s.

 m
o
d
e
l)

binary features
tfidf features
text features
modus prediction

Figure 5.28: Accuracy of naive bayes model in author prediction (authors with at least 5
books)

100 101 102 103

Number of trees [logarithmic]

0.0

0.2

0.4

0.6

0.8

1.0

A
u
th

o
r

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

Figure 5.29: Accuracy of random forest with text features in author prediction (authors
with at least 5 books)

69

Model Feature vector type Feature vector length F1 score
Mode guess - - 15.2 %

Decision Tree Classifier Text Features 50 56.9 %
Random Forest (200 trees) Text Features 50 58.6 %
Multinomial Naive Bayes Binary BOW 15 000 46.1 %
Decision Tree Classifier Binary BOW 15 000 48.3 %

Random Forest (200 trees) Binary BOW 15 000 61.3 %
Gaussian Naive Bayes Tfidf 15 000 54.3 %

Decision Tree Classifier Tfidf 2 000 48.1 %
Random Forest (200 trees) Tfidf (combined) 2 000 65.6 %

Table 5.10: Era prediction F1 score

Using F1 score, the best classifier was the random forest with tfidf-2000-combined features
with F1 score 65.6 % and accuracy 78.2 %. Complete table is shown in Table 5.10.

The confusion matrix can be seen in Figure 5.30. Medieval era was not recognized and
classsified as realism. Romanticism was often misclassified to realism as well. However,
these misclassifications are in this case not that bad as the epoch borders were created
artificially and romanticism and realism co-existed together for a few decades.

Listing 5.7 shows the features that bring the highest contribution to the classes. It
means the higher the value of the feature, the higher probability the document comes
from the given class. We can definitely see the evolution of the language as words typical
for Medieval epoch don’t exist in the modern English anymore. The words typical for
Enlightenment come from the philosophy and include rather complicated words, such as,
circumstance or consequence.

5.4.3 LCC class prediction
The category prediction task has unbalanced classes again. However, the performance
was better than for the epochs. The Random forest classifier achieved F1 score of 81.6 %
and accuracy 88.7 %. That is about three times higher than just blindly guessing the
category Language and Literature.

Figure 5.31 shows the confusion matrix. All classes tend to predict about 10 to 20 %
in favour of the major classes Language and Literature and History and Geography. The
worst performance has the smallest class Social Science and Arts, which acheived the
accuracy 62 %.

Features with the most contribution for each class are listed in Listing 5.8. We can
see that all of them make sense in their context.

(a) Featers of General Works refer to literature in general (e.g. word volume or reader).

(b) History books use lots of past tense as well as military words, such as troop or war.

(c) For Language and Literature, the usage of quotation marks is very important, as
other categories probably don’t use quotation marks a lot. The word typical for

70

Anc
ie
nt

M
ed

ie
va

l

Ren
ai
ss

an
ce

Bar
oq

ue

En
lig

ht
en

m
en

t

Rom
an

tic
ism

Rea
lis

m

La
te

 1
9t

h

M
od

er
n

Ancient

Medieval

Renaissance

Baroque

Enlightenment

Romanticism

Realism

Late 19th

Modern

13 0 0 0 1 0 6 1 0

0 1 0 0 0 0 8 1 0

0 0 9 3 0 0 7 0 0

0 0 0 57 0 1 23 2 0

0 0 0 3 25 2 33 2 0

0 0 0 1 0 76 103 8 0

0 0 0 0 0 1 867 252 1

0 0 0 0 1 1 172 1254 19

0 0 0 0 0 0 1 20 117

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.30: Confusion matrix for the epoch prediction – Random forest with tfidf-2000-
combined features

71

Ancient : nor , whom , shall , greek , thus

Medieval : whence , thus , thou , whom , thee

Renaissance : avg sent length , comma proportion , don , nor , god

Baroque : my lord , shall , verbs in base form proportion , hath ,
sir

Enlightenment : oblige , situation , comma proportion ,
circumstance , consequence

Romanticism : feeling , circumstance , situation , oblige , comma
proportion

Realism : week , excitment , adjective usage , england , look

Late 19th cent ,: dot proportion , later , across , week , adjective
usage

Modern : dot proportion , around , across , later , nod

Listing 5.7: Features with the highest contribution to the individual epochs – tfidf-2000-
combined features

72

Model Feature vector type Feature vector length F1 score
Mode guess - - 27.6 %

Decision Tree Classifier Text Features 50 49.9 %
Random Forest (200 trees) Text Features 50 72.4 %

Gaussian Naive Bayes Tfidf 15 000 68.1 %
Decision Tree Classifier Tfidf 2 000 53.1 %

Random Forest (200 trees) Tfidf (combined) 2 000 81.6 %

Table 5.11: LCC class prediction accuracy

Gen
W

or
ks

Hist
Geo

La
ng

&Li
t

Ph
iP
sy

Rel

Sc
i&

Te
ch

So
cS

ci
&Art

General Works

History and Geography

Language and Literature

Philosophy Psychology Religion

Science and Technology

Social Science and Arts

176 14 15 4 6 2

4 529 60 8 14 14

9 52 2054 7 6 5

0 16 21 212 9 2

1 31 28 9 242 6

0 23 33 9 11 91

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.31: Confusion matrix for the category prediction – Random forest with tfidf-
2000-combined features

this category are smile and laugh, as they perhaps don’t occur in scientifical or
historical literature.

(d) Philosophy, Psychology and Religion Category gets dominated by the religious
vocabulary as the top 5 words somehow relate to the God.

(e) For Science and Technology, words relating to measures are the most important.
These words include: size, small or inch.

(f) Social Science and Arts relate to the words such as public, government or law.

73

General Works: volume , vol , publish , reader , literary

History and Geography : verbs in past tense , troop , full stop
proportion , war , people

Language and Literature : begins with ``, ends with ``, smile ,
quotation marks proportion out of punctuation , laugh

Philosophy , Psychology and Religion : god , christ , jesus , sin ,
holy

Science and Technology : size , full stop proportion , surface ,
small , inch

Social Science and Arts: public , government , full stop
proportion , pay , law

Listing 5.8: Features with the highest contribution to the individual categories – tfidf-
2000-combined features

5.4.4 Subject prediction
Next, we want to capture the main topics of the document. Each topic has an individual
binary model telling the probability of the document covering the corresponding subject.
To make the models more robust, we focus just on the subset of the whole dataset.
The models are trained on belles-lettres only – we keep around 20 000 documents with
following LCC classes:

• PR – English literature

• PS – American literature

• PQ – French, Italian, Spanish & Portuguese literature

• PT – German, Dutch & Scandinavian literature

• PZ – Fiction and juvenile belles lettres

The major challenge here is the imbalance in size between the positive and negative
classes. For every topic, only few percent of documents cover it. We need to create a
classifier so that it doesn’t just predict the negative class everytime. One way to deal
with imbalanced classes is to sample the train set to make it more even. Undersampling
makes the train set balanced by selecting only some data points from the bigger class.
Oversampling, on the contrary, takes data points from the smaller class several times
to make both classes of comparable size. Another popular approach is the SMOTE[4]
algorithm which combines undersampling and oversampling with creating synthetic
data points for the smaller class. For the topic prediction, we use the random forest

74

Genre classifier Genre frequency Accuracy F1 score
adventure stories 1.8 % 95.9 % 62.3 %

love stories 1.2 % 93.4 % 58.5 %
short stories 4.3 % 96.5 % 74.8 %

historical fiction 1.3 % 97.9 % 65.5 %
poetry 2.1 % 97.3 % 72.3 %
drama 1.3 % 99.0 % 83.8 %

detective and mystery stories 1.4 % 98.9 % 78.9 %
science fiction 3.1 % 98.1 % 84.5 %

Table 5.12: Genre prediction F1 score using Random Forests with tfidf-2000-combined
features

classifier, which is prone to overlearn if the size of the individual trees is not too large.
Therefore, the individual trees in the random forest will be just simple decision trees
with significantly limited maximum depth – the best values were achieved for depth
10− 20 – with higher depth, the classifier started to overlearn on the bigger class.

In Table 5.12 we show the results for the genre classifiers. The success mainly correlated
with the frequency of the genre21 – if the genre was more frequent, the overlearn wasn’t
so bad, and thus the score better. The best performance achieved the classifier for
the most frequent genre, science fiction, with F1 = 0.845. Second best was the drama
classifier with F1 = 0.838, even though this genre is not the most frequent with only
1.3 % occurrence. The worst score had love stories with F1 = 0.585.

If we mainly care about false negatives (genre present but not predicted) and false
positive don’t matter, we could predict the genre as present even with confidence less than
usual 0.5. In the implementation, we deal with this problem by showing the probabilities
directly (a probability by random forest classifier is the proportion of decision trees in
the ensemble predicting the given label).

In Listing 5.9, the typical terms for each genre are shown. As the text features, relating
mainly to the proportions of different punctuation symbols, were similar to all of them,
we include this time only the word features. It can be seen that the individual words
describe the genre as good as a human could. The most notable are the words adventure
being the most typical for adventure stories and police being the most typical word for
detective and mystery stories genre. As for text features, for poetry, the possesive ‘s POS
tag was the most important feature. For drama, lots of dots, brackets and verbs in 3rd
person are typical, which probably doesn’t come as a surprise.

21Computed out of the belles-lettres only.

75

science fiction : around , star , evidence , space , control

adventure stories : adventure , rope , shout , shot , catch

love stories : her eye , she , she look , her , her hand

short stories : look , sit , face , eye , you

historical fiction : her hand , cry , voice , sword , speak

poetry : thy , song , sweet , breast , fair

drama: enter , let me , scene , my heart , pardon

detective and mystery stories : police , tell you , room ,
suspicion , door

Listing 5.9: Features with the highest contribution to the individual genres – tfidf-2000-
combined features

5.5 Character Interactions
In Section 3.4, we already described all the steps needed to compute the interactions
between characters. In the following, we visualize the results by showing a graph of
interactions. We show the visualization for 3 books:

• The Adventures of Sherlock Holmes by Arthur Conan Doyle

• Harry Potter and the Sorcerer’s Stone by J. K. Rowling

• A Storm of Swords22 by George R. R. Martin

We analyze the latter two books even though they are not in PG. These books were
chosen as they are quite popular and the character interactions make more sense to the
reader if they know the books.

5.5.1 Character Interaction Visualization
Following graphics display the interaction strength between characters. The width of an
edge corresponds linearly to the sum of interaction scores of the two characters. The size
of a node states is linearly proportional to the number of occurrences of the character in
the book – the occurrences and interactions are not necessarily related as a character can
be mentioned a lot but never with other characters, conversly, some characters might
occurred rather rarely but interact with many other characters.

22A Storm of Swords is the third novel of A Song of Ice and Fire fantasy series. The TV show Game
of Thrones is based on this series.

76

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.2

0.4

0.6

0.8

1.0

McGonagall

Ron

Neville

Hermione Granger

Dudley

Draco Malfoy

Harry Potter

Quirrell

Aunt Petunia

Uncle Vernon

Albus Dumbledore

Hagrid

Snape

Wood

Figure 5.32: visualization of character interactions in the book Harry Potter and the
Sorcer’s Stone

77

Harry Potter and the Sorcer’s Stone

The visualization of character interactions in Harry Potter and the Socer’s Stone can be
seen in Figure 5.32.
Observations:
• Harry is the main character. He interacts with every characters in the book.

• There is a strong triangle of interactions between Harry, Ron and Hermione.

• Harry’s foster family Aunt Petunia, Uncle Vernon and Dudley interact only with
Harry and make up therefore an own cluster.

The Adventures of Sherlock Holmes

The visualization of character interactions in the book The Adventures of Sherlock
Holmes can be seen in Figure 5.33.
Observations:
• Sherlock is the main character. He interacts with everyone.

• The majority of Sherlock’s interactions is with Watson. However, Watson has very
few interaction with someone else (except Sherlock).

• The reason for very few interactions between other characters (Sherlock’s clients)
is that the book consists of several independent stories. The client is different in
each story.

A Storm of Swords

The visualization of character interactions in the book A Storm of Swords can be seen in
Figure 5.34.
Observations:
• There is no clear main character as in the previous two books.

• As there are multiple parallel storylines in the book, we can see several clusters
which refer to each of them – an example might be the cluster in the upper left
corner consisting of Ygritte, Jon, Mance, Sam and Grenn who all interact strongly
with Jon (Snow).

• Robb Stark is somehow the main character as everyone interacts with him, however,
he is not the dominant person in the number of occurrences in the book.

• The character Jon Snow occurs usually only as Jon. However, there are also
other people called Jon in the book. That means if the parameter for minimum
occurrence of the super name is not high enough, the algorithm doesn’t know to
which Jon does the name refer. As a result, there would be two character names
Jon and Jon Snow even though they are the same character.

78

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

Mr. Hosmer Angel

Mr. Rucastle

Mr. McCarthy

Miss Mary Sutherland

Miss Stoner

Miss Hunter

Watson

Grimesby Roylott

Arthur

Frank

Mr. Henry Baker

Mr. Sherlock Holmes

Lestrade

Mr. Jabez Wilson

Figure 5.33: visualization of character interactions in the book The Adventures of Sherlock
Holmes

79

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

Mance Rayder

Sansa Stark

Cersei

Tom Sevenstrings

Jon Snow

Maester Aemon

Lord Tywin

Ser Jorah

Gendry

Dany

Brienne

Jaime

Tyrion

Ned StarkLady Catelyn

Gilly

Jojen

Ygritte

Sam

Robert

Joffrey

Grenn

Arya Stark

Robb Stark

Sandor Clegane

Figure 5.34: visualization of character interactions in the book A Storm of Swords

80

5.6 Performance Analysis
In this section, we evaluate the performance of the processing pipeline. We dicuss if the
step can be done parallel to speed the process up. We also compare the runtimes for
different document sizes and the whole document consisiting of 42 404 documents of the
total size of 15.8 GiB. Unless stated others, the tasks were serial running one CPU with
4 cores @ 2.6GHz.

Preparing the Data

Downloading and preprocessing the catalog takes 117 seconds and is needed just ones, or
when the update to the new nightly built is desired. Fetching the documents depends
purely on the net throughput as we need to download roughly 16 GiB of data.

The preprocessing task removing headers and doing minor formatting changes takes
90 minutes for the whole dataset. It can be paralelized. The execution times grows
approximately linearly with the size of the document. It is shown in Table 5.13:

Document size in kiB time
100 kiB file .050 s
500 kiB file 0.170 s
1000 kiB file 0.349 s

whole dataset (16 GiB) 5428 s

Table 5.13: Document preprocessing run time

Tokenization, Lemmatization, POS Tagging

The process can be paralelized and the execution time grows approx. linearly with the
size of the document. The total run time of the tokenization, lemmatization and tagging
step was approx. 6.2 hours as stated in Table 5.14.

Document size in kiB time
100 kiB file .198 s
500 kiB file 0.711 s
1000 kiB file 1.408 s

whole dataset (16 GiB) 22 386 s

Table 5.14: Tokenization, lemmatization and preprocessing run time

Computing the Count Matrix

In this step, we compute the frequencies of terms in the documents across the whole
corpus. We use the CountVectorizer from the module sklearn. This module holds during

81

the computation the whole vocabulary in the memory, which might be costly, when
using bigrams. That is the reason why the performance is not linear as can be seen in
Table 5.15. However, the count matrix could be paralelized and computed without using
CountVectorizer using spark, for example.

Document size in kiB time
1 000 documents 2.3 min
10 000 documents 48 min

all 42 404 documents 384 min

Table 5.15: Computing matrix of term occurrences run time

Training Random Forest (200 trees)

Training the classifier which was often used in the predictions – random forest classifier
with 2051 features and 200 trees with max tree depth and variable with 6 classes, took in
average 23.5 s (including splitting the set to train and test). However, we had theoretically
up to 48 cores available. When using single core, the execution time was 8.1 minutes.

Conclusion

The task which took longer time had to be all done only once. Therefore, spark is not
necesarrily needed, even though it would decrease the preprocessing time.

82

6 Summary

6.1 Summary and Conclusions
In this thesis, we explored the books in Project Gutenberg and created a model which
classifies a text based on author, year and category. The model also estimates the topics
covered by the book. In the following, we list the observation we made throughout the
exploration and prediction process.

Exploration

For the majority of observed features, the class P – Language and Literature, representing
mainly fiction books, behaved differently than other types of literature. This category
had shortest average words and sentences as well as the highest proportion of stop words
or usage of question marks and exclamation marks. It confirms what one would expect
–that these books are written in a more simple language than technical or scientifical
texts.

Proportion of stop words is a very useful measure. Based on the proportion, we
can determine if the book is written in the given language or if it contains proper
sentences. Using stop words, we were able to filter out many documents consisting of list
or dictionary entries, which were not the are of interest for this work.

Word feature vectors are not much correlated – to maintain 90 % of the data variance
using PCA, the number of dimensions has to be around 60 % of the original feature
vector length.

Predictions

The author classification was surprisingly successful. Even though we had over 1 400
authors, the accuracy of the classifier was 74 %. The best performance reached the
naive Bayes model with binary features, which captures only if the word occur in the
document or not. Using random forest classifier with the 10 most common words (excl.
stop words), we could predict the author significantly better (12 %) than the random
guess would (1 %).

Usually, naive Bayes classifier performed better than decision trees, where it is hard
to find the balance between underlearning and overlearning. However, random forest
classifier consisiting of small decision trees outperformed the naive Bayes classifier for all
tasks except for author prediction, where NB classifier was 5 % better.

Decision trees and models based on them don’t profit a lot from the tfidf term weighting.
The reason behind that is that decision trees look at each feature individually. Therefore,

83

it doesn’t matter if the feature value domain was transformed.
For different predicted metadata, we showed the most important features for the given

prediction. It gives us an idea of what is typical for the given epoch and literature style.
For example, the typical word for the genre adventure stories turned out to be the word
adventure. For the detective stories, it was the word police.

6.2 Future Work
The whole analysis was performed only on English books. This saved a lot of work,
because the English grammar is not as complicated as in other languages. Moreover, most
of the natural language processing research was done related to English language. As a
result, the lemmatization and POS tagging processes of English texts have satisfactory
results, which is not the case for other languages. However, the analysis of books in other
languages could be very interesting – it would provide us with some extra knowledge of
the language specifics.1

As the corpus we worked with was quite heterogeneous, it might be worth it to focus
only on a small part of it, e.g., poetry or historical novels, and do more in-depth analysis.
We did this partially as we extracted the character interactions or trained the models
for different topics. Instead of taking all books and filtering out the not interesting
ones, which is how we proceeded, one could start with an empty set and include only
documents having some properties. This would provide much cleaner data for the cost
being smaller book working set.

The bottleneck of the feature extraction process was the CountVectorizer, which had
to keep the whole vocabulary including all bigrams in the memory during the term
counting process. Using parallelization (e.g. spark), the top n terms from the corpus
could be computed using simple word counts. However, as this process had to be done
just once, it was not necessary.

There are other promising approaches for representing text data. It would be interesting
to see if other features, such as word2vec or doc2vec, give better results and new insight.

1We saw some grammar specific results when analyzing distributions and correlations of POS.

84

Bibliography
[1] Simona Balbi. Beyond the curse of multidimensionality: High dimensional clustering

in text mining. Statistica Applicata, 22(1):53–63, 2010.

[2] Tom Betts, Maria Milosavljevic, and Jon Oberlander. The utility of information
extraction in the classification of books. In Proceedings of the 29th European
Conference on IR Research, ECIR’07, pages 295–306, Berlin, Heidelberg, 2007.
Springer-Verlag.

[3] Leo Breiman and E. Schapire. Random forests. In Machine Learning, pages 5–32,
2001.

[4] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research, 16:321–357, 2002.

[5] Project Gutenberg. Information About Robot Access to our Pages.
http://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_
Access_to_our_Pages.

[6] Project Gutenberg. Motion Pictures of the Apollo 11 Lunar Landing. http:
//www.gutenberg.org/ebooks/116.

[7] Project Gutenberg. The Complete Project Gutenberg Catalog. http:
//www.gutenberg.org/wiki/Gutenberg:Feeds#The_Complete_Project_
Gutenberg_Catalog.

[8] Michael Hart. Free ebooks by Project Gutenberg. http://www.gutenberg.org/.

[9] Michael Hart. The History and Philosophy of Project Gutenberg.
http://www.gutenberg.org/wiki/Gutenberg:The_History_and_Philosophy_
of_Project_Gutenberg_by_Michael_Hart, 1992. [Online; version from 7-April-
2010].

[10] Scott Hemphill. Pi to 1,000,000 places. http://www.gutenberg.org/ebooks/50.

[11] Karen Spärck Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of Documentation, 28:11–21, 1972.

[12] Marie Lebert. Project Gutenberg (1971-2008). 2008. http://www.gutenberg.org/
ebooks/27045.

85

http://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_Access_to_our_Pages
http://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_Access_to_our_Pages
http://www.gutenberg.org/ebooks/116
http://www.gutenberg.org/ebooks/116
http://www.gutenberg.org/wiki/Gutenberg:Feeds#The_Complete_Project_Gutenberg_Catalog
http://www.gutenberg.org/wiki/Gutenberg:Feeds#The_Complete_Project_Gutenberg_Catalog
http://www.gutenberg.org/wiki/Gutenberg:Feeds#The_Complete_Project_Gutenberg_Catalog
http://www.gutenberg.org/
http://www.gutenberg.org/wiki/Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael_Hart
http://www.gutenberg.org/wiki/Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael_Hart
http://www.gutenberg.org/ebooks/50
http://www.gutenberg.org/ebooks/27045
http://www.gutenberg.org/ebooks/27045

[13] Christopher D. Manning. Part-of-Speech Tagging from 97% to 100%: Is It Time for
Some Linguistics? 2011.

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013.

[15] David Nadeau and Satoshi Sekine. A survey of named entity recognition and
classification.

[16] The Library of Congress. About the Library. http://www.loc.gov/about/.

[17] The Library of Congress. Library of Congress Classification Outline. http://www.
loc.gov/catdir/cpso/lcco/.

[18] The Library of Congress. Library of Congress Subject Headings. http://id.loc.
gov/authorities/subjects.html.

[19] University of Pensylvania. Penn Treebank P.O.S. Tags. https://www.ling.upenn.
edu/courses/Fall_2003/ling001/penn_treebank_pos.html.

[20] Martin F .Porter. An algorithm for suffix stripping. Program, Vol. 14 Issue: 3,
pp.130 - 137, 1980.

[21] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian
approach to filtering junk e-mail, 1998.

[22] Dr. Afşar Saranli, Stuart Russel, and Peter Norvig. Artificial intelligence: A modern
approach, 2nd ed.

86

http://www.loc.gov/about/
http://www.loc.gov/catdir/cpso/lcco/
http://www.loc.gov/catdir/cpso/lcco/
http://id.loc.gov/authorities/subjects.html
http://id.loc.gov/authorities/subjects.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang
Msc. Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel
– insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt
habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit
vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

Veröffentlichung
Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek des
Fachbereichs Informatik eingestellt wird.

Ort, Datum Unterschrift

87

	Introduction
	Motivation
	Goals
	Outline

	Background and Related Work
	Project Gutenberg (PG)
	Literature Classification and Tags
	Library of Congress Classification (LCC)
	Library of Congress Subject Headings (LCSH)

	Text Analysis
	Vector Space Model
	Bag of Words Model (BOW)
	Term Frequency–Document Inverse Frequency (tf–idf)
	Part of Speech (POS)
	Stemming & Lemmatization
	Stop Words
	N-gram
	Named Entity

	Machine Learning Models & Algorithms
	Naive Bayes Classifier
	Decision Trees
	K-mean Clustering

	Related Work

	Design
	Data Processing Pipeline
	Preparing Metadata
	Preparing Documents
	Document Processing

	Creating feature vectors
	Text features
	Word Features
	Combined features
	Feature Vector Normalization

	Classification Task
	Main Characters Extraction and Exploration
	Identifying Character Names
	Character Grouping
	Computing Interaction

	Implementation
	Downloading the Data
	Documents
	Metadata

	Used python Modules
	nltk
	spacy
	sklearn
	pandas

	Own Implementation
	Prediction Model
	Character Interaction Model

	Evaluation
	Document Exploration
	Document Selection
	Metadata Exploration
	Text Feature Exploration

	Feature Vectors
	Feature Vector Correlation

	Document Clustering
	Evaluating the Clusters

	Predictive Model Evaluations
	Author Prediction
	Epoch Prediction
	LCC class prediction
	Subject prediction

	Character Interactions
	Character Interaction Visualization

	Performance Analysis

	Summary
	Summary and Conclusions
	Future Work

	Bibliography

