
Accessibility Assistance for the Interactive
Navigation of Texts

Author:
Imad HAMOUMI

Supervisors:
Dr. Patricio FARRELL

Dr. Julian KUNKEL

MASTER THESIS

Institute of Mathematics

January 28, 2019

http://www.imadyamane.com
http://farrell.de
https://hps.vi4io.org/about/people/julian_kunkel
https://www.mat.tuhh.de/index_en.html

iii

Declaration of Authorship
I, Imad HAMOUMI, declare that this thesis titled, “Accessibility Assistance for the
Interactive Navigation of Texts” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

HAMBURG UNIVERSITY OF TECHNOLOGY

Abstract
Institute of Mathematics

Master Thesis

Accessibility Assistance for the Interactive Navigation of Texts

by Imad HAMOUMI

A mass increase of information has been observed in the last years. The web
has undergone a phase of rapid growth regarding content and became an important
medium. This growth led to new challenges for users to satisfy their information
needs, as well as for service providers to store content and make it easily accessible.
Researches have proposed new approaches that improve the quality of search ma-
chines, the accuracy of ranking algorithms, and the performance of storing systems.
However, they neglect the role of the interface that visually presents this informa-
tion and assists the user in finding it. Thus, these approaches are only usable if the
interface used is optimised to serve the users.

This thesis describes the dominant approach used today to search and explore
text data. Then, it proposes a navigation model that improves these approaches. In
order to proof the theory of this navigation model, three interfaces are implemented.
These interfaces integrate the data of a service that is used to search for research data.
This service serves as case study to evaluate the results. The evaluation is conducted
with test users and discussed at the end of the thesis.

HTTP://WWW.TU-HARBURG.DE
https://www.mat.tuhh.de/index_en.html

vii

Acknowledgements
The author would like to thank his supervisors, Dr. Patricio FARRELL and Dr. Julian
KUNKEL, for valuable ideas, support and motivation.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 The European Data Infrastructure . 2
1.3 Research Scope . 3
1.4 Thesis Structure . 4

2 Background 5
2.1 Introduction . 5
2.2 Overview . 5
2.3 Accessibility, Usability, and User Experience 7

2.3.1 Accessibility . 7
2.3.2 Usability . 8
2.3.3 User Experience . 8

2.4 Navigation Model . 9
2.4.1 Information Architecture . 9

2.5 Case Study: B2FIND . 14
2.6 Text Categorisation . 17

2.6.1 Text Classification . 18
2.6.1.1 Pre-Processing . 19
2.6.1.2 Feature Generation . 20
2.6.1.3 Classification Techniques 22

2.6.2 Text Clustering . 26
2.6.2.1 Clustering Techniques 26
2.6.2.2 Evaluation Metrics . 29

3 Implementation 35
3.1 Introduction . 35
3.2 Overview . 35
3.3 Data Set . 35
3.4 Document Manager . 37

3.4.1 Pre-processing . 37
3.4.2 Feature Extraction . 38
3.4.3 Building up the Data Models . 38

3.5 Index Manager . 39
3.5.1 Search Engine: Elasticsearch . 39

3.6 Search Manager . 41
3.7 Server . 41

x

3.8 Front-End . 41
3.9 Navigation Experiments . 42
3.10 Navigation Testing . 44

4 Experiments and Results 53
4.1 Introduction . 53
4.2 Categorization Results . 53
4.3 Navigation Results . 56

5 Conclusion 61
5.1 Discussion . 61
5.2 Future Work . 62

A Table of English Stopwords 65

B Elasticsearch 67

C Test Users’ Background 69

D System Usability Scale 71

E Scenario Tasks for Test users 73

F Test Users’ Log 75

G Experiment Analysis 77

H CD-ROM 79

Bibliography 81

xi

List of Figures

1.1 The European data infrastructure . 4

2.1 Search and navigation model . 6
2.2 Differences and relationships between usability and user experience . 9
2.3 Example of system layout . 10
2.4 Example of header . 10
2.5 Example of documents representation by Scimago 11
2.6 Example of word cloud . 13
2.7 Example of representation based on word cloud. 14
2.8 Example of multiple clustering navigation approach 15
2.9 Example of hierarchical navigation approach 15
2.10 A final example of suggested system . 16
2.11 Overview of the B2FIND architecture 17
2.12 Screen capture of B2FIND ’s graphical user interface 18
2.13 Screen capture of B2FIND ’s creator filter 20
2.14 Screen capture of B2FIND ’s resource type filter 21
2.15 Example of result list . 32
2.16 Support Vector Machines . 33
2.17 K-means example. 33

3.1 System architecture . 36
3.2 Top 5 languages in B2FIND . 37
3.3 Example of Elasticsearch cluster . 40
3.4 Example of Flask endpoint . 42
3.5 Example of Javascript endpoint . 42
3.6 Layout 1 graphical user interface . 44
3.7 Layout 2 graphical user interface . 45
3.8 Layout 3 graphical user interface . 46
3.9 Example of result representation in layout 1 47
3.10 Example of result representation in layout 1 47
3.11 Navigation example in layout 2 . 48
3.12 Example of result representation in layout 2 48
3.13 Navigation issue in layout 1 . 49
3.14 Example navigation in layout 2 . 49
3.15 Navigation example in layout 3 . 50
3.16 Navigation example in layout 3 . 50
3.17 Navigation issue in layout 3 . 51

4.1 Success rate of each layout . 56
4.2 Success rate of each task . 57
4.3 Hiding a cluster in layout 1 . 57
4.4 Issue of cluster title in layout 3 . 57
4.5 Boxplot of completion time on each layout 58

xii

4.6 SAS answers of layout 1 . 58
4.7 SAS answers of layout 1 . 59
4.8 SAS answers of layout 3 . 59

5.1 Example of instruction of the guide . 62
5.2 Example of instruction of the guide . 62

G.1 Multiple comparison of time token by each group using Tukey’s hon-
est significance test. 77

xiii

List of Tables

2.1 Issues and effort of actions in classical interfaces 7
2.2 A list of metadata stored in B2FIND . 17
2.3 A list of options used by B2FIND to filter the search result 19
2.4 An example of a text pre-processing workflow 21
2.5 Example of a data set . 22
2.6 Bag-of-words feature example . 22
2.7 An example of 2-grams generated from Example 2.5 23
2.8 A calculation example of TF.IDF weighting 23
2.9 An example of a TF.IDF matrix. The class of documents d1, d2, d3 and

d4 is known. But the class of document dD has to be predicted 24
2.10 Example of categorical data set . 28
2.11 Confusion matrix . 29

3.1 The occurrence of each attribute in the data set 37
3.2 Code example to get pages of category physics from Wikipedia 39
3.3 The path to each layout . 43

4.1 Classification results of Wikipedia’s data set 53
4.2 Titles of documents from B2FIND . 54
4.3 K-means silhouette coefficient by cluster size 54
4.4 Code example of the silhouette_score function in Python 55
4.5 K-modes silhouette coefficient by cluster size 55
4.6 A two-sample t-test that investigates whether the means of time token

in each layout differ from one another 58

A.1 Example of English stop words . 65

B.1 A JSON query to create the index in Elasticsearch 67

D.1 System usability scale . 72

xv

List of Abbreviations

EUDAT European Data Infrastructure
GUI Graphical User Interface
UI User Erxperience
SAS System Usability Scale
DKRZ Deutsches Klimarechenzentrum
API Application Programming Interfaces
JSON JavaScript Object Notation
OAI-PMH Open Archives Initiative Protocol for Metadata Harvasting
CKAN Comprehensive Knowledge Archive Network
CESSDA Consortium of European Social Science Data Archives
UH Universität Hamburg
TUHH Hamburg University of Technology
VSM Vector Space Model
BOW Bag- of- Words
DF Document Frequency
TF Term Frequency
IDF Inversed Document Frequency
SVM Support Vector Machines
NB Naive Bayes
TP True Positive
TN True Negative
FN False Negative
FP False Positive
HIV Human Immunodeficiency Virus

1

Chapter 1

Introduction

“When you apply computer science and machine learning to areas that haven’t had any
innovation in 50 years, you can make rapid advances that seem really incredible.” - Bill
Maris

1.1 Motivation

With the rapid development of digital technologies and smart devices, a large amount
of data is being generated every day. This data has become more relevant and a ma-
jor priority for businesses companies, who started collecting and storing it [23, 13].
As a result, various techniques have been proposed, with the aim to manage such
amount of data and make it useful. But what does useful actually mean?. According
to [25, 10], the larger part of data collected by companies today consists of structured
and unstructured textual data. Companies analyse and explore textual data to gain
new insights about their customers and to understand their surfing behaviour, to
improve business processes, or to predict future developments.

One of the important tasks when possessing data is to make it easily accessible.
Consider, for example, a news company website with millions of daily visits, who
produces gigabytes of news articles every week. This company can process this data
to generate business values based on political decisions such as predicting stock
market crashes, forecasting product prices, or even providing supports to election
campaigns. However, possessing this articles is the positive aspect, the other aspect
is how this huge amount of articles can be accessed. The result is that the visitors are
exposed to much more information than they used to be.

In the last years, information retrieval (IR) techniques assisted to extract impor-
tant informations from huge amount of sources. These techniques focused on ap-
proaches that can be used to retrieve relevant information, and avoid overwhelming
the users [60]. As a result, new tools called search engines were born. These have
emerged as efficient techniques for finding relevant information. They are built fo-
cusing on query streams, and optimized based on factors such as response time,
storage size, ranking and quality of the search results. However, their designers ig-
nored to ask why the users are performing their searches, and how the result can be
presented [44].

The question why a user is posing a query is actually essential to satisfy his/her
need. The intention behind a search process is not random. No user opens the
browser and says "I think I will do some searches" [44]. A search request has al-
ways an objective and is merely a way to satisfy an underlying goal that has to be

2 Chapter 1. Introduction

achieved. This goal may be looking for the next car to buy, information about an op-
erating system, or looking for a pet to adopt. In fact, all the goals of these examples
can be conveyed by the same query, namely "Buy a Jaguar". The result would be a
mixed list of documents containing content about the Jaguar car brand, the Jaguar
operating system by Apple, and about the animal jaguar.

Many researchers assume that only a high performing search engine improves
the search behavior. However, the search representation is also important. The re-
sult of the search query is just back-bone of the search system, the interface is re-
sponsible for presenting the results to the user. If this result is presented in lists that
are too long, the user could just visit the first documents. If the result is not well
categorised, the user could leave the system. Generally, improving the user inter-
face of the search engine will optimise the result representation, and the user will
automatically navigate to the specific information faster, which would yield to more
insight about the results [3].

While much work has been done on efficient processing of huge volumes of text
data [23], little work considers how to present them, and how to make them easy
navigable. This thesis will provide an approach to fill the gap of how to navigate huge
amount of textual data. This is done by answering the following research questions:

• How to organise textual data?

• How to make this data accessible ?

• How to present this data for navigation?

• How to evaluate the quality of such a system?

These questions are considered by presenting a concrete example that will serve
as case study. This example is about a solution that is used to search for research
data sets. Thus, the next section gives a brief introduction about the European data
infrastructure project.

1.2 The European Data Infrastructure

The amount of data records generated by today’s many research communities, as
well as individuals, is increasing exponentially. This makes it increasingly complex
and difficult to access, share or exploit this data for scientific research [61]. Due to
this, many research institutes recommend their researchers to use data management
solutions before starting new projects [14].

The European Data Infrastructure (EUDAT) is a project that comprises 25 Euro-
pean partners, including technology providers, research communities, and funding
agencies from more than twelve countries. It works with multiple research com-
munities and individuals to manage the rising tide of scientific data via advanced
data management technologies [83]. The goal of this project is to provide European
researchers who are producing or using very large data sets for research purposes
with data services to create, maintain, archive, preserve, or find research data. At
present, there are five data services that can be used by research communities.

• B2DROP: A Dropbox-like secure cloud storage dedicated to researchers to ex-
change, store, and keep their research data up-to-date. B2DROP allows them

1.3. Research Scope 3

to define the permissions, duration, and the method to exchange their research
data with other researchers [30].

• B2SHARE: A reliable, user-friendly open solution for researchers and research
communities to store and share small-scale research data in many extensions
and formats. B2SHARE facilitates data storage, guarantees a long duration of
persistence, and promises worldwide sharing. Researchers are able to define
access policies for their data and allow it to be integrated using application
programming interfaces (API) [33].

• B2SAFE: This service was developed to enable researchers implementing data
management policy rules on their data across different regions. In addition,
B2SAFE prevents this data from being lost in case of long-term archiving or
preservation, and serves it for running on high-performance computers for
intensive processing and analysis [32].

• B2STAGE: An extension of the B2SAFE and B2FIND services, it was devel-
oped to create a reliable and efficient way of transferring large-scale research
data sets between high-performance computers and EUDAT storage resources
[34].

• B2FIND: A data discovery service launched by EUDAT to find the research
data stored by services such as B2SAFE and B2SHARE. This solution provides
an interface to search and browse datasets via keyword searches and currently
contains more than 420,000 indexed records based on metadata harvested from
research data [31]. Furthermore, B2FIND provides a graphical user interface
(GUI) to interact with its modules using search fields and facets.

Figure 1.1 shows the infrastructure provided by the EUDAT for researchers to
maintain their research data.

As one of the most important platforms in research data management in Eu-
rope, EUDAT has been working with many research communities to determine their
needs for handling research data, as it is trying to develop new relevant solutions
and improve existing services [36]. Thus, this thesis uses B2FIND service as proof-
of-concept to illustrate the various methods discussed for optimising the search and
navigation of text data.

1.3 Research Scope

The contribution of this thesis is not intended to be the reimplementation or exami-
nation of B2FIND. The thesis will merely focuses on approaches to improve the user
productivity when navigating big amount of textual data. This is done by:

1. studding the dominant approaches used in today’s solutions

2. showing the drawbacks of these solutions

3. suggesting a model that uses graphical visualisations for text representations

4. suggesting a model that uses word clouds for text representations

5. integrating the suggested models with B2FIND as proof-of-concept

6. using classification and clustering approaches to categorise text data

7. evaluating the quality of the model using test users

4 Chapter 1. Introduction

FIGURE 1.1: The European Data Infrastructure [31]

1.4 Thesis Structure

The thesis is organized as follows: The first chapter introduces the research, the
research questions, the research context, EUDAT. Chapter 2 presents a literature re-
view, shows the benefits of an optimised text navigation interface, proposes a new
model to improve the issues of classical navigation models, and introduces B2FIND
as case study. A theoretical discussion about text categorisation is also presented at
the end of this chapter. Chapter 3 gives an overview of the experimental setup of
this research. First, it introduces the architecture of the application. Then it shows
analyses of the data from B2FIND and mentions the tools used for the implementa-
tion. In addition, it introduces an approach that we used to evaluate the methods
proposed in Chapter 2. In Chapter 4, the results of the implementation of each inter-
face and the results of the experiment are discussed in detail. Chapter 5 presents the
final conclusion and suggestions for future research.

5

Chapter 2

Background

“Many receive advice, only the wise profit from it” - Harper Lee

2.1 Introduction

This chapter gives a theoretical explanation about all topics in this thesis, starting
with explaining the importance of a good presentation model when navigating tex-
tual data. Then concepts of accessibility, usability, and user experience are described
to understand their guidelines to build web interfaces. In addition, text naviga-
tion techniques that we used in our suggested solutions are introduced, as well as
B2FIND as service proposed as proof-of-concept for the navigation strategies. We
Specifics about the text categorization (TC) domain and a detailed explanation on
how to evaluate the performance of the text classification systems and navigation
strategies end this chapter.

2.2 Overview

Much research on search engines [55, 26, 51, 6] and database systems [8, 80, 72] fo-
cused on studying approaches which improve the quality of textual search results.
It is assumed that only accurate search systems with high performance improve the
search process. However, such systems are interfaced to a graphical representation
that allows navigating the search results. Thus, their assumption is only valid if the
adopted representation is optimal.

An interesting approach [2] divides the search and navigation process into three
stages. In each stage, it shows the behavior and actions of the user (Figure 2.1 shows
these stages and their relation [49, 3]). According to the authors, the last stage
(Information-retrieval) is the most important because even if the tool used is pow-
erful, the user could fail if he/she had no idea about the query he would start with;
or when the results are not well presented.

• Work task: At this stage, the user recognises an information need and decides
to satisfy it.

• Information-seeking task: At the second stage, the user selects a strategy to
use in order to satisfy his/her need. In addition, the user chooses a tool for
these tasks (for instance, using a search engine, navigating to a specific page
etc).

6 Chapter 2. Background

• Information-retrieval task: At the last stage, the user formulates the needs
in form of search queries, examines the result and selects a document. These
three actions are repeated, until his objective is reached.

FIGURE 2.1: Search and navigation model [2]

Currently, the dominant approach for navigating textual data is a keyword text
entry followed by the presentation of a textual list of results in relevance order [63].
This appraoch gained its popularity as s sufficient way to use the network band-
width and screen space (a pagination is used to only retrieve a sub set of the data by
each request). But in the present circumstances, the network bandwidth is not a real
issue anymore. The real issue when navigating this data is the sheer amount: The
search results become too long, thus a significant amount of screen space is required.
In addition, it requires a lot of effort from the user to navigate that many pages (in
most cases, the pagination contains many pages and is positioned at the bottom of
the page).

Extensive research [3] has been done on optimising the search results, and divid-
ing up the actions during the information retrieval into six actions. Each of these
actions is termed according to a certain effort it requires. The first action is called
scan screen and means that a user has to view the results on the screen and deter-
mine which of these results are most relevant. According to the author, the effort
needed for this action is mostly medium, but could be minimised to a low effort if
the result is categorised (for example, the result can be aggregated into categories
of documents with similar content). The second action is scrolling (medium effort)
and occurs when the screen is small, the design of the interface is bad, or too much
information is presented. The author notes that scrolling is desired only in cases
where the user is just reading (in case of weblogs), and not searching for an infor-
mation. The third action is pagination (medium effort) and means that the result is
divided into sub-sets of documents where the most relevant are placed on the first
page. However, relevancy depends on the search query and algorithm used, and in
some cases, the most relevant result could be on the second or third page of search

2.3. Accessibility, Usability, and User Experience 7

results. The fourth action is item selection (medium effort) and refers to the action
of isolating the specific item from the result list. The fifth action is reformulating the
search query. The author marked this action with a hight effort because the user has
to think about strong keywords to find the most relevant documents that satisfy his
information need. He also recommends to identify strong keywords in relation to
the keyword given by the author and add them to the search query, in order to min-
imise the effort behind this action. The last action is view web page and has a variable
effort as it depends on the design of the interface.

Table 2.1 summarises the actions that are usually done by a user when search-
ing or navigating textual data. This table illustrates the effort of each action and
mentions potential issues.

Action Effort Issue
scan screen medium mixture of documents
scroll screen medium pages too long
pagination medium too many sub-pages
select result medium relevant documents, duplicate pages, mixture

of documents
reformulate query high search keyword to start with
view page variable depends on the design

TABLE 2.1: Issues and effort of actions in classical interfaces [2, 3]

2.3 Accessibility, Usability, and User Experience

After having discussed the importance of the interface when searching for textual
data, seeing the dominant approach used in today’s solutions and their issues, we
suggest a new navigation model that provides improved components, and espe-
cially offers new ways to search for documents and navigate text data. But before
we do that, we would like to introduce some concepts in accessibility, usability, and
user experience (UI).

2.3.1 Accessibility

Accessibility refers, in our context, to a measure of how obvious and easy it is to
access, navigate, and understand the content of a web page. We have to note that
some users may be operating or processing some types of information differently
than others. They could even have old versions of web browsers. Tim Berners-Lee1

defined accessibility as the possibility of accessing a page from everyone, including
people with disabilities: “The power of the Web is in its universality. Access by
everyone regardless of disability is an essential aspect”. Thus, it is required to follow
some simple guidelines [12] that explain how to make web content accessible. In
general, these 14 guidelines address two aspects: making content easy navigable
and making it understandable.

1. Provide equivalent alternatives to auditory and visual content.

2. Don’t rely on colour alone.

1W3 Director and inventor of the World Wide Web https://www.w3.org/standards/webdesign/accessibility.

8 Chapter 2. Background

3. Use markup and style sheets and do so properly.

4. Clarify natural language usage.

5. Create tables that transform gracefully.

6. Ensure that pages featuring new technologies transform gracefully.

7. Ensure user control of time-sensitive content changes.

8. Ensure direct accessibility of embedded user interfaces.

9. Design for device-independence.

10. Use interim solutions.

11. Use W3C technologies and guidelines.

12. Provide context and orientation information.

13. Provide clear navigation mechanisms.

14. Ensure that documents are clear and simple.

2.3.2 Usability

Usability refers to the extent to which users can accomplish a specific task [7], it
measures the ease with which a user can operate, interact with input and output
of a system or component [39]. In the context of this thesis, we use the definition
provided by [75], that refers to the usability as: “The extent to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”. In so doing, each time we were working
on the prototypes, we asked the three questions:

• Effectiveness: How accurate could a user achieve certain task?

• Efficiency: How many steps did the user take to achieve the goal?

• Satisfaction: How comfortable is the work system to its user?

2.3.3 User Experience

User experience was defined by [76] as the perceptions, emotions, beliefs, and prefer-
ences, that result from the use of a system. Based on this definition, we can consider
the usability as part of user experience. This judgment was supported by [24], who
considered user experience as a consequence of three factors:

1. Characteristics of system: comfortability, functionality, usability.

2. User’ s internal state: motivations, expectations, tasks.

3. Context: content, organization.

Figure 2.2 shows the differences and relationships between usability and user
experience.

2.4. Navigation Model 9

FIGURE 2.2: Differences and relationships between usability and user experi-
ence [22]

2.4 Navigation Model

As we said in the previous section, the aim of this thesis is to propose various ways
to navigate textual data. Each of these methods has to be according to the guidelines,
and minimises the search effort of the actions discussed in the previous sections. As
an evaluation method, an approach is used that is discussed in the next chapter.

2.4.1 Information Architecture

According to [57], information architecture is the science of structuring information
to support its usability and maximise its accessibility. In our context, we refer to it
as the way that the data has to be transformed in order to be understandable. Thus,
the first step is to break up the page into four sections, and then discuss the type and
kind of information that should be presented in order to increase the usability and
user experience.
Figure 2.3 shows an example of the proposed structure. The areas marked in colors
indicate the four components we mention before.

Blue Area

This section is called header and is usually the first section seen by a user. Therefore,
it contains representative and control components, and has to be static and informa-
tive. Four our design, we suggest to provide content that helps the user answer the
following questions:

• Where am I?

• What should I do to find what I’m looking for?

The answer to the first question can be delivered using textual or visual content
(e.g. using a description, image, or logo etc.). Here, the user wants to ensure that
he/she is using the right service. In order to answer the second question, the user
expects some component that assists to find what he/she is looking for. Thus, we

10 Chapter 2. Background

FIGURE 2.3: An example of system layout proposed to structure the data. Each
color represents a section

use a search field that serves as a controller to search for data, and trigger the content
displayed in the other sections (see Example 2.4).

FIGURE 2.4: An example of header that contains a logo in the left side and a
search field in the right side

Green Area

The green section is the main and most important. It contains the search results
after using the search field discussed previously. If it is not user friendly and under-
standable, the user cannot succeed.
At the initial state, the search field is mostly empty; in this case, the content of this
section depends on the strategy followed:

• Strategy 1: We just leave the section empty and inform the user to start navi-
gating by using the search field presented in the previous area. This strategy
is simple and easy to implement, but has a drawback when the user doesn’t
know the search term to start with.

2.4. Navigation Model 11

• Strategy 2: We can display a list of documents that the user may use to start
navigating. These documents could be selected randomly or based on a spe-
cific criterion. The problem here is to define criteria that suit every user. An-
other drawback is that in some cases, the user has to paginate many pages until
finding what he/she is looking for.

As we mentioned earlier, when a user searches for a document using a search
term, in many cases the result found is very long. Thus, a pagination is often used
to break up a set of documents into subsets in order to put them in pages. But some
paginations can have too many pages, which leads the users to not browsing them
all [54]. Another issue with the results is the possible presence of duplicate content.
This could decrease the diversity of results shown on each page, and also force the
user to either visit each document to explore its content or, in the worst case, to quit
to search.

We want to avoid reimplementing similar solutions to those we discussed in sec-
tion 2.2, but at the same time we want to deliver a better way to navigate documents.
If we use a list to display the results, we face the same issues (for instance, many du-
plicate documents or long result lists). Another issue that we want to solve is the
mixture of results, such as mixing documents from various research areas. Thus, we
suggest to cluster the result in groups of documents that share the same research
area, discipline, and content. Figure 2.5 shows an example of clustered documents
implemented by the SCImago Journal2 community. The advantage of this represen-
tation is that the user would stay in the scope of his interest by searching for docu-
ments inside a cluster only. However, it has the drawback that the user would have
to hover over each document to see its name. To solve this drawback, we suggest to
use of a word cloud representation instead. The workflow is as follows:

FIGURE 2.5: An example of header documents representation by Scimago

2https://www.scimagojr.com/shapeofscience/.

12 Chapter 2. Background

1. When the search field is empty, we show the top keywords of each cluster. The
user is able to select the desired number of clusters he/she wants.

2. When the user inserts a search term, we look for this term in each cluster and
display a result in the form of a word cloud.

3. For each given term, we look for documents in all clusters that contain these
terms and display only clusters with hits.

4. If the user selects a word from a cluster by clicking on it, we only continue
looking for documents inside that cluster.

Figure 2.6 shows an example of a word cloud. The size of each word symbolises
its importance (number of occurrence). The advantage of this method is that we
can summarize words of duplicate documents by increasing their size and emphasis
strong keywords (recall the high effort behind finding or reformulating the search
query), although this solution unfortunately has a negative effect when there are a
large number of words inside each cluster. The representation would be unclear and
the user can be confused.
In order to avoid this negative effect, we defined some rules:

• We only show the top N keywords based on their importance.

• We remove prepositions, articles, pronouns, adjectives from the result because
they do not relate to the content (see Appendix A Table A.1).

• We know that the result found is based on the given search terms, therefore we
hide them from the result list.

• If a keyword appears with a specific importance in many clusters, we declare
it as insignificant and remove it from the results. The reason is that in such a
case, the keyword is meaningless and uninformative concerning the content of
the clusters. In addition, the user would have to explore each cluster having
that keyword.

We mentioned before that when a word is selected from a cluster (see workflow
discussed above), we only look for documents that match the given search terms,
including this word inside its cluster. In this case, the list of results will also be
grouped in clusters. There are various ways to tackle this navigation problem:

• Multiple Clustering Navigation Approach: This approach is illustrated in
Figure 2.8. In this example, a user would see the collection of documents clus-
tered into two groups; if he selects a word from cluster one (blue), he would
only get documents that match his selection, and the result would be grouped
in three sub-clusters. By choosing a new keyword (for instance, from the sub-
cluster on the right side), the user would again get only matching documents,
this time clustered into two groups, etc.
The benefit of using this approach is that it gives the user a general idea about
the scope of documents in each cluster. However, multiple clustering navi-
gation needs a high calculation performance and long processing time when
building the clusters. Moreover, its quality depends on the clustered data.

• Hierarchical Navigation Approach: After clustering the collection of docu-
ments into groups, the result of each sub-cluster is then grouped by its meta-
data. An example of such a navigation technique is illustrated in Figure 2.9. In

2.4. Navigation Model 13

FIGURE 2.6: Example of word cloud [85]

this example, if a user selects a word from a cluster, the result is grouped into
disciplines (for instance programming languages, network, security...). By se-
lecting a new word from a discipline, the result will match documents grouped
by its authors, etc.
The first advantage of this approach is that we avoid building clusters each
time. The second advantage is that the data is grouped based on metadata
given manually, and does not relying on calculations based on data that could
be of bad quality. However, it is important to choose a grouping variable with-
out many different unique values, otherwise the group size would be too long.
This approach could also be confusing when the user has no idea about the
context and values of the grouping variable (for instance, the user has no idea
about an author or his research area).

Red Area

This area is designed to contain elements needed to filter the result, and to control
the size of clusters and their content. In this area, we put elements that give the user
the ability to:

• select the number of clusters to start with.

• only select words that only appear in one cluster.

• filter the result based on the document ’s metadata (for instance, return docu-
ments from a discipline, of an author or published within a certain date range).
However, this is optional as the metadata are not always available.

14 Chapter 2. Background

FIGURE 2.7: Example of a representation based on word cloud

Yellow Area

In this section we would like to display the top N documents of the result set. There
are two approaches that can be used in this case:

• Retrieve the top N documents from the collection set based on the search query.
This approach is easy to implement but suffers the drawback that in some
scenarios it only includes documents from one cluster in the top N list.

• Get the top N documents from each cluster. An advantage of this appraoch is
that we assure displaying top documents from each cluster based on the search
query.

Figure 2.10 illustrates an example that summarises the approaches discussed in
this section.

2.5 Case Study: B2FIND

B2FIND is an EUDAT discovery service designed, developed, and maintained by the
Deutsches Klimarechenzentrum (DKRZ). It is a central catalogue that uses metadata
gathered from research data collections and external community centre archives,
such as B2SHARE, to allow users to easily find scientific research data from different
communities [35].

The objective of B2FIND ’s developers was to design a solution that is modular,
in order to avoid technology lock-in and to be flexible when adding or changing new
components. This is also the reason why they decided, after many evaluations, to

2.5. Case Study: B2FIND 15

FIGURE 2.8: An example of multiple clustering navigation approach. The doc-
uments are grouped into two clusters (blue and red), each cluster is clustered

again into sub clusters

FIGURE 2.9: An example of hierarchical navigation approach. The documents
are grouped into clusters (red, blue and green), and then inside the clusters

into disciplines, and finally by authors

use CKAN3 as the underlying technology [69]. CKAN is an open-source data portal
platform that is widely used for publishing, sharing, and finding data.

Figure 2.11 shows the architecture of B2FIND, which consists of harvesters that
collect metadata records (Table 2.2) from data collections and external archives, such
us OIAI-PMH4, mappers to transform this metadata to the JSON5 format, and an
uploader to import the transformed data to B2FIND repositories. CKAN receives
these data over APIs and index it to SOLR6.

Currently, the only way to access B2FIND is to use its graphical user interface
with a standard web browser (Figure 2.12). This interface offers a search field for
keyword search and a facet of filters. Table 2.3 illustrates a list of variables used to
filter the search result. [74] conducted several tests to evaluate the usability and user
experience of EUDAT, based on questionnaires and scenarios where test users were
given tasks to complete. For B2FIND, the users had to complete twelve tasks, such

3https://ckan.org/.
4OAI-PMH stands for Open Archives Initiative Protocol for Metadata Harvasting.
5JSON stands for JavaScript Object Notation and is a lightweight data-interchange format. See https://json.org.
6SOLR is highly reliable, scalable and fault tolerant search machine.

16 Chapter 2. Background

FIGURE 2.10: A final example of suggested system

as doing some searchers using special keywords, filtering the results, checking the
metadata, and loading the data sets. The result of his evaluation showed that many
users were unable to complete their tasks without help, or the task took more than
the average time due to the difficulty of some components.

• Time: The time filter is confusing, the date formats suggested to assist the user
by typing a start and end period are different; the end field, for instance, shows
a date with time, whereas the start field shows a negative random value. In
addition, a system window appears when the user clicks on filter by time.

• Creator: This filter allows a user to select multiple available options and it has
a search field to look for creators. In some cases, the returned name is too long
to be displayed entirely; thus, B2FIND truncate the creator name to a specific
length that makes the result ambiguous (Figure 2.13).

• Resource Type: This search filter has two issues; the first is about the sugges-
tions displayed to the user, that are in some scenarios unclear (Figure 2.14 left
capture); and the second issue appears when clicking on one of these sugges-
tions (Figure 2.14 right capture).

Generally, the main issue with B2FIND ’s filters is the inconsistency of all com-
ponents. Some fields are applied directly after selection, and others need a click of
the apply button. In addition to that, the result listed in the middle of the page is in

2.6. Text Categorisation 17

FIGURE 2.11: Overview of B2FIND’s architecture [69]

Variable Description
Title The title of the uploaded document that indicates the content to

be expected.
Author The name of the author(s).
Url An external URL of the resource explained in the document.
Notes A note about the uploaded resource.
Tags A list of tags about the resource.
Group name The name of the group that published the resource.
Group title The title of the group that published the resource.
Group description A description about the group that published the resource.
Group image A logo of the group that published the resource.
Extras This fields contain many values such as the language, the publi-

cation date, and the rights of the resource.

TABLE 2.2: A list of metadata stored in B2FIND

some scenarios useless and uninformative. For instance, the search result of physical
oceanography contains many duplicate and redundant items that negatively affect
the productivity of users, and even could drive them away from using the service
(see Figure 2.15).

2.6 Text Categorisation

As established in the last section, the solution suggested in this thesis is based on
grouping documents that contain textual data into clusters. In order to do that, we
started using classification approaches to generate these groups. However, the result
was not satisfactory, therefore we redesigned our solution to use clustering methods.
In this section, we discuss various approaches.

18 Chapter 2. Background

FIGURE 2.12: A screen capture of B2FIND ’s graphical user interface [31]

2.6.1 Text Classification

Generally, classification is the task of assigning objects into one or more predefined
categories called classes or labels [86]. Classification problems belong to supervised
learning problems (definition 2.6.1 [53]) where the learner tries to output a value that
match an object to a class.

Definition 2.6.1 (Supervised Learning)

The goal of supervised learning is to seek a function g : X −→ Y which maps an exam-
ple x ∈ X to its output value y ∈ Y.
X = {x1, x2, ..., xN} is the input space, where x ∈ X represents the input object in the data.
Y is the output space, where y ∈ Y represents an output value from the possible values in Y.
The learning problem is called regression learning if Y = IR, and classification learning if
Y = C, where C = {c1, c2, ..., cM} represents the set of possible classes.

An example of a problem from definition 2.6.1 applied to a text classification task
can be a set of products that have to be classified to predefined categories based on
their description. A classifier that assigns a value from the set C = {laptops, tablets}

2.6. Text Categorisation 19

Filter Description
Time A time range field to set the start and end date of the data set.
Publication Year The year when the research was published.
Communities A list of names of existing communities.
Tags A note about the uploaded resource.
Creator The institute that created the resource.
Discipline The discipline of the resource (extracted from the field Extras - see Table

2.2).
Language The language of the resource (extracted from the field Extras).
Publisher The publisher of the resource (extracted from the field Extras).
Resource Type This field contains many values such as dataset, series, survey data (ex-

tracted from the field Extras).

TABLE 2.3: A list of options used by B2FIND to filter the search result

is called binary classifier. If the classifier assigns a value from a set C that contains
more than 2 values (for instance C = {laptops, tablets, printers}), then the classifier
is called a multi-class classifier. When the classifier assigns a set of target labels to a
single product, the classifier is called multi-label classifier.

Two components are important to be designed carefully in order to build up a
good classification system. The first component is the input that has to be trans-
formed and preprocessed before it is provided to the classifier. The second com-
ponent is the function g (the classifier itself) that has to be appropriately selected
depending on the input data [20]. In the next chapter, we will discuss various meth-
ods to convert the data to a set of features that can be used by the classifiers for text
classification tasks.

2.6.1.1 Pre-Processing

Before textual documents are used for classification problems, some pre-processing
tasks with significant impact on the classification process are usually performed.
One of these important tasks that need to be accomplished is that of document pre-
processing, document representation, and feature selection.
The document pre-processing stage can consist of many stages such as dividing the
document up into pieces of words or phrases called tokens [82], removing insignifi-
cant words which frequently appear in the text without having much content infor-
mation [68] (e.g. prepositions, conjunctions, etc, see the stop words list in Appendix
A), and stemming words in order to convert them into their similar canonical form
[29] (for instance, the word computing will be converted to compute, lovely to love
etc.).
Table 2.4 shows an example of a document (original text) and its output after passing
each stage. Note that it is not required to use all these stages in the pre-processing
phase. The designer of the classification system has to choose the appropriate trans-
formation based on the kind of data and quality of the result (for instance, the phrase
"runs yesterday" may refer to a runner, while "long running" may be about a com-
puter battery lifetime. In this case the stemmer makes the classification quality
worse, not better).

20 Chapter 2. Background

FIGURE 2.13: A screen capture of B2FIND ’s Creator filter. The 5-th row of the
result is truncated after 16 characters which led to ambiguity problems

2.6.1.2 Feature Generation

The next step after pre-processing the documents, is to convert their data in a repre-
sentation with which a classifier can work (this representation is called Vector Space
Model (VSM), see Definition 2.6.2 [20]). In general, textual data can be represented
in two methods: The first method represents the text as strings, in which a docu-
ment is a set of words [9]. The second method is called bag-of-words and is the
most common way to represent textual data, because of its simplicity for classifica-
tion purposes [43, 50, 20].

Bag-of-Words Model

The bag-of-words (BOW) model considers each document as a set of words (called
features or terms) that occur with a certain frequency. This representation of the doc-
ument is entirely independent of the sequence of words in the collection. As an
example, we have a data set (Table 2.5) consisting of only two documents:

Table 2.6 shows the BOW representation of the documents of Example 2.5. Each
document dj is represented as a vector ~dj =< f1j, f2j, ..., ftj > where fij is the number
of occurrence of a feature in the document dj.

Definition 2.6.2 (Vector Space Model)

Given a collection of documents D = {d1, d2, ..., dD}, let V = {v1, v2, ..., vV} be the set
of distinct words in the collection. Then V is called the vocabulary. The frequency of the
word w ∈ V in document d ∈ D is shown by fw,d. The term vector for document d is
denoted by ~dj = (fw1,j, fw2,j, ..., fwV ,j).

2.6. Text Categorisation 21

FIGURE 2.14: A screen capture of B2FIND ’s resource type filter. The left figure
shows some invalid suggestions, such as in the 6th row. The result list is empty,

although the 6th row shows 3 existing data sets

Stage Function Output
1 Original text A document is a written, drawn, presented, or memori-

alised representation of thought.
2 Lowercase a document is a written, drawn, presented, or memori-

alised representation of thought.
3 Remove stop words document written drawn presented memorialised repre-

sentation thought
4 Stemming document written drawn present memori represent

thought
5 Tokenizing list(’document’, ’written’, ’drawn’, ’present’, ’memori’,

’represent’, ’thought’)

TABLE 2.4: An example of a text pre-processing workflow

A problem of the BOW representation is that much information from the original
document is discarded. The sentence and word order is disrupted, and syntactic
structures are broken [50]. For instance, in a sentiment analysis classifier, negations
of words needs to be taken into consideration because of their appearances that often
change the opinion orientation (e.g. the sentences "I like to watch movies" and "I
don’t like to watch movies" have different meanings. If we remove the term don’t
in the preprocessing stage, or do not combine the terms don’t and watch together as
feature, we would classify the sentences as positive).

N-gram Model

Many researches [71, 1, 17, 50] have been done on using phrases as terms in the
BOW approach. These studies analysed the usage of a sequence of words instead of
a single word when generating the features. This model is called n-gram, where n
denotes the number of words used. Table 2.7 shows the 2-grams of the documents
in Example 2.5.

Generally, the usage of the n-gram model is not clear and can negatively affect
the accuracy of the classifier. If we choose a big number n, the number of features
will increase very fast and leads to sparse vectors dj.

22 Chapter 2. Background

Document one The cat is faster than the dog
Document two The dog is in the house

TABLE 2.5: Example of a data set

the cat is faster than dog in house
Vector one 2 1 1 1 1 1 0 0
Vector two 2 0 1 0 0 1 1 1

TABLE 2.6: Bag-of-words feature example

TF.IDF Weighting

Another problem of the BOW representation is that the usage of the frequency
of a word does not give its importance for a document. For instance, the term the
of Example 2.6 can appear in every document but does not give enough insight
as the term cat. TF.IDF is the most popular term weighting scheme [64] that pro-
vides a relevance (weight) of a term for a particular document. It combines the term
frequency (TF) with the number of documents containing this term (document fre-
quency (DF)). The document frequency is proportionally inversed (IDF), due to the
reason that terms which rarely occur over collections of documents are valuable [4].

Definition 2.6.3 (TF.IDF(fk, dj,D) = TF(fk, dj)× log |D|
DF(fk)

)

where TF(fk, dj) denotes the TF of term fk in document dj and DF(fk) denotes the DF
of term fk.
|D| is the number of documents in the collection D.

Table 2.8 shows a calculation example of TF.IDF based on Example 2.5. We
have two documents where the words this and dog appear. Thus, IDF(this,D) =
log (2

2) = 0. The TF.IDF then is zero, which means that in these documents, these
words are not very informative.

2.6.1.3 Classification Techniques

Now, the documents are pre-processed and the matrix containing the vocabulary
and their weights for each document is calculated for each document (see Table 2.9).
The next step would be to use a classifier to categorise these documents. We men-
tioned before that we will explain algorithms from the supervised learning approach
first. Such algorithms assume that the category structure of the document is known.
They rely on training data to learn from in order define a function that maps doc-
uments to the pre-defined class labels. For example, the matrix in Table 2.9 would
have a sub-set of documents with their classes (typically a sub-set with 75% of this
data for training, and 25% for tests), the algorithm would then learn from this sub-set
and be applied to classify new documents.

Various supervised algorithms have been described in the literature on machine
learning. Some of them are margin classifiers such as Support Vector Machines (SVM)
[38], others are based on probabilistic approaches [66], such as Naive Bayes (NB) [52].
In this section we discuss the most popular supervised algorithms that we used in
our practical part of this thesis.

2.6. Text Categorisation 23

the_cat cat_is is_faster faster_than than_dog dog_in in_house
the_dog dog_is is_in in_the the_house

TABLE 2.7: An example of 2-grams generated from Example 2.5

the cat is faster than dog in house
TFd1 2/7 1/7 1/7 1/7 1/7 1/7
TFd2 2/6 1/6 1/6 1/6 1/6
IDF log(2/2) log(2/1) log(2/2) log(2/1) log(2/1) log(2/2) log(2/1) log(2/1)
TF.IDFd1 0 0.043 0 0.043 0.043 0 0 0
TF.IDFd2 0 0 0 0 0 0 0.050 0.050

TABLE 2.8: A calculation example of TF.IDF weighting

Naive Bayes

Naive Bayes is a simple probabilistic classifier that is highly popular as super-
vised learning technique to classify textual data. It uses the joint probabilities of
features and classes to estimate the probabilities of these classes in a test document
[62]. This approach is called "naive" because of the assumption of conditional in-
dependents between features given class. Due to this assumption, the order of the
features become irrelevant, which means that the present of one feature does not af-
fect other features in classification tasks. Another benefit is that the parameters for
each feature can be learned separately, and this positively influences the speed of
computation as compared to other classifiers [40].

Classification tasks using the NB approach is applied based on the Bayes’ rule

P(ci|dj) =
P(ci)P(dj|ci)

P(dj)
(2.1)

where dj is a document and ci is a class. In the classification phase, the poste-
rior probability P(ci|dj) for each class is calculated, and the highest probability is
assigned to the document dj. Note that the prior probability P(ci) can be estimated
(we refer to it as P̂(cj)) from the training set as follows:

P̂(ci) =
ni

N
(2.2)

where N the is number of training documents and nj is the number of documents
assigned to the class ci. The priori probability P(dj) is the same for each class there-
fore we eliminate it from Equation 2.1.
Because of the assumption we mentioned earlier, the documents will be drawn from
a multinomial distribution of features with number of independent trials equal to
the length of the document dj. Hence, we can replace the class prior probability
P(dj|ci) by:

24 Chapter 2. Background

f1 f2 f3 f4 f5 f6 ... fv class
d1 0 0.337 0.271 0.512 0.103 0 0.015 c1
d2 0.095 0.125 0.703 0 0 0.373 0.023 c3
d3 0.3123 0.445 0.503 0.073 0.211 0 0 c1
d4 0 0 0 0.343 0 0.203 0.103 c2
...
dD 0.413 0 0.115 0 0.221 0.102 0 ?

TABLE 2.9: An example of a TF.IDF matrix. The class of documents d1, d2, d3
and d4 is known. But the class of document dD has to be predicted

P(dj|ci) ≈
|dj|

∏
k=1

P(fk|ci) (2.3)

where |dj| denotes the number of features in document dj, and fk is the kth feature
from document dj.
The class prior probability of the features P(fk|ci) can be approximated from the
training data, as we did before with the prior probability:

P̂(fk|ci) =
α + TF(fk, ci)

α|V|+
|V|
∑

h=1
TF(fh, ci)

(2.4)

where TF(fk, ci) is the total number of times the feature fk occurs in documents
of class ci in the training set and |V| represents the size of the vocabulary as dis-
cussed in Definition 2.6.2. The constant α is a smoothing constant used to handle the
problems of overfitting and the case where TF(fk, ci) = 0. Note that Equation 2.4 is
called Laplace estimator if the constant α is equal to 1.

During the decision phase, the algorithm calculates the posterior probabilities of
the document d and the set of classes c, based on Equation 2.5. In case of a binary
classifier, the algorithm would decide for one of the both classes, based on their
probability. In a multi-class classifier, the algorithm would take the class with the
highest posterior probability arg max P(c|d). A multi-label classifier would return
the top-N classes ordered by the highest posterior probability.

P(ci|dj) ≈
ni

N

|dj|

∏
k=1

α + TF(fk, ci)

α|V|+
|V|
∑

h=1
TF(fh, ci)

(2.5)

Support Vector Machines

Support Vector Machines (SVM) is a classification technique introduced by Vap-
nik in [81] and extended for performing text classification tasks by Joachims in [37].
It is based on Structural Risk Minimization principles and designed to solve two
class pattern recognition problems using quadratic programming techniques [81,

2.6. Text Categorisation 25

48].
The conceptual structure of SVM is shown in Figure 2.16, based on an example of
points in a two-dimensional feature space. The data points in this figure represent
term weights from documents of two classes (negative samples are documents from
the first class, and positive samples from the second class). The objective of SVM
is to find the optimal hyperplane which separates the positive examples from the
negative examples in the hyperspace. For instance, the solid line colored in red is
a decision surface that separates the two classes, and the dashed lines show how
much the decision surface can be moved without miss-classifying the documents.
The problem of finding the optimal hyperplane is solved by calculating the decision
surface that maximizes the margin [37, 42]. In our example, the decision surface is
defined as:

w Φ(xi) + b = 0 (2.6)

where xi is the input to be classified, and Φ is a mapping function on the data
point (a function that maps the input space IRm to a feature space IRn). The vector w
that defines the orientation of the hyperplane, and the offset b (b ∈ IR) are learned
from the training data. For example, if D = {(xi, yi)} denotes the training data set
that has N samples, whereby yi ∈ {+1,−1} represents the negative and positive
examples, the problem is then to find w and b such that the constraints:

w Φ(xi) + b ≥ +1, i f yi = +1 (2.7)

w Φ(xi) + b ≤ −1, i f yi = −1 (2.8)

are satisfied [42]. These constraints can be combined to:

yi(w Φ(xi) + b) ≥ 1 ∀i (2.9)

and the margin can be easily computed as the distance between the dotted lines:

M =
|1− b|
||w|| −

| − 1− b|
||w|| =

2
||w|| (2.10)

where ||w|| is the Euclidean norm of w.

Hence, the maximum margin can be constructed by solving the following opti-
mization problem:

min
w

1
2
||w||2 subject to yi(w Φ(xi) + b) ≥ 1 ∀i (2.11)

Equation 2.11 can be written using the Lagrangian formulation:

min
w,b

L(w, b, α) ≡ 1
2
||w||2 −

N

∑
i=1

αiyi(w Φ(xi) + b) +
N

∑
n=1

αi (2.12)

where αi (αi ≥ 0) are the Lagrange multipliers for each constrain in Equation 2.11.

26 Chapter 2. Background

Based on the Karush-Kuhn-Tucker conditions, it can be shown that the optimal
hyperplane is defined as a linear combination of the vectors in the training set [87]:

w =
N

∑
j=1

αjyjΦ(xj) (2.13)

under the condition:

N

∑
j=1

αjyj = 0, αj ≥ 0 (2.14)

The problem we introduced in Example 2.16 is linearly separable, but in real
text classification problems, the data of documents in the feature space are seldom
linearly separable. In this case, a non-linear mapping Φ is used to map the input
space to a higher dimensional space. Such mappers are called kernel functions and
allow to have a decision surface for non-linearly separable data.

Φ(xi)Φ(xj) = K(xi, xj) (2.15)

Typical choice for kernels are [87, 81]:

• Linear Kernel: K(x, y) =< x, y >

• Polynomial Kernel: K(x, y) = (< x, y >)d

• Gaussian Kernel: K(x, y) = exp(−||x−y||2

2σ2)

Above we discussed an example of SVM that is formulated for binary classifi-
cation tasks. However, in the most practical text classification problems, the docu-
ments can be assigned to one or multiple categories from a category set. The way to
overcome this issue is to combine several binary SVMs to create a single multi-class
SVM. Many approaches (e.g. one-against-one and one-against-all) have been proposed,
based on this idea and other voting strategies [87]. A comparison of these methods
can be found in [46].

2.6.2 Text Clustering

As we mentioned at the beginning of the previous section, the problem we faced
when trying to classify the data using the algorithms above was the lack of training
data with the corresponding output (the class of each document). Hence, we de-
cided to use clustering approaches to cluster the documents without relying on any
data set. In the this section, we introduce clustering techniques that we used in this
project.

2.6.2.1 Clustering Techniques

Opposite to classification techniques, clustering aims to discover unknown struc-
tures in a data set without additional knowledge. The task is to find objects that
share certain similarities, and then group them into distinct clusters [88]. For ex-
ample, we can consider documents containing keywords about engines and wheels

2.6. Text Categorisation 27

to be in category cars, while those containing keywords about telephones and com-
puters in the category electronics, without having to refer to every object in those
categories [79, 77].

Traditionally, clustering strategies are divided into various major models:

• Hard clustering: A document belongs to a cluster completely or not.

• Soft clustering: Each document have a probability of belonging to a cluster.

• Hierarchical clustering: A document belongs to a child cluster and also to the
parent cluster (kind of tree).

• Partitioning clustering: Documents are grouped into clusters where every
document is either hard clustered or has some documents in common (soft
clustering).

Generally, clustering algorithms can be grouped based on the strategy used to
cluster the data. The next discussion will show some clustering algorithms that we
used in our project.

K-means

K-means clustering is an unsupervised hard clustering technique that tries to
find a specific number of clusters k, represented by their centroids [70, 79]. This
approach works as follow:

1. The user first choose the number k of the desired clusters.

2. K points are randomly created as initial centroids.

3. Assign the points to their closest centroid.

4. Update the centroid of each cluster based on the mean of the points in the
cluster.

5. Go to step (3) if the centroids do not remain the same (convergence criterion).

These steps are illustrated in Figure 2.17, based on documents from three classes
(square, circle, and triangle). In each of these figures, the centroid of each cluster is
indicated by black stars. In the first iteration, the number of centroids is initialised
(k = 3) and the documents are assigned to each of these centroids. When the groups
are built, the centroids are updated (based on the mean of points) and the documents
are assigned again to these centroids (this can be seen in Figure of iteration 2). These
steps are then repeated until the algorithm terminates (when no more changes occur;
see iteration N).

To assign a document to the closest centroid, a distance measure is used. This
has to be relatively simple, since the positions of documents to each centroid are
repeatedly calculated. There are many metrics that can be used for this purpose. For
example, measures based on the Minkowski metric (also called Lq norm), denoted in
Equation 2.16, can be used to calculate the distance d between two objects x and y
having n feature [77].

28 Chapter 2. Background

d(x, y) = Lq(x, y) = q

√
n

∑
i=1

(xi − yi)q (2.16)

Another metric that is better suited for text documents [77, 11] is the cosine met-
ric (Equation 2.17). It measures the similarity of two objects x and y by calculating
the cosine of the angle between their feature vectors. Note that the output of Equa-
tion 2.17 will range between the values −1 and +1, where +1 denotes the highest
similarity degree and −1 the lowest dissimilarity degree.

sim(x, y) = cos(x, y) = ∑n
i=1 xi ∗ yi√

∑n
i=1 x2

i ∗
√

∑n
i=1 y2

i
(2.17)

We mentioned before that the values of each centroid ci (i refers to the ithcluster)
is randomly generated at the initial step, when the similarities of documents to the
centroids is calculated. The documents are then assigned, and the new centroids are
again calculated using Equation 2.18.

ci =
1

mi
∑

x∈ clusteri

x (2.18)

where mi is the number of documents in cluster i.

K-means is a simple, effective, and easy to implement clustering algorithm but
has the drawback that the user has to predict the number of clusters K [79].

K-modes

The basic concept of k-means rests on the determination of similarities of doc-
uments in step 3, using similarity measures, and updating the centroids in step 4,
using the mean function. But in some cases, the data which has to be clustered can
be categorical, discrete, and unordered. For instance, Table 2.10 shows an example
of attributes that describe films. The values of columns can be transformed into nu-
merical values; the result will still be categorical values, which are not well suited to
be used with distance measures discussed in the last section.

Film ID Production Company Main Actor Producer
1 Walt Disney Pictures Johnny Depp Gore Verbinski
2 Imagine Entertainment Johnny Depp Rachel Talalay
3 Escape Artists Nicolas Cage Gore Verbinski
4 Saturn Films Nicolas Cage Marc Abraham
5 Imagine Entertainment Russell Crowe Brian Grazer

TABLE 2.10: Example of categorical data set

A modification of the standard k-means algorithm was proposed in [28]. This ex-
tension is called k-modes. It tries to replace the similarity distance with dissimilarity
measure, and calculates the centroids using the mode function instead of the mean.

2.6. Text Categorisation 29

For instance, assume we have two categorical objects x and y that have n attributes.
The distance function in k-modes is defined as [27]:

dism(x, y) =
n

∑
i=1

Φ(xi, yi) (2.19)

where

Φ(xi, yi) =

{
0, if xi = yi

1, if xi 6= yi
(2.20)

The function in Equation 2.19 is referred to as simple matching dissimilarity mea-
sure or hemming distance, and means that the larger the number of mismatches of
categorical values between the two variables, the more dissimilar the objects. Note
that in case of a mixed data set, where the data has numerical and categorical at-
tributes, both algorithms can be combined to build the clusters. This approach is
called K-prototype [78].

2.6.2.2 Evaluation Metrics

The objective when evaluating classification algorithms is to assess if the classifier
would achieve more correct than incorrect predictions. This can be done using sev-
eral metrics that compare the algorithm-assigned class of a document and the real
category assigned by a human expert. To illustrate, assume that Ψ is a binary func-
tion that classify documents based on their content. A single document can belong
to either a positive or a negative class. The output of the function Ψ will be com-
pared to the decision of a humane expert who has labeled the documents manually.
The comparison of the decisions can be summarized as follow [45]:

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (FN)

TABLE 2.11: Confusion matrix

• True positive: The outcome of documents that are predicted as positive, and
their actual label (the decision of the expert) is also positive.

• False positive: The outcome of documents that are actually negative, but the
function Ψ predicted them as positive.

• True negative: The outcome of documents where the function Ψ and the hu-
mane expert agree that they are negative.

• False negative: The outcome of positive documents that are predicted as neg-
ative.

Now, if we want to measure the precision of the function Ψ (the estimated prob-
ability that documents which are predicted as positive are correctly classified), we
can use Equation 2.21:

30 Chapter 2. Background

precision =
#TP

#TP + #FP
(2.21)

where #TP denotes the true positive rate, and #FP the false positive rate [45, 56].

Another measure that can be used to express the estimated probability of positive
documents that are correctly predicted is the recall measure [45, 56]. This is defined
in Equation 2.22:

recall =
#TP

#TP + #FN
(2.22)

Generally, the usage of these measures depends on the objectives. Precision is
good as evaluator when the costs of FP is high. For example, FPs in an email spam
classifier referring to emails that are ham7, but has been classified as spam. In this
case, the user could lose important emails if the precision is not high. Recall, on the
other hand, should be used when the cost of FNs is high. For example, a model that
detects the human immunodeficiency virus (HIV) might cause extremely high costs
if it tells a patient (actually infected) that he is not sick.

There are tasks where it is important to have high precision and recall (e.g. our
case with text classification). Seeking a balance between these two measures is a
difficult task. If you improve one of them, you can degrade the other. A measure
that can be used to find the harmonic mean of the precision and recall is the F-measure
(also called F1-Score) [56, 58]:

F1 = 2× precision ∗ recall
precision + recall

(2.23)

The F-measure reaches its best value at one, which means that the precision and
recall are best, and its worst value at 0.

Until now, we have discussed measures to evaluate classification models as de-
scribed in section 2.6.1.3. But if we deal with clustering problems where the expert-
assignment of documents does not exist, these methods can not be used. In general,
evaluating the quality of clustering algorithms is not a trivial task. In most appli-
cations, expert judgments are still required. In the literature [59, 18, 65], evaluation
measure methods are divided into two categories: internal and external measure.

• Internal measures: In this category, the clustering result provided by an algo-
rithm is evaluated based on the same information of data that was clustered
itself. Here, the algorithm is given a quality score based on the cohesiveness
of the clusters (the overall similarity of objects inside each cluster), and how
well they are separated (dissimilarity to objects from other clusters). E.g., for
the algorithms discussed in section 2.6.2.1, we can compute the similarity be-
tween each data point and its centroid. Additionally, we measure the distance
between the centroids to see if the clusters are well separated. If we want to

7Ham is an email that is not spam. https://wiki.apache.org/spamassassin/Ham.

2.6. Text Categorisation 31

combine both measures, we can compute the so-called silhouette coefficient [67].
This is defined as:

s(i) =
b(i)− a(i)

max(b(i), a(i))
(2.24)

where b(i) refers to the smallest average dissimilarity between a data point i
(e.g. centroid of a cluster) and all points in any other cluster, of which i is not
a member (centroid of other clusters), and a(i) is the average dissimilarity be-
tween i and the other data points in the same cluster. The silhouette coefficient
varies between +1 and −1, where the best value is 1 and the worst value is -1.
A value close to 0 indicates overlapping clusters, and negative values indicate
that the data points have been assigned to the wrong cluster.

• External measures: In this category, the quality of clusters is evaluated using
data that was not used for the clustering. This data is similar to the data that
has been clustered, but is manually labeled by human experts.
Note that the same evaluation approaches discussed earlier are used here.

32 Chapter 2. Background

FIGURE 2.15: A screen capture of the result returned when searching for the
search term physical oceanography. The user needs to visit each row to dis-

cover the difference between every document, as the titles are equal

2.6. Text Categorisation 33

FIGURE 2.16: Support Vector Machines. A hyperplane separating two classes
with the maximum margin

(A) Iteration 1 (B) Iteration 2 (C) Iteration
N

FIGURE 2.17: K-means example.

35

Chapter 3

Implementation

“No amount of experimentation can ever prove me right; a single experiment can prove me
wrong.” - Albert Einstein

3.1 Introduction

In this chapter, we will describe the experimental setup. First, we will give a descrip-
tion of the design of the system framework. Then we will describe the data set we
used and provide some statistics about it. We will also mention which choices were
made regarding the attributes and data selected. Furthermore, the pre-processing
and transformation of this data will be explained. In addition, we describe the tech-
nologies that were used to build the categorisation models. We continue with a brief
introduction on search machines and describe the schema used to index the data.
We will end this chapter with a detailed comparison between various layouts that
implement the navigation approaches discussed in the previous chapter.

3.2 Overview

Fig. 3.1 shows the designed workflow of the system. Three main components are
managing the communication, the Document Manager, the Search Manager and
the Index Manager. The system is designed to offer a flexibility when integrating
a new language, implementing different approaches to feature extraction or using
new classifiers.

• Document Manager: This component is responsible for document clustering,
it has many modules for reading and extracting important data, detect the lan-
guage and classify it.

• Document Indexer: This component is responsible for data persistence, it
loads documents into the file system and indexes it to the search engine.

• Search Manager: This component is managing the search flow, takes key-
words from the user, prepare the queries, searches for documents based on
these queries, and returns the result.

3.3 Data Set

As mentioned earlier, the data set that should be categorised into groups is a dump
of B2FIND service. It contains entries with various columns of metadata, exported

36 Chapter 3. Implementation

Search EngineFile System

New Document

Document Manager

Content Extractor (File Content, Meta Data)

Language Detector (EN, DE …)

Features Extractor

Document Classifier

Document Indexer

Index Manager

St
or

e
D

oc
um

en
t

Index Document
(Content, Meta Data and

predicted Category)

Client Side

Server Side

Search Term

Search Manager

Result Formatter

Search Controller

Query Parser

Search History Manager

FIGURE 3.1: Overview of the architecture for the solution proposed

in CSV1 format. A special column of this data is the EXTRAS column, it consists
of keys and their values separated with three dollar $$$ signs that had to be parsed
in order to make them suitable for our purpose. Generally, the content of the data
is not consistent, many values exist only with some specific type of documents or
publishers. Table 3.1 shows the attributes of data sets and their occurrences.

The element ID is the primary key of the set and represents the total number of
entries. The field STATE is a helper field which is used to show or disable an entry,
the rest of columns were explained in Table 2.2.

For the clustering task, we used the TITLE field, combined with TAGS, GROUPS
and DISCIPLINE columns, and then evaluated supervised and unsupervised ap-
proaches. For the first approach, we had to have a training set containing documents
and its classes. The reason why we decided to use the Wikipedia’s category system2

is that this corpus consists of more than 4.4 million articles with categories and their
subcategories3.
For the unsupervised approach, we used the B2FIND dump itself to extract the fea-
tures and cluster the documents. The modules of Document Manager are described
in the next sections.

1Comma-separated values.
2https://en.wikipedia.org/wiki/Portal:Contents/Categories.
3https://corpus.byu.edu/wiki/.

3.4. Document Manager 37

Attribute Count
ID 934524
STATE 737912
TITLE 737915
AUTHOR 616045
URL 468337
NOTES 552360
TAGS 258225
GROUP NAME 625564
GROUP TITLE 625563
GROUP DESCRIPTION 625563
GROUP IMG URL 625563
EXTRAS 625563

TABLE 3.1: The occurrence of each attribute in the data set

3.4 Document Manager

This component has two main responsibilities: The first one is to process the copra
by extracting and preparing their data, the second is to cluster or classify the docu-
ments.

3.4.1 Pre-processing

We have to extract two key-value pairs from the field EXTRAS; the LANGUAGE
and DISCIPLINE. The reason for extracting the first one is to separate these entries
based on their values in order to build multiple classifiers for each specific language.
The second field is parsed for classification tasks. The language field does not exist
in all entries, therefore we use a language detector in some cases. Figure 3.2 shows
the occurrence of documents by their language. English is dominant, followed by
Italian, Dutch, German and French.

FIGURE 3.2: Top 5 languages in B2FIND

38 Chapter 3. Implementation

3.4.2 Feature Extraction

Four functions are part of this module: The first removes the stop words, the second
stemms the textual content, the third generates the N-grams, and the last builds the
matrix containing the features and their importance.

Stop-word Removal

We use the Python library Natural Language Toolkit (NLTK) to get the list (black-
list) of words to remove. We have to extend this list because of two issues we discov-
ered. The first one is because some removed words are useful for our project, ergo
we exclude them from the blacklist. And the second problem is that some keywords
are not useful as features and could not be removed using feature whitening (as they
are part of many duplicate documents). For this reason, we extend the blacklist to
encompass more of such words.

Stemming

Stemming of textual data is conducted using the Porta-English stemmer from
the Python library NLTK. This library has many functions for stemming words from
different languages.

N-grams

We experimented with different lengths of n-grams (1, 2-, and 3-grams) and de-
cided finally to use 1-gram. We used the ngrams function from NLTK.

TF-IDF Vectorization

Before we start categorizing the data, we use the CountVectorizer class to count
the number of occurrences of every word, and the TfidfTransformer class to nor-
malizes these counts and weight them. The result is the matrix containing words
with its importance. Both classes are part of the Scikit-learn package for feature ex-
traction.

3.4.3 Building up the Data Models

As we mentioned in Section 3.3, the first attempt to categorise the data was using
supervised approaches. This category of algorithms needs a pre-defined data set
to learn from. Hence, we used the categories of Wikipedia’s category structure4 as
labels and their articles as documents in order to generate the features [89]. Note
that there is a Python API5 that can be used to get the Wikipedia pages of a specific
category (see example in Listing 3.2). The training of the multinomial NB model
discussed in Section 2.6.1.3, and the SVM discussed in Section 2.6.1.3 is conducted
using the MultinomialNB6 and svm7 modules from the scikit-learn library. For the
unsupervised approach, there was no need for a pre-defined data set, the B2FIND
dump is used to generate the features and calculate the similarities of documents.

4https://en.wikipedia.org/wiki/Portal:Contents/Categories.
5https://pypi.org/project/Wikipedia-API/.
6https://scikit-learn.org/stable/modules/naive_bayes.html.
7https://scikit-learn.org/stable/modules/svm.html.

3.5. Index Manager 39

We used the prediction output (cluster ID), generated by the k-means8 algorithm
based on the TITLE and TAGS fields of the documents, as input for the k-modes9,
combined with the GROUPS and DISCIPLINE fields. More about the result of each
setup is discussed in Chapter 4.

import wikipediaapi

wiki =wikipediaapi.Wikipedia(
language= ’en’,
extract_format= wikipediaapi.ExtractFormat.WIKI

)
wiki.page("Category:Physics")

TABLE 3.2: Code example to get pages of category physics from Wikipedia

3.5 Index Manager

This module handles the communication between the file system, search engine and
document manager. It stores the clustering result in a file system and index the
documents with their cluster IDs into the search engine.

3.5.1 Search Engine: Elasticsearch

Elasticsearch (ES) is a distributed search and analytics engine based on Lucene10. It
allows to index, search, and analyze big volumes of data quickly and in near real
time [41]. An instance of ES is called node and can form a cluster with other nodes.

In ES there are three concepts to follow in order to store and search for docu-
ments. These are Indexes, Types, and Documents. An index is a collection of contain-
ers that have documents sharing the same characteristics. For instance, one can have
an index for customers, another index for products, and yet another index for trans-
action. Each container is a type and contains one or more documents. An index can
potentially have more data than the capacity of the system. For example, an index
of more than 2TB of documents may not fit the hardware capacity of the system,
therefore an index can be divided into containers called shards.

Shards are distributed along several nodes and are responsible for searching,
storing, and retrieving their own data [41]. Figure 3.3 shows an example of an ES
cluster with two nodes having four indexes divided into four shards. One of these
indexes is divided into three shards with one living in node 1 and the rest of shards
are in node 2.

A document in ES is a unit of information converted into JSON and indexed with
a unique identifier _id. ES automatically adds other metadata to this document such
as the type, _index, where it lives and its type, _type.

To start storing documents in ES, it is required to create an index and set its
configuration, as well as to define a document type with its fields. ES provides many

8https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html.
9https://pypi.org/project/kmodes/.

10https://www.elastic.co/.

40 Chapter 3. Implementation

FIGURE 3.3: Example of an Elasticsearch cluster

parameters to set the number of shards, choose the full text searchable fields, and
define fields that are stored but not searchable [5].

For this project, we used Elasticsearch 6.111 with two nodes deployed on two vir-
tual machines12. Appendix B shows the mapping of the index used in this project.
We have a type defined as document with various fields and their data type (key-
word, text, object, and date). The field cluster is defined as an object list, because a
document can have various cluster IDs depending on the cluster size selected. Next
we explain some attributes of this configuration.

• Settings: An index has to have specific settings associated with it. These are
defined in the body of definition using the parameter settings. For example,
we can define the number of shards of the index, the number of replicas ot the
shards, the maximum allowed difference between min_gram and max_gram
when using ngrams.

• Index: The index attribute defines how the string will be indexed. Three values
can be set for this field, "not_analyzed", "analyzed" (default), and "no". The first
value is used for fields that are searchable but have to be indexed exactly as
specified. The second value is for fields that are searchable and need to be pre-
processed. For example, break the string to keywords, convert the keywords
to lowercase. The last value is for fields that are stored but not searchable. For
instance, an image link.

To create an index, a HTTP13 request of type PUT has to be sent to the node
address, followed by the name of indexes including its configuration in the body. In
the same way, one can create documents by sending the same type of request to the
node in the cluster with the URL /{index}/{type}/{id}, where {id} denotes the id that
the document should be stored with.

11https://www.elastic.co/products/elasticsearch.
128GB RAM machines wtih Ubuntu 17.
13Hypertext Transfer Protocol - https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol\#Request_methods.

3.6. Search Manager 41

3.6 Search Manager

The search manager contains four modules that handle the search queries and are
responsible for a specific task:

• Search History Manager: As we mentioned earlier, we aim to offer the pos-
sibility to the user to navigate from cluster to sub-clusters in order to find the
right documents. This can be done by memorising the previous terms and the
clusters visited. This task is managed by the search history manager.

• Query Parser: This module takes the keywords of the user and generates re-
sults based on the queries that are compatible with the search engine.

• Search Controller: The search controller handles the communication between
the query parser and Elasticsearch, it uses the elasticseach python client in its
core to send HTTP requests.

• Result Formatter: This component converts the documents from raw text to
the format used by the client. In our example, it generates the keywords and
its importance for the word cloud chart.

3.7 Server

We handle the communication between all services shown in the last sections using
a RESTful API. This is an application program interface that uses HTTP requests
to communicate with many services to GET, PUT, POST, and DELETE data. The
communication takes place inside a Flask14 server through various endpoints called
routers. Flask is a microframework written in Python and based on a Web Server
Gateway Interface (WSGI) that defines many specifications for universal interface
between web applications and web servers [19]. Figure 3.4 shows an example of an
endpoint defined by Flask to return top documents based on a search query.

3.8 Front-End

The front-end is built in HTML based on Twitter Bootstrap15 4.0. This is an open-
source front-end framework that offers HTML- and CSS-based design templates in
order to develop web applications in a faster and easier way. The advantage of
using Twitter Bootstrap is that it offers a responsive web layout that can adjusts
dynamically, depending on the characteristics of the device used (desktops, mobile
phones, tables) [73].
Each element of the interface triggers a function that sends an AJAX request to an
end point of Flask. AJAX stands for Asynchronous JavaScript and XML, and is a
set of web development techniques used for the development of interactive web
applications. It allows, for example, web pages to change content without reloading
the page itself [15, 84]. Figure 3.5 shows a code snippet of a Javascript function that
sends an AJAX request to the "/data" endpoint. This function returns a promise that
displays the result in the form of word cloud.

14http://flask.pocoo.org/.
15https://getbootstrap.com/.

42 Chapter 3. Implementation

FIGURE 3.4: Example of an endpoint defined by Flask that returns top docu-
ments.

FIGURE 3.5: Example of a Javascript function that sends an HTTP request to a
flask endpoint.

3.9 Navigation Experiments

To evaluate the accessibility and user friendliness of the project, we implemented dif-
ferent layouts containing various components, based on the approaches discussed
in section 2.4.1. We assign each layout an identification number for reference in our
discussion. Figures 3.7, 3.6, and 3.8 show screen captures of these layouts with their
identification numbers on the bottom side of the page. The pages can be reached us-
ing the paths shown in Table 3.3 after starting the flask server16. Next, we introduce

16How to configure and start fask: http://flask.pocoo.org/docs/1.0/quickstart/.

3.9. Navigation Experiments 43

each of these layouts and their navigation experience.

Layout Link
1 /v1/index
2 /v2/index
3 /

TABLE 3.3: The path to each layout

Layout 1

In this layout, a user is able to select the number of clusters to start with. The
result is a set of documents displayed in the form of colored markers in a scatter plot,
each color represents documents inside a cluster. The user can disable the display
of these documents by clicking on the legend of the cluster. Figure 3.9 shows a
navigation example where a user searched for documents containing the keyword
education and then filtered the result by only looking for documents from the group
CESSDA. The result was a sub-set of documents clustered into 5 clusters (education,
political education, sociology, and education). In this example, the top documents
bar shows the result from eight clusters, and the number of documents remaining
after searching and applying the filter. Note that clusters four, five, and seven were
eliminated because they do not contain documents matching the search query. The
user continued navigating (see Figure 3.10) by selecting documents belonging to the
author, University of London. The result was one cluster with ten documents. Note
that the title of the documents can be shown by hovering the marker on the plot, and
opened by clicking on it.

Layout 2

The difference between layout 1 and layout 2 is the representation of the docu-
ments. As we mentioned before, our suggested solution displays the results in the
form of a word cloud where each keyword shows its importance inside the cluster.
Figure 3.11 is an example of a navigation experience of a user who was looking for
documents about Track-before-Detect Radar Systems. The user started looking for doc-
uments about radars at the first step, the result was a set of documents grouped in
6 clusters (cluster 1, 2, 3, 6, and 8). The user filtered the result by choosing a group
and an author, hence we see three documents remaining in Figure 3.11. In the last
step, the user clicked on the word agent from the word cloud, thus the navigation
system shows one document from cluster 2 (see Figure 3.12).

Figures 3.13 and 3.14 are used to demonstrate the difference between the repre-
sentation in layout 1 and layout 2. The user aimed to navigate to documents that
contain the keywords weather and radars. In the first layout, the drawback is that
the scatter plot shows more than 1000 documents that match the query and displays
only one difference between them (the publication date cited in the title).The user
then has to hover over more documents to get more insight about the result, or use
the publication date filter. The same result is illustrated in Figure 3.14, here the word
cloud shows only two keywords, which means that based on the given query, the
1350 documents contain two significant differences: data and month. Each of these

44 Chapter 3. Implementation

FIGURE 3.6: Example of layout containing a scatter plot of the clusters in var-
ious colors. The right sidebar contains top products of each cluster and the

number of documents inside it

words appears in many documents but not in all, the reason why the cloud shows
only those and hides others, such as the word measurement, as it is found in all
matched documents.

Layout 3

Layout 3 follows the Hierarchical Navigation Approach discussed in section
2.4.1. Figure 3.15 illustrates this appraoch using the navigation experience of a user
who looked for documents matching the keyword weather. The result of his query
was a set of documents clustered by disciplines. As a next step the user decided
to search inside the sub-cluster Environment Science (see Figure 3.16) by looking
for documents containing the words weather and water. The query matched one
document and the result was clustered, this time by authors (see the breadcrumb in
on the left sidebar).
The drawbacks of this navigation approach is that the pivot variable could have
many unique values that would produce long-scroll pages and build clusters with
small numbers of documents (in most cases one document per cluster as illustrated
in Figure 3.17).

3.10 Navigation Testing

We carried out some tests with users to evaluate the usability and user friendliness
of each layout presented. The users got test scenarios with different test tasks that
needed to be completed.

• Test users: A user has to meet three criteria to be qualified to test the layouts.
The first criterion is having some experiences with web technologies, such as

3.10. Navigation Testing 45

FIGURE 3.7: Example of layout containing the important keywords from each
cluster. The left sidebar contains control elements to filter the results

working with a browser and knowing the functionality of HTML elements
(inputs, checkboxes, buttons). The second criterion is that the user has to be a
researcher or at least a student in order to understand some keywords of the
word cloud. The last criterion is the user has to understand English, as the task
scenarios are written in this language.

• Task scenario: A list of tasks that covers most elements in each layout. The
tasks were developed in a way that even a user without knowledge about the
disciplines or documents of a cluster could complete them (see Appendix E).

• Test materials: We used three test materials during the tests. The first one is
a questionnaire that contains questions about the test user in order to under-
stand his/her background. We used this document to record the output of the
tests (Appendix C). The second is a post-task questionnaire for measuring the
usability. We used a System Usability Scale17 (SAS) (See Appendix D.1). The
last is a document with which we logged some users’ actions during the tests,
and the time needed to complete a task. (Appendix F).

• Test equipment: We used the same laptop to carry out the tests to ensure
that the layouts are rendering without any problems that could hinder the
users completing the tasks. Each user did the tasks with his/her favorite web
browser (Safari, Chrome, Firefox).

• Test location: We conducted the tests in the library of the University of Ham-
burg (UH) and the library of the Hamburg University of Technology (TUHH).

17https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html.

46 Chapter 3. Implementation

FIGURE 3.8: Example of layout containing the important keywords from each
cluster. The right sidebar contains top products from the corpus

We chose these locations as they provided a high chance to meet test users that
fulfill the criteria we mentioned before.

We started giving an introduction about the system, the reason why we do the
tests, and showing some documents that the user has to navigate to. During the
tests, we asked the users to verbalize their intentions in order to record them with
his/her actions. The results of the tests are discussed in detail in Chapter 4.

3.10. Navigation Testing 47

FIGURE 3.9: Example of result representation in layout 1. The user aims to
navigate to documents about education from the group CESSDA

FIGURE 3.10: Example of a result representation in layout 1. The user aims to
navigate to documents about education from the group CESSDA published by

University of London

48 Chapter 3. Implementation

FIGURE 3.11: Example of a result representation in layout 2. The user aims to
navigate to documents about radars from the group SDL published by Lewis,

M. and Hughes, E. J.

FIGURE 3.12: Example of a result representation in layout 2. The user contin-
ued his navigation from Figure 3.11 by looking for documents that match the

word agent. The end result contains one document from cluster 2

3.10. Navigation Testing 49

FIGURE 3.13: A navigation issue in layout 1. The user aims to find documents
about radars and weather. The result contains 1350 different dataset. The user

has in this case to hover many markers to see the content of document

FIGURE 3.14: A navigation example that illustrates the same result as in Figure
3.13. The word cloud shows only two keywords which means that the 1350
documents contain the same content except two keywords that could help the
user to navigate forward. If the word cloud would show the word measurement

and the user would click on it, the result would be again 1350 documents

50 Chapter 3. Implementation

FIGURE 3.15: Example of a result representation in layout 3. The user aims to
navigate to documents about weather. The result is grouped in disciplines and

displayed in from of word clouds

FIGURE 3.16: The user continued the navigation from Figure 3.15 by looking
for documents that match the word water. The end result contains one docu-

ment published by the group Corine Wallace.

3.10. Navigation Testing 51

FIGURE 3.17: A navigation issue in layout 1. The result was categorised by
authors which yielded to a long list of clusters containing few documents

53

Chapter 4

Experiments and Results

“To raise new questions, new possibilities, to regard old problems from a new angle, requires
creative imagination and marks real advance in science.” - Albert Einstein

4.1 Introduction

In this chapter, we will present the results of our experiments1. We will first briefly
discuss the performance of each selected model. Then we show the results of the
experiment conducted with the test users. We continue with a review about the
drawbacks of components in each layout, and end the chapter with a discussion
about various improvement, that we will propose for each layout.

4.2 Categorization Results

Classification results

The initial idea was to use pages from Wikipedia and their parent category as
training set to build a model (NB or SVM) that can be used to categorise the data.
The model would calculate the probability that a document from B2FIND ’s collec-
tion belong to a certain category. In this way, we could assign for each document
the category with the highest probability. During the building process, we kept 80%
of the data to train the models and used 20% for testing their quality. The result of
these tests were actually satisfying (see Table 4.1), but when we applied the models
on B2FIND ’s collection, the prediction probabilities were very low. For this reason,
we started validating the prediction results, and the documents content manually.

precision recall
NB 0.931 0.912
SVM 0.952 0.925

TABLE 4.1: Classification results of Wikipedia’s data set

During the validation, we find three issues that impacted the prediction results:
The first is that many documents contain in-descriptive titles. For instance, docu-
ment number 1 in Table 4.2 has a kind of serial number or ID as title, which means
that is very difficult even for a human being to predict its category (recall that we

1The experiments were conducted using a virtual linux server with 15 GB Ram and 4vCPU.

54 Chapter 4. Experiments and Results

discuss supervised approaches in this section). The second is that many documents
consist of a title with one keyword that does not appear in the vocabulary set which
is built based on features using Wikipedia ’s pages (e.g. document number 2 in Table
4.2). The solution to this problem is to extend the training set with more pages from
other categories. But the issue with this solution is that the size of the article text in
the English Wikipedia is approximately 14 GB2 (compressed), which means that the
data would not fit in the memory of our virtual server. The last is that in many ti-
tles the space between the keywords was removed, which led to meaningless terms
(document number 3 in Table 4.2).

Title
1 T3_06B_AO_CSPD
2 Trobriands_199_028
3 CoconutStoryWA30M

TABLE 4.2: Titles of documents from B2FIND

Finally, we decided to use clustering methods to avoid these issues. In doing so,
we avoid using a data set that has to be extended every time documents with new
keywords are added to the collection. In addition, in cases when the title contains
in-descriptive content, we would use other attributes of the document to assign it to
a the cluster.

Clustering results

As mentioned in Section 3.4.3 two methods will be combined to determine the
clusters. The first method (k−means) is used to build clusters based on the title
and tags of documents. Recall that these two fields are transformed into numerical
data using the TF.IDF weighting. The intention is to convert the numerical data into
categorical by determining the cluster ID of each document, and then providing the
ID of the cluster, the discipline, and group name to k-modes. Table 4.3 shows the
silhouette coefficient of the clustering results using 1-gram and 2-grams for different
sizes k.

2 3 4 5 6 7 8
1-gram −0.023 0.114 0.186 0.122 0.244 0.249 0.110
2-grams −0.063 −0.135 −0.962 −0.527 −0.481 −0.374 −0.413

9 10 11 12 13 14 15
1-gram 0.087 0.064 0.092 0.051 0.038 0.032 0.017
2-grams −0.431 −0.452 −0.491 −0.502 −0.484 −0.465 −0.486

TABLE 4.3: K-means silhouette coefficient by cluster size

By looking at the values we can determine that tokenizing the data using a 1-
gram model performs better than 2-grams. The first observation is that the result
based on the 2-grams model is getting worse (the negative values indicate that the
documents have been assigned to the wrong cluster) when we enlarge the cluster

2https://en.wikipedia.org/wiki/Wikipedia:Database_download.

4.2. Categorization Results 55

size k. This is due the facts that the documents-features matrix (recall the matrix pre-
sented in Table 2.8) become very sparse when using 2-grams based vocabulary, and
that many documents contain only a title that is less descriptive, or consist of one
keyword which appears only once. The second observation is that the best results
we can get are using a 1-gram model with k = 4 or k = 7. Generally, all the values in
Table 4.3 are close to 0 which means that regardless of the chosen parameter k3, the
clusters are still overlapped.

Table 4.5 displays the silhouette coefficient of the k-modes clustering results. In
this table, the rows represents the cluster size of the k-means algorithm, and the
columns the cluster size of the k-modes algorithm. Note that it is important to use the
hamming distance when using the python silhouette_score evaluation function in
order to generate coefficients of categorical data (see example in Listing 4.4).

from sklearn.metrics import silhouette_score

silhouette_avg =silhouette_score(data, cluster_labels, metric=’hamming’)

TABLE 4.4: Code example of the silhouette_score function in Python

The first observation is that all values (regardless of the k parameter of k-means)
are positive which means that the documents are better clustered than the setup we
had before (based on k-means and the title of documents). The next observation is
that the values are no more very close to 0, but still far away from the best value +1.
This means that the clusters are better built, but still slightly overlapped by some
parameters k (for example by k = 2 or k = 6). The last observation is that using
k-means with 7 clusters performs better in many k-modes cluster sizes than with 4
clusters. Recall that in all layouts, the user is able to choose the number of clusters
he/she wants to display, therefore it is not required to select the best parameter here.
We provide for a document a list that maps the cluster IDs and the parameters k of
k-modes. Another notice is that in layout 2, the clusters are decoupled slightly to fa-
cilitate the navigation for the user. The objective is to avoid having many overlapped
clusters that hinder the user reading the content of documents.

2 3 4 5 6 7 8
k = 4 (k-means) 0.350 0.394 0.190 0.147 0.414 0.310 0.282
k = 7 (k-means) 0.297 0.315 0.320 0.403 0.258 0.360 0.355

9 10 11 12 13 14 15
k = 4 (k-means) 0.349 0.433 0.402 0.397 0.439 0.491 0.440
k = 7 (k-means) 0.441 0.377 0.431 0.451 0.418 0.456 0.450

TABLE 4.5: K-modes silhouette coefficient by cluster size

3As the clustering process took many hours and some times led to OUT_OF_MEMORY errors,
we stopped evaluating numbers greater than 15..

56 Chapter 4. Experiments and Results

4.3 Navigation Results

We conducted the experiment with 33 test users, whereby each was given the list of
tasks that he/she had to complete and a layout that we chose randomly. We ensured
at the end of the tests that each layout was tested by the same number of users from
different subjects to avoid biased results. During the tests, some users could not
complete some tasks, in which case we gave them help and logged these tasks as
completed tasks with help. Figure 4.1 shows the distribution of tasks’ completions
on each layout. Most users who failed completing the tests worked with layout 3.

FIGURE 4.1: Number of users that completed the tasks with/without help on
each layout

Layout 1

Using the first layout, five users of eleven are unable to complete the tasks with-
out help; they failed either with task 1, 4, or 12 (see Figure 4.2).

• Task 1: The inability to complete this task is because most of users have not
been working with scatter plots before, they did not realize that selecting a
dataset can be done by clicking on a marker in the plot.

• Task 4: To select only documents from one cluster, the user needs to click on
the name of other clusters to hide them (see Figure 4.3). At the end of the tests,
only seven users could do this without any instructions.

• Task 12: Some users started hovering the markers to find datasets containing
the date on the title. After a short search, they asked for help. This task can
actually be solved by using the calender filter, but in same scenarios, the user
needs to see the title of documents to decide.

Layout 2

Only two users could not finish the tasks given layout 2.

• Task 8: To clear a filter, a user has to choose the first option (e.g select an author
by the author field). This is why most users who complete this task had to
reload the page, or passed the task by chance.

• Task 11: Each cluster shows the size of the result it contains. Some users were
confused with this representation because they thought that this size repre-
sents only the number of top documents inside the cluster.

4.3. Navigation Results 57

Layout 3

Users of layout 3 had more difficulty in completing their tasks without help. The
page was too long in some scenarios, hence some users could not see the cluster
containing documents of the group, Datacite (task 3). Another issue was the name of
the clusters, which were in some cases very long (see Figure 4.4).

FIGURE 4.2: Success rate of tasks on each layout

FIGURE 4.3: Hiding a cluster in layout 1

FIGURE 4.4: Issue of cluster title in layout 3

Concerning the time, users of layout 3 required the longest on average due to the
fact that it displays long pages in some cases, and have components that confused
the user. In layout 3, the user spent some time hovering over documents to get their
name. Table 4.6 shows the result of a two-sample t-test that investigates whether the
time means of the three layouts differ from one another. Since the p-value is much
less than the test statistic for layout 1 and 2, the null hypothesis can not be rejected,
which means that test users of layout 1 and 2 needed approximately the same time
to complete their tasks. The test shows a significant difference of completion time
on layout 1 and 3, and also 2 and 3 (see Turkey’s test in Appendix G.1).

58 Chapter 4. Experiments and Results

Layout
1 2 3

statistic p-value statistic p-value statistic p-value
1 0.0 1.0 0.74 0.46 -2.99 0.007
2 0.74 0.46 0.0 1.0 -3.73 0.001
3 -2.99 0.0072 -3.73 0.001 0.0 1.0

TABLE 4.6: A two-sample t-test that investigates whether the means of time
token in each layout differ from one another

In general, most test users agree, that layout 3 is not easy to use, complex, and
that they needed support from a technical geek to be able to use it (see answers of
SAS questions in Figure 4.8). The result from the group which tested layout 1 was
unexpected (Figure 4.6); most of them agreed that layout 1 is easy to use and that
most people would learn to use it very quickly. On the other hand, they consider the
components of this layout badly integrated.
Layout 2 finished the test with better results than other layouts, most users agreed
that it is easy to use and that the components were better integrated than in layout 1
(Figure 4.7).

FIGURE 4.5: Boxplot of completion time on each layout

FIGURE 4.6: The mean scores of test users’ responses on layout 1 in SAS.
(Strongly agree = 1, strongly disagree = 5)

4.3. Navigation Results 59

FIGURE 4.7: The mean scores of test users’ responses on layout 2 in SAS.
(Strongly agree = 1, strongly disagree = 5)

FIGURE 4.8: The mean scores of test users’ responses on layout 3 in SAS.
(Strongly agree = 1, strongly disagree = 5)

61

Chapter 5

Conclusion

“From the end spring new beginnings.” - Pliny the Elder

5.1 Discussion

The methodology developed in this thesis enables to improve the productivity for
users when searching or navigating large text collections. The idea is to use graphical
alternatives to present the search results in category structure instead of the domi-
nant list based approaches.

The thesis started with a theoretical study of the dominant approaches and dis-
cusses their components. The objective was to show the effort needed to precess
each of these components. As next step, a navigation model was proposed that min-
imises this effort. The assumption is that if the effort of the individual components is
reduced, the overall effort would be minimised. Thus, the whole navigation process
was improved. In a third step, the thesis moved from theory to practical imple-
mentation. It discussed the implementation of three interfaces that assist the user
in navigating text data. Each of these interfaces contains a set of components that
proofs the concept presented before (the navigation model).
The thesis ends with a description of the evaluation method conducted with test
users in order to test the quality of the interfaces and discusses the result of this
evaluation: Generally, it cannot be said that one of these navigation assistances is
superior tp the other. Each of them has its advantages and drawbacks. The graphical
visualization in layout 1 enables the user to search for documents without scrolling
the page too long, it also offers the possibility to categorise the documents into clus-
ters with different colours, hide documents of a cluster from the result, and use the
filters to exclude some documents. However, the user has to hover over the docu-
ments to see its content. In addition, the user has to think about strong keywords to
navigate forward. Layout 2 improves these drawbacks by presenting the documents
of the clusters in form of word clouds. This gives an idea about the documents inside
the cluster about selecting important keywords to start with. However, the user has
to scroll the page extensively if he increases the number of clusters at the beginning.
In addition, keywords of the word cloud can be ambiguous if the categorisation al-
gorithm does not separate the documents well. Layout 3 dispenses the filters on the
red area and presents the documents in hierarchical clusters, based on a pivot vari-
able. The drawback of this method is that in case the pivot variable contains many
unique values, the page will be too long.

Comparing the three interfaces based on the answers of SAS questions, layout 1
and 2 perform better than layout 3. They are less complex and easy to use. However,

62 Chapter 5. Conclusion

users need support during the first usage in order to understand the components.
Hence, an automatic guide demonstrating the components of each interface step-by-
step was added. It helps users to learn (see Figures 5.1 and 5.2).

FIGURE 5.1: Example of an instruction of the guide in Layout 2

FIGURE 5.2: Example of an instruction of the guide in Layout 3

5.2 Future Work

Further work related to this thesis can go in two directions. The first direction is to
use other visual presentations, for example 3D network graphs that show the clus-
ters and their relationships [16]. The user could zoom inside the cluster and follow
the links to other clusters until a target is found. The role of the links is to connect
keywords that appear in many clusters and that are ambiguous. Another example is
to find out about the impact of mixing the presentation methods depending on the
content of the clusters.

5.2. Future Work 63

The second direction is to take the user navigation history, the global search his-
tory and the user location into consideration, for example by using this data to apply
learning-rank algorithms [21, 47] on the clustered documents to personalize the re-
sults.

65

Appendix A

Table of English Stopwords

Filter Description
A a, about, again, all, almost, also, although, always, among, an, and, another, any,

are, as, at
B be, because, been, before, being, between, both, but, by
C can, could
D did, do, does, done, due, during
E each, either, enough, especially, etc
F for, found, from, further
H had, has, have, having, here, how, however
I i, if, in, into, is, it, its, itself
J just
K kg, km
M made, mainly, make, may, mg, might, ml, mm, most, mostly, must
N nearly, neither, no, nor
O obtained, of, often, on, our, overall
P perhaps, pmid
Q quite
R rather, really, regarding
S seem, seen, several, should, show, showed, shown, shows, significantly, since, so,

some, such
T than, that, the, their, theirs, them, then, there, therefore, these, they, this, those,

through, thus, to
U upon, use, used, using
V various, very
W was, we, were, what, when, which, while, with, within, without, would

TABLE A.1: Example of English stop words

67

Appendix B

Elasticsearch

PUT app
{

"settings" : {
"number_of_shards" : 2

},
"mappings" : {

"document": {
"properties" : {

"cluster" : {
"properties": {

"id": {"type": "keyword"}
}

},
"title" : { "type" : "text"},
"title_cleaned" : {

"type" : "text",
"index": "no"

},
"author" : { "type" : "text"},
"url" : { "type" : "text", "index": "not_analyzed"},
"notes" : { "type" : "text"},
"tags" : { "type" : "text"},
"group_name" : { "type" : "keyword", "index": "not_analyzed"},
"group_description" : { "type" : "text", "index":

"not_analyzed"},
"group_image" : { "type" : "keyword", "index":

"not_analyzed"},
"discipline" : { "type" : "keyword"},
"extras" : { "type" : "text"},
"language" : { "type" : "keyword"},

"created_at" : { "type" : "date",
"format": "yyyyMMdd"
}

}
}

}
}

TABLE B.1: A JSON query to create the index in Elasticsearch

69

Appendix C

Test Users’ Background

User Subject Layout Time [min] Task Completed* Browser
1 Mechatronics 1 14 1 Safari
2 Mechatronics 2 14 1 Chrome
3 Bioprocess Engineering 3 22 2 Firefox
4 Computational Science 2 17 1 Chrome
5 Environmental Engineering 3 21 2 Firefox
6 Naval Architecture 1 17 2 Firefox
7 Medical Engineering 2 11 1 Firefox
8 Environmental Engineering 1 7 1 Safari
9 Mechatronics 3 17 1 Firefox

10 Technomathematics 1 17 2 Chrome
11 Computational Science 2 9 1 Chrome
12 Computational Science 1 11 1 Chrome
13 Mechatronics 3 15 2 Chrome
14 Civil Engineering 2 13 1 Firefox
15 Chemistry 1 15 2 Firefox
16 Economics 3 17 2 Safari
17 Geophysics 2 13 1 Firefox
18 Mathematics 3 18 2 Chrome
19 Chemistry 2 7 1 Chrome
20 Wood Science 1 10 1 Firefox
21 Mathematics 3 18 2 Firefox
22 Economics 2 12 1 Chrome
23 Physics 1 16 2 Firefox
24 Wood Science 3 19 2 Chrome
25 Mathematics 2 6 1 Firefox
26 Physics 1 18 2 Firefox
27 Economics 3 8 1 Safari
28 Mathematics 1 8 1 Chrome
29 Computational Science 1 14 2 Chrome
30 Mathematics 2 14 2 Chrome
31 Economics 2 15 2 Safari
32 Economics 1 14 1 Chrome
33 Computational Science 3 22 2 Chrome

*: 1 stands for task completed without help. 2 stands for task completed with
help.

71

Appendix D

System Usability Scale

72 Appendix D. System Usability Scale

TABLE D.1: System usability scale

Strongly
agree

Strongly
disagree

1. I think that I would like to use this system
frequently

1 2 3 4 5

2. I found the system unnecessarily complex 1 2 3 4 5

3. I thought the system was easy to use 1 2 3 4 5

4. I think that I would need the support of a
technical person to be able to use this system

1 2 3 4 5

5. I found the various functions in this system were
well integrated

1 2 3 4 5

6. I thought there was too much inconsistency in
this system

1 2 3 4 5

7. I would imagine that most people would learn to
use this system very quickly

1 2 3 4 5

8. I found the system very cumbersome to use 1 2 3 4 5

9. I felt very confident using the system 1 2 3 4 5

10. I needed to learn a lot of things before I could get
going with this system

1 2 3 4 5

73

Appendix E

Scenario Tasks for Test users

• Task 01 - Navigate to a dataset without using the keyword search field.

• Task 02 - Navigate to datasets containing the word radar.

• Task 03 - Navigate to the datasets of the group Datacite.

• Task 04 - The result of task 04 would be grouped into 2 clusters. Display only
datasets from one of these clusters. (only by layout 1).

• Task 05 - Filter the result by discipline and select datasets about Archeology.

• Task 06 - Select the dataset by the author Headland Archaeology Ltd.

• Task 07 - Select one of the dataset and check the metadata.

• Task 08 - Clear the filters (only by layout 1 and 2).

• Task 09 - Navigate to datasets containing the word radar again.

• Task 10 - Navigate to the datasets of the group NARCIS.

• Task 11 - What is the size of the result?

• Task 12 - Select the dataset published on 19/07/2011 (only by layout 1 and 2).

• Task 13 - Navigate to datasets containing the words radar and data.

75

Appendix F

Test Users’ Log

User Layout Time [min] Task Completion* Remark**
1 1 14 1 2 4 2 4 3 3 3 4 4 2
2 2 14 1 2 5 2 5 2 3 4 3 4 3
3 3 22 2 4 4 2 2 4 4 5 2 5 3
4 2 17 1 3 2 3 4 4 4 3 3 5 3
5 3 21 2 5 1 3 3 3 3 4 3 4 2
6 1 17 2 2 3 4 1 1 3 3 4 3 5
7 2 11 1 3 3 2 4 4 4 5 3 5 3
8 1 7 1 4 3 4 3 3 4 3 5 4 2
9 3 17 1 4 2 3 3 3 3 4 3 5 3

10 1 17 2 3 3 1 2 2 3 3 3 3 4
11 2 9 1 2 3 3 3 3 3 4 3 4 3
12 1 11 1 3 4 3 4 4 3 4 3 3 3
13 3 15 2 5 2 4 3 4 1 3 2 3 3
14 2 13 1 3 4 3 2 3 3 2 3 3 2
15 1 15 2 3 4 4 3 3 3 3 3 5 2
16 3 17 2 5 3 4 4 5 4 3 4 3 3
17 2 13 1 3 3 4 3 4 3 4 3 5 5
18 3 18 2 5 4 5 3 4 3 3 2 3 3
19 2 7 1 4 2 3 4 3 2 2 3 5 2
20 1 10 1 3 4 2 4 4 3 4 2 3 3
21 3 18 2 4 4 3 2 3 2 5 3 5 3
22 2 12 1 3 4 5 3 2 3 3 3 3 4
23 1 16 2 4 2 4 3 4 4 4 4 3 3
24 3 19 2 3 3 2 4 3 2 3 3 4 2
25 2 6 1 5 4 3 3 3 2 4 3 3 3
26 1 18 2 4 3 5 3 5 3 5 2 5 5
27 3 8 1 5 4 3 3 4 3 2 3 3 2
28 1 8 1 3 4 4 2 4 3 4 3 5 3
29 1 14 2 4 3 1 3 3 3 2 4 3 3
30 2 14 2 3 4 3 3 2 2 4 3 4 4
31 2 15 2 5 5 4 3 3 3 3 2 4 3
32 1 14 1 5 4 3 4 4 4 2 3 5 5
33 3 22 2 5 2 5 1 4 3 5 2 5 2

* : 1 stands for task completed without help. 2 stands for task completed with help.
**: the remark column contains the answer of the SUS questions. The numbers are
ordered by question index.

77

Appendix G

Experiment Analysis

FIGURE G.1: Multiple comparison of time token by each group using Tukey’s
honest significance test.

78 Appendix G. Experiment Analysis

C

79

Appendix H

CD-ROM

In the CD attached with this work are three directories:

1. thesis/

This directory contains the latex source code of this research, including the
figures used and some scientific papers.

2. notebook/

This directory contains the Python scripts that were used to evaluate the dis-
tance metrics, implement the RS and test the performance. The scripts are in
form of snippets in a notebook which can be executed under Jupyter (http://jupyter.org).

3. source/

This directory contains the implementation of the layouts.

81

Bibliography

[1] Alessandro Moschitti; Roberto Basili. “Complex Linguistic Features for Text
Classification: A Comprehensive Study” (2004).

[2] m.c. schraefel Bill Kules; Max L. Wilson and Ben Shneiderman. “From Key-
word Search to Exploration: How Result Visualization Aids Discovery on the
Web” (2004).

[3] Willem Bressers. “Optimizing a web search engine user interface” (2007).

[4] Gerard Salton; Christopher Buckley. “Term-weighting approaches in automatic
text retrieval” (1998).

[5] Elasticsearch B.V. Elasticsearch Reference. elastic.co, 2018.

[6] Steven T. Kirsch; William I. Chang and Ed R. Miller. “Real-time document
collection search engine with phrase indexing” (1997).

[7] Gitte Lindgaard; Jarinee Chattratichart. “Usability testing: what have we over-
looked?” (2007).

[8] Sanjay Agrawal; Surajit Chaudhuri and G. Das. “DBXplorer: a system for keyword-
based search over relational databases” (2002).

[9] Kilian Q. Weinberger; Fei Sha; Minmin Chen and Zhixiang (Eddie) Xu. “An
alternative text representation to TF-IDF and Bag-of-Words” (2013).

[10] Jacques Bughin; Michael Chui and James Manyika. “Clouds, big data, and
smart assets: Ten tech-enabled business trends to watch” (2010).

[11] Ruksana Akter; Yoojin Chung. “An Evolutionary Approach for Document Clus-
tering” (2013).

[12] World Wide Web Consortium. Web Content Accessibility Guidelines 1.0. https:
//www.w3.org/TR/WAI-WEBCONTENT/.

[13] Divyakant Agrawal ; Sudipto Das and Amr El Abbadi. “Big Data and Cloud
Computing: Current State and Future Opportunities” (2011).

[14] University of Edinburgh Data Library team EDINA. Research Data Manage-
ment. https://blogs.ntu.edu.sg/lib-datamanagement/introduction/.

[15] MDN web docs. An introduction to Ajax - Asynchronous JavaScript + XML. https:
//developer.mozilla.org/en-US/docs/Web/Guide/AJAX.

[16] Richard H. Fowler; Wendy A. L. Fowler and Jorge L. Williams. “3D visualiza-
tion of WWW semantic content for browsing and query formulation” (1997).

[17] Johannes Fürnkranz. “A Study Using n-gram Features for Text Categoriza-
tion” (2003).

[18] Mesfin Sileshi; Bjorn Gambäck. “Evaluating Clustering Algorithms: Cluster
Quality and Feature Selection in Content-Based Image Clustering” (2009).

[19] Miguel Grinberg. Flask Web Development. O’Reilly UK Ltd.; 2nd edition edition,
2018.

https://www.w3.org/TR/WAI-WEBCONTENT/
https://www.w3.org/TR/WAI-WEBCONTENT/
https://blogs.ntu.edu.sg/lib-datamanagement/introduction/
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX

82 BIBLIOGRAPHY

[20] Mehdi Allahyari; Elizabeth D. Trippe; Juan B. Gutierrez and Krys Kochut. “A
Brief Survey of Text Mining: Classification, Clustering and Extraction Tech-
niques” (2017).

[21] Chris Burges; Tal Shaked; Erin Renshaw; Matt Deeds; Nicole Hamilton and
Greg Hullender. “Learning to rank using gradient descent” (2005).

[22] Khalid Majrashi; Margaret Hamilton and Alexandra L. Uitdenbogerd. “Multi-
ple User Interfaces and Cross-Platform User Experience: Theoretical Founda-
tions” (2015).

[23] Jason Ellis; Achille Fokoue; Oktie Hassanzadeh. “Exploring Big Data with He-
lix: Finding Needles in a Big Haystack” (2012).

[24] Marc Hassenzahl and Noam Tractinsky. “User experience - A research agenda.
Behaviour & Information Technology” (2011).

[25] Manjunath T.N; Ravindra S. Hegadi and Ravikumar G. K. “A Survey on Mul-
timedia Data Mining and Its Relevance Today” (2010).

[26] Craig Silverstein; Hannes Marais; Monika Henzinger and Michael Moricz.
“Analysis of a very large web search engine query log” (1999).

[27] Joshua Zhexue Huang. “Clustering Categorical Data with k-Modes” (1998).

[28] Joshua Zhexue Huang. “Extensions to the k-Means Algorithm for Clustering
Large Data Sets with Categorical Values” (1998).

[29] David A Hull. “Stemming algorithms: A case study for detailed evaluation”
(1996).

[30] The European Data Infrastructur. B2DROP. https://eudat.eu/services/
b2drop.

[31] The European Data Infrastructur. B2FIND. https://eudat.eu/services/
b2find.

[32] The European Data Infrastructur. B2SAFE. https://eudat.eu/services/
b2safe.

[33] The European Data Infrastructur. B2SHARE. https://eudat.eu/services/
b2share.

[34] The European Data Infrastructur. B2STAGE. https://eudat.eu/services/
b2stage.

[35] The European Data Infrastructur. Deutsche Klimarechenzentrum. https://www.
dkrz.de/up/services/data- management/projects- and- cooperations/
eudat-b2find-catalogue.

[36] The European Data Infrastructur. EUDAT Services for Data Preservation. https:
//eudat.eu/data-preservation.

[37] Thorsten Joachims. “Text categorization with support vector machines: learn-
ing with many relevant features.” (1998).

[38] Thorsten Joachims. Text categorization with Support Vector Machines: Learning
with many relevant features. LNCS, 2005.

[39] Jane Radatz; Anne Geraci; Feny Katki and John Lane. “IEEE Standard Glossary
of Software Engineering Terminology” (2007).

[40] Heide Brücher; Gerhard Knolmayer and Marc-André Mittermayer. “Docu-
ment Classification Methods for Organizing Explicit Knowledge” (2002).

https://eudat.eu/services/b2drop
https://eudat.eu/services/b2drop
https://eudat.eu/services/b2find
https://eudat.eu/services/b2find
https://eudat.eu/services/b2safe
https://eudat.eu/services/b2safe
https://eudat.eu/services/b2share
https://eudat.eu/services/b2share
https://eudat.eu/services/b2stage
https://eudat.eu/services/b2stage
https://www.dkrz.de/up/services/data-management/projects-and-cooperations/eudat-b2find-catalogue
https://www.dkrz.de/up/services/data-management/projects-and-cooperations/eudat-b2find-catalogue
https://www.dkrz.de/up/services/data-management/projects-and-cooperations/eudat-b2find-catalogue
https://eudat.eu/data-preservation
https://eudat.eu/data-preservation

BIBLIOGRAPHY 83

[41] Marek Rogozinski; Rafal Kuc. Elasticsearch Server. PACKT PUBLISHING.

[42] James Tin yau Kwok. “Automated Text Categorization Using Support Vector
Machine” (1998).

[43] Aurangzeb Khan; Baharum Baharudin; Lam Hong Lee and Khairullah khan.
“A Review of Machine Learning Algorithms for Text-Documents Classifica-
tion” (2010).

[44] Daniel E. Rose ; Danny Levinson. “Understanding User Goals in Web Search”
(2015).

[45] David D. Lewis. “Evaluating Text Categorization” (1998).

[46] Chih-Wei Hsu; Chih-Jen Lin. “A comparison of methods for multiclass sup-
port vector machines” (2002).

[47] Tie-Yan Liu. “Learning to Rank for Information Retrieval” (2009).

[48] Yiming Yang; Xin Liu. “A re-examination of text categorization methods” (1999).

[49] Gary Marchionini. “Information Seeking in Electronic Environment” (1996).

[50] Sam Scott; Stan Matwin. “Feature Engineering for Text Classification” (2011).

[51] Ji-Rong Wen; Jian-Yun Nie and Hong-Jiang Zhang. “Clustering user queries of
a search engine” (2001).

[52] Andrew McCallum; Kamal Nigam. “A Comparison of Event Models for Naive
Bayes Text Classification” (1998).

[53] Stuart Russell; Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2002.

[54] MGreg Nudelman. “Designing Search: UX Strategies for eCommerce Success”
(2005).

[55] Sergey Brin ; Lawrence Page. “The anatomy of a large-scale hypertextual Web
search engine” (1998).

[56] Jasmina Dj. Novakovic; Alempije Veljovic; Sinisa S. Ilic; Zeljko Papi and Milica
Tomovic. “Evaluation of Classification Models in Machine Learning” (2017).

[57] Rosenfeld Peter Morville; Louis. “Information Architecture for the World Wide
Web: Designing Large-Scale Web Sites” (2016).

[58] David Powers. “Evaluation: from Precision, Recall and F-measure to ROC, In-
formedness, Markedness and Correlation” (2011).

[59] N. Sunil Chowdary; D. Sri Lakshmi Prasanna and P. Sudhakar. “Evaluating
and Analyzing Clusters in Data Mining using Different Algorithms” (2014).

[60] Christopher D. Manning; Prabhakar Raghavan and Hinrich Schütze. “Intro-
duction to Information Retrieval” ().

[61] Wolfgang E. Nagel Richard Grunzke Volker Hartmann. “Towards a Metadata-
driven Multi-community Research Data Management Service” (2016).

[62] I. Rish. “An empirical study of the naive Bayes classifier” (2002).

[63] Greg Smith; Mary Czerwinski; Brian Meyers; Daniel Robbins; George Robert-
son and Desney S. Tan. “FacetMap: A Scalable Search and Browse Visualiza-
tion” (2006).

[64] Stephen Robertson. “Understanding Inverse Document Frequency: On theo-
retical arguments for IDF” (2004).

84 BIBLIOGRAPHY

[65] Magnus Rosellk. “Introduction to Text Clustering” (2008).

[66] Ashutosh Garg; Dan Roth. “Understanding Probabilistic Classifiers” (2001).

[67] Peter J. Rousseeuw. “Silhouettes: a graphical aid to the interpretation and val-
idation of cluster analysis” (1986).

[68] Miriam; He Yulan Saif Hassan; Fernández and Harith Alani. “On stopwords,
filtering and data sparsity for sentiment analysis of Twitter” (2014).

[69] Mark van de Sanden; Christine Staiger; Roberto Mucci; Stephane Coutin; Hannes
Thiemann. “Final Report on EUDAT Services”. EGU General Assembly 2016,
(2015).

[70] Kiri Wagstaf; Claire Cardie; Seth Rogers; Stefan Schroedl. “Constrained K-
means Clustering with Background Knowledge” (2001).

[71] Fabrizio Sebastiani. “Machine Learning in Automated Text Categorization”
(2008).

[72] Mark H. HansenElizabeth A. Shriver. “Method for organizing records of database
search activity by topical relevance” (2001).

[73] Viknes Balasubramanee; Chathuri Wimalasena; Raminder Singh and Marlon
Pierce. “Twitter bootstrap and AngularJS: Frontend frameworks to expedite
science gateway development” (2013).

[74] Taufik Akbar Sitompul. Usability and User Experience Evalu- ation of EUDAT
Services. 2016.

[75] International Organization for Standardization. “Ergonomic Requirements for
Office Work with Visual Display Terminals (VDTs), Part 11: Guidance on Us-
ability” (1998).

[76] International Organization for Standardization. “Human-centred Design for
Interactive Systems: ISO” (2010).

[77] P.N. Tan; Michael Steinbach and Vipin Kumar. “Cluster Analysis: Basic Con-
cepts and Algorithms” (2005).

[78] D. T. Pham; Maria Mar Suarez-Alvarez and Yuriy I. Prostov. “Random search
with k-prototypes algorithm for clustering mixed datasets” (2011).

[79] Mehdi Allahyari; Seyedamin Pouriyeh; Mehdi Assef; Elizabeth D. Trippe and
Juan B. Gutierrez. “A Brief Survey of Text Mining: Classification, Clustering
and Extraction Techniques” (2017).

[80] San Diego Vagelis Hristidis; UC. “Efficient IR-style keyword search over rela-
tional databases” (2003).

[81] Vapnik Vladimir. The Nature of Statistical Learning Theory. Springer, 1995.

[82] Jonathan J. Webster and Chunyu Kit. “Tokenization as the initial phase in
NLP” (1992).

[83] Hannes Widmann Heinrich; Thiemann. “EUDAT B2FIND : A Cross-Discipline
Metadata Service and Discovery Portal”. EGU General Assembly 2016, (2016).

[84] the free encyclopedia Wikipedia. Ajax - Asynchronous JavaScript + XML. https:
//en.wikipedia.org/wiki/Ajax_(programming).

[85] Wikipedia, the free encyclopedia. A tag cloud with terms related to Web 2.0. Origi-
nal by Markus Angermeier Vectorised and linked version by Luca Cremonini.
2007. URL: https://en.wikipedia.org/wiki/Tag_cloud#/media/File:
Web_2.0_Map.svg.

https://en.wikipedia.org/wiki/Ajax_(programming)
https://en.wikipedia.org/wiki/Ajax_(programming)
https://en.wikipedia.org/wiki/Tag_cloud#/media/File:Web_2.0_Map.svg
https://en.wikipedia.org/wiki/Tag_cloud#/media/File:Web_2.0_Map.svg

BIBLIOGRAPHY 85

[86] Yiming Yang. “An Evaluation of Statistical Approaches to Text Categoriza-
tion” (1999).

[87] Yuh-Jye Lee; Yi-Ren Yeh; and Hsing-Kuo Pao. “An Introduction to Support
Vector Machines” (2005).

[88] Charu C. Aggarwal; ChengXiang Zhai. “A Survey of Text Clustering Algo-
rithms” (2012).

[89] Michal Jankowski-Lorek; Kazimierz Zielinski. “Document controversy classi-
fication based on the wikipedia category structure” (2015).

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	The European Data Infrastructure
	Research Scope
	Thesis Structure

	Background
	Introduction
	Overview
	Accessibility, Usability, and User Experience
	Accessibility
	Usability
	User Experience

	Navigation Model
	Information Architecture

	Case Study: B2FIND
	Text Categorisation
	Text Classification
	Pre-Processing
	Feature Generation
	Classification Techniques

	Text Clustering
	Clustering Techniques
	Evaluation Metrics

	Implementation
	Introduction
	Overview
	Data Set
	Document Manager
	Pre-processing
	Feature Extraction
	Building up the Data Models

	Index Manager
	Search Engine: Elasticsearch

	Search Manager
	Server
	Front-End
	Navigation Experiments
	Navigation Testing

	Experiments and Results
	Introduction
	Categorization Results
	Navigation Results

	Conclusion
	Discussion
	Future Work

	Table of English Stopwords
	Elasticsearch
	Test Users’ Background
	System Usability Scale
	Scenario Tasks for Test users
	Test Users’ Log
	Experiment Analysis
	CD-ROM
	Bibliography

