
University of Reading

Department of Computer Science

Open source vehicle ECU diagnostics and testing

platform

Ashcon Mohseninia

Supervisor: Julian Kunkel

A report submitted in partial fulfilment of the requirements of
the University of Reading for the degree of
Bachelor of Science in Computer Science

April 29, 2021

Declaration

I, Ashcon Mohseninia, of the Department of Computer Science, University of Reading, confirm
that all the sentences, figures, tables, equations, code snippets, artworks, and illustrations in
this report are original and have not been taken from any other person’s work, except where
the works of others have been explicitly acknowledged, quoted, and referenced. I understand
that if failing to do so will be considered a case of plagiarism. Plagiarism is a form of academic
misconduct and will be penalised accordingly.

Ashcon Mohseninia
April 29, 2021

i

Abstract

With the complexity of electronics in consumer vehicles, there currently only exists proprietary
tools produced by various OEMs to diagnose their own vehicles. Each OEM has its own tool,
and there is no easy way for a consumer to diagnose their own vehicle.

This project will explore the possibility of creating an entirely open source diagnostics
software stack that will work with all ready existing diagnostic adapters that utilize the Passthru
API (Which is used for a PC to communicate with a diagnostic adapter plugged into a vehicles
OBD-II port). Additionally, this project will also explore creating an entirely open source
Passthru API driver for an open source OBD-II adapter, whilst additionally porting the API
from Win32 only to UNIX based operating systems such as Linux and OSX, allowing for a
wider target audience compared to traditional diagnostic applications and adapters which only
target Windows.

ii

Acknowledgements

For their contributions to this project, I would like to acknowledge the following parties:

• Julian Kunkel - For his supervision of the project and consistently giving me tips on how
I can improve various aspects of this report.

• Pat Parslow - For his supervision of the project

• Macchina CC https://www.macchina.cc/ - For providing great support for their M2
hardware, and for shipping me several test modules as well as an OBD Breakout board
for testing with the project.

• JinGen Lim https://github.com/jglim - For his efforts with reverse engineering the
CBF file format

• Collin Kidder https://github.com/collin80 - For consistent support with his due can
library used for CANBUS communication on the M2 hardware.

• Daniel Cuthbert https://github.com/danielcuthbert - For helping me test both
the M2’s driver and application on Mac OSX as well as designing OpenVehicleDiag’s
logos.

• Nils Weiss https://github.com/polybassa - For providing me with a preview of Nils
Weiss, Sebastian Renner, Jürgen Mottok, Václav Matoušek (n.d.) prior to its official
publication.

• RJ Automotive https://www.rjautomotive.net/ - For allowing me to test my Passthru
adapter with their copy of DAS/Xentry

iii

https://www.macchina.cc/
https://github.com/jglim
https://github.com/collin80
https://github.com/danielcuthbert
https://github.com/polybassa
https://www.rjautomotive.net/

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2

1.2.1 Lack of continuity or standards between OEMs diagnostic tools . . . 2
1.2.2 Proprietary diagnostic hardware . 2

1.3 Aims and objectives . 2
1.4 Solution approach . 3

1.4.1 JSON schema designing and converting 3
1.4.2 Passthru driver creation . 4
1.4.3 Application creation . 4

1.5 Summary of contributions and achievements 4
1.5.1 Passthru driver . 4
1.5.2 JSON Schema . 5
1.5.3 Diagnostic Application (OpenVehicleDiag) 5

1.6 Organization of the report . 5

2 Literature Review 6
2.1 Communication protocols found in vehicles 6

2.1.1 CAN . 6
2.1.2 ISO-TP . 8
2.1.3 LIN . 9

2.2 Diagnostic adapter hardware and APIs . 12
2.2.1 Hardware APIs . 12
2.2.2 Hardware adapters . 13

2.3 ECU Diagnostic protocols . 14
2.3.1 OBD-II . 15
2.3.2 KWP2000 and UDS . 17

2.4 Existing diagnostic software . 18
2.4.1 Torque for Android (Generic OBD) 18
2.4.2 Carly (Third party software) . 18
2.4.3 Xentry (Dealer software) . 18

2.5 Open Diagnostics eXchange (ODX) . 19
2.6 The OBD-II port . 19
2.7 Comparisons to the proposed project . 20

2.7.1 Hardware adapters . 20
2.7.2 Diagnostic software . 21

iv

CONTENTS v

3 Methodology 22
3.1 Test setup . 22
3.2 Rust . 23
3.3 JSON schema creation and CBF parsing . 23

3.3.1 JSON structure . 23
3.3.2 Code implementation of the JSON Schema 27
3.3.3 Parsing Daimler CBF Files to JSON 29

3.4 Cross platform Passthru adapter . 32
3.4.1 Architecture . 33
3.4.2 Creating the driver in Rust . 34
3.4.3 Communication between the adapter and driver 35
3.4.4 Reading battery voltage . 37
3.4.5 ISO-TP Communication . 38
3.4.6 Porting the Passthru API to Linux and OSX 39
3.4.7 Logging activity . 41
3.4.8 Performance optimizations with CAN Interrupts 41

3.5 Diagnostic GUI . 42
3.5.1 Diagnostic server architecture . 43
3.5.2 Communication server architecture 43
3.5.3 Implementation of the Passthru API 45
3.5.4 User Interface . 47
3.5.5 KWP2000 and UDS implementations 53
3.5.6 Automated ECU Scanner . 55
3.5.7 JSON Diagnostic session . 59

3.6 Summary . 62

4 Results, Discussion and Analysis 63
4.1 Passthru driver . 63
4.2 Diagnostic application . 64

4.2.1 Automated ISO-TP Scanner . 64
4.2.2 Diagnostic session mode (JSON) . 66
4.2.3 Generic diagnostic session . 67

4.3 Summary . 68

5 Conclusions and Future Work 69
5.1 Conclusions . 69
5.2 Future work . 69

6 Reflection 71

Appendices 74

A Screenshots and diagrams 74
A.0.1 Daimler Xentry software . 74
A.0.2 OpenVehicleDiag . 77

B Issues and resolutions 84
B.1 A full list of issues encountered during development of the M2 driver 84

B.1.1 Windows Serial API . 84
B.1.2 CAN Due library . 84

CONTENTS vi

C Code snippets and tables 85
C.1 List of SAE J2534 API functions . 85
C.2 A full list of driver message types . 85
C.3 List of KWP2000 and UDS Services . 87
C.4 Extract of OVD’s JSON (EGS52) from CBFParser 89

D A list of project repositories 93

E OpenVehicleDiag JSON Schema 94

List of Figures

2.1 Bit layout of both Standard and Extended CAN Frames 6
2.2 Data format of a service request with PID and data 14
2.3 Data format of a positive ECU response . 14
2.4 Data format of a negative ECU response . 14

3.1 Mock-up of how the ECUs are connected in the test setup 22
3.2 UML representation of ovdECU Root object, ECUVariantDefinition and Con-

nection properties . 24
3.3 UML representation of JSON Service and ECUDTC 24
3.4 UML representation of JSON DataFormat 25
3.5 Simplified UML representation of the data structure in a CBF File 30
3.6 Macchina’s M2 Under the dash OBD-II module 32
3.7 Macchina M2 board layouts . 33
3.8 Expanded sequence diagram of communication server 36
3.9 Voltage reading comparison between M2 (Stock and corrected) and Multimeter 37
3.10 Sequence diagram for sending ISO-TP Data to an ECU 38
3.11 Sequence diagram for receiving ISO-TP Data from an ECU 39
3.12 Diag servers UML overview . 43
3.13 UML of ComServer . 44
3.14 OpenVehicleDiag’s launcher (Passthru device enumeration) 49
3.15 OpenVehicleDiag’s launcher displaying Passthru error 50
3.16 Standard CAN display (Hex) vs Binary CAN 53
3.17 Warning message presented to the user prior to the ECU scan 55
3.18 Listing to existing CAN traffic . 56
3.19 Locating potential ISO-TP endpoints . 56
3.20 Finalizing ISO-TP scan results . 57
3.21 Scan progress for UDS compatible ECUs . 58
3.22 Instrument cluster warning lights being displayed during the final stages of

ECU detection . 58
3.23 Results page of ECU Scanner . 59
3.24 JSON Session home with CRD ECU . 60

4.1 DAS utilizing the custom J2534 adapter . 63
4.2 Vediamo utilizing the custom J2534 adapter to flash a ECU 64

A.1 Xentry Diagnostics establishing communication with all the ECUs within a
vehicle. During this stage of diagnostics, Xentry is trying to locate all the
ECUs on the vehicle, and checking what variation each ECU is in order to
parse their diagnostic data correctly . 74

vii

LIST OF FIGURES viii

A.2 Xentry diagnostics with a list of all possible ECUs in the vehicle to talk to,
each in their own category . 75

A.3 Obtaining advanced data from the ECU in Xentry - Querying various attributes
about the ESP ECU. The serial number of this part has been hidden. 75

A.4 Xentry showing a live ’actuation’ value of certain items the ESP ECU controls 75
A.5 Show Xentry obtaining real-time data from the CDI Engine ECU. The values

in Green are within tolerance, and values in red are outside tolerance. Black
values indicate no tolerances are specified for the value 76

A.6 Xentry showing advanced real-time data from the CDI Engine ECU. This allows
for advanced analytics of how the engine is performing. 76

A.7 More advanced real-time diagnostics with the CDI Engine ECU. This shows
the injector calibration values for the number 1 cylinder 77

A.8 OVD Home page (Dark theme) . 77
A.9 OVD Home page (Light theme) . 78
A.10 OVD Can Scanner (Hex mode) . 78
A.11 OVD Can Scanner (Binary mode) . 78
A.12 Loading a ECU Scan save file in OVD . 79
A.13 Selected CRD ECU in OVD . 79
A.14 OVD KWP2000 generic session - Home . 79
A.15 OVD KWP2000 generic session - Scanning DTCs 79
A.16 OVD KWP2000 generic session - Clearing DTCs 80
A.17 OVD KWP2000 generic session - Sending valid manual payload 80
A.18 OVD KWP2000 generic session - Sending invalid manual payload 80
A.19 OVD Json session - Connected to CRD engine ECU 80
A.20 OVD Json session - ECU Info page . 81
A.21 OVD Json session - DTC page . 81
A.22 OVD Json session - DTC page with Freeze frame interpretation 82
A.23 OVD Json session - Selecting function to read data from 82
A.24 OVD Json session - Data presentation . 83
A.25 OVD Json session - Reading data from EGS52 transmission ECU 83

List of Tables

2.1 Transmission with collision detection on CANBUS 8
2.2 Encoding example of supported PIDs for Service 01 15
2.3 Comparison between existing adapters and proposed solution 20
2.4 Comparison between existing diagnostic software and proposed solution . . . 21

3.1 ECU List in the desk test setup . 22
3.2 Supported format options for DataFormat 28

4.1 Automated scan results on the Mercedes W203 65
4.2 Automated scan results on the Mercedes W246 65

ix

List of Abbreviations

CAN/CANBUS Controlled area network

LIN/LINBUS Local interconnect network

SAE J2534 The Passthru API

KWP2000 Keyword protocol 2000

UDS Unified diagnostic services

API Application programming Interface

ECU Engine/Electronic control unit

OBD On-board diagnostics

OBD-II OBD protocol

ODX Open Diagnostic eXchange format

DTC Diagnostic Trouble Code

SCN Software Calibration Number

x

Chapter 1

Introduction

In this chapter the current state of car diagnostics will be discussed, as well as a high level
overview of the project breakdown and how it will hopefully change the current state of car
diagnostics for consumers.

1.1 Background

Since the early 2000s, the automotive industry has seen an exponential increase in both the
complexity of ECUs and the number of ECUs in consumer vehicles, with modern vehicles
having more than 30 ECUs.

With increased complexity comes more points of failure. With modern ECUs being able
to register fault codes at the slightest hint of trouble, and also requiring specialist software to
calibrate them after certain mechanical parts are either replaced or modified on a vehicle.

This presents a unique problem. While DIY consumers have traditionally been able to
easily replace or modify components on their vehicles, software issues such as ECU fault codes
still require proprietary software which is only used by the OEM itself, or licensed to specific
workshops as a huge premium, and also requires proprietary multiplexer hardware to plug into
the cars OBD-II port, which is also expensive.

Currently, there are simple OBD-II applications that can only communicate with the engine
ECU in a vehicle to clear standard OBD-II error codes or read sensor data that is only outlined
by the OBD-II specification, but there is no easily available software outside of the OEM’s
own software (Which is licensed to workshops) which can diagnose all ECU’s within a vehicle,
or run more complex diagnostic routines and tests. Also, the vast majority of OEM software
currently available is only compiled for win32 (32bit Windows), and therefore is not up to date
with modern computing, and also does not run on Linux or OSX. This is primarily because
OEMs over the years have simply been adding features to their old diagnostic software, rather
than spending resources on creating a whole new platform for more modern vehicles.

Therefore, in this project, the possibility and process of creating such an application that
allows for communicating with all ECUs within a vehicle, and to run more advanced diagnostic
functions on them, without the OEM’s own software will be explored. This will also include
writing a open source driver for Macchina’s M2 OBD-II module to turn it into a diagnostic
adapter using the J2534 / Passthru API, which can be used by any application utilizing the
protocol, including some OEM software (Such as Daimler’s Xentry Passthru diagnostic suite).
Additionally, the application and J2534 API will be ported to both 64bit versions of Linux and
OSX unofficially, allowing for a much wider target audience of the system, since individuals
would no longer be limited to just older versions of Windows.

Another objective of this project is to create a simple, easy to use database format in

1

CHAPTER 1. INTRODUCTION 2

JSON. Traditionally, OEM software uses proprietary binary based file formats to describe how
the software communicates with ECUs within a vehicle, as well as how to interpret the ECUs
responses.

1.2 Problem statement

This section will discuses the current issues with car diagnostics.

1.2.1 Lack of continuity or standards between OEMs diagnostic tools

With every OEM creating their own diagnostic software, there is no continuity between OEM’s,
which hinders most independent workshops and consumers who wish to diagnose their own
vehicles. For instance, Mercedes’ diagnostic software (Xentry) will never work on a Toyota
vehicle, and vice versa, despite the fact that at a low level, both software suits will use the
same hardware API to talk to a diagnostic adapter plugged into a vehicle.

To add to this, there is no standard format for storing diagnostic data about ECU’s. Each
diagnostic tool set has its own file format, which has to be reverse engineered to extract any
useful data from. In this project, the prospect of using an open, universal JSON format will
be looked into.

1.2.2 Proprietary diagnostic hardware

Currently, there are two publicly available API’s for communicating with a vehicle using a
multiplexer. ISO 22900-2 (D-PDU API) and SAE J2534 (Passthru API). Most OEM software
supports either one or both of these APIs, or also supports their own proprietary hardware.
There are currently two main issues with both of the APIs.

1. Windows only support. Since these API’s are designed for diagnostic software, and those
are only designed for windows, there is currently no known diagnostic API that includes
support for Linux or OSX.

2. Closed source. Although some of the API documentation is made public, vendors of the
diagnostic multiplexers that utilize either API creates proprietary hardware with closed-
source controller firmware, and sells the adapters at a premium, making it hard for the
average consumer to easily attain one. There are chinese ’clone’ adapters that can be
purchased on ebay for a cheap price, however these tend to not work or will encounter
massive stability issues, so should never be trusted to work reliably.

1.3 Aims and objectives

Aims: This project has the following aims:

• Build a cross-platform, Graphical ECU diagnostic application (Using the J2534 passthru
API)

• Port the J2534 API to Linux and OSX

• Write a custom J2534 driver for Macchina’s1 M2 Under the dash OBD-II module,
allowing it to work on all 3 operating systems.

1macchina.cc

macchina.cc

CHAPTER 1. INTRODUCTION 3

• Define a JSON schema for describing the capabilities, fault codes, and diagnostic func-
tions that can be ran on an ECU, and make it a viable replacement to proprietary data
formats.

NOTE: ECU firmware Flashing or updating will not be part of this project. This is due to
liability concerns of leaving an individuals ECU in a bricked state, and also the difficulty in
locating a legitamate software version for an ECU.

Objectives: To achieve the aims, the project has the following objectives:

• Read and clear non standard (OBD-II) ECU error codes from a test ECU, and a real
vehicle

• Convert Daimler database files (CBF) into JSON as a proof of concept.

• Show that live data recording works on multiple ECU’s in a vehicle

• Show that the custom J2534 compatible adapter works with real OEM software that
uses the J2534 API

1.4 Solution approach

Breaking down the full solution of the project yields the following sub objectives:

1.4.1 JSON schema designing and converting

For this, a JSON format will be described using UML, then written in code which can be
serialized and deserialized to and from JSON. After, a parser will be written which is capable
of converting Daimler’s CBF file format to the JSON. CBF is a proprietary diagnostic container
file format used by Daimler’s diagnostic software suits, and is only used for older vehicles (Pre
2008), with their SMR-D file format superseding CBF, shich is used by their newer software
called Xentry. At a high level, CBF files contain the following data:

1. ECU software version names (An ECU can have different software versions)

2. Communication protocols to be used to communicate with the ECU

3. Payloads to send to the ECU for certain functions

4. List of all error codes, as well as a readable description of the error codes

5. Interpretation data for converting an ECU response packet into human readable text

Important. Since this will extract data from Daimler’s own CBF files, there are some social
and legal issues to account for. Contained within the CBF files is data related to SCN coding.
SCN Coding (Software Calibration number coding), is a way to write a coding string to an
ECU in order to enable or disable features on it. The CBF files contain data regarding which
regions in the ECU’s EEPROM relate to which features. Because SCN coding is something
that Daimler sees as its own intellectual property, and charges a heavy fee for feature unlocking
on their cars, this will NOT be something that is going to be extracted from the CBF files,
and there will be no referencing to SCN regions in the extractor codebase either. The only
things that will be extracted from the CBF files will be diagnostic routines, ECU identification
data, and interpretation data.

CHAPTER 1. INTRODUCTION 4

1.4.2 Passthru driver creation

This component of the project will be attempted in the following steps.

1. Define a new standard for storing J2534 configuration data on Linux and OSX, since
the J2534 API officially only supports win32 (32bit Windows).

2. Create a reliable cross-platform serial communication link between a PC and adapter,
along with a defined protocol for the adapter and PC to exchange data.

3. Create a Rust library with the necessary exported J2534 functions such that any appli-
cation can use the library and therefore adapter to talk to a vehicle

4. Create C++ firmware for the adapter for managing physical communication links be-
tween the OBD-II port and ECUs in the vehicle, and listen for command requests from
the PC and sending data back to the PC.

1.4.3 Application creation

This will be the largest part of the project. At a high level, this application has to be able to
do the following, and shall be called OpenVehicleDiag:

1. Create an application that can utilize the J2534 API to communicate with a vehicle.

2. Create an abstraction layer for future use, which allows for more hardware to be utilized
by OpenVehicleDiag other than J2534. (Examples: SocketCAN, D-PDU).

3. Create a useful GUI for data logging of ECUs based on the data found in the JSON
schema

4. Allow for basic commands to be sent to any ECU in a vehicle using KWP2000 or UDS.
This should allow for reading and clearing error codes from the vast majority of vehicle
ECUs, even if the vehicle does not have any JSON created for it.

5. Allow for a user to see raw data on their vehicles CAN Network (Targeted at individuals
who wish to reverse-engineer their vehicles’ CAN network)

6. Based on the work done by [Nils Weiss, Sebastian Renner, Jürgen Mottok, Václav
Matoušek (n.d.)], create a intuative user interface which can exploit the ISO-TP protocol
to scan for all UDS or KWP2000 ECU’s in any unknown vehicle.

1.5 Summary of contributions and achievements

All the code repositories for each part of this project can be located on github (See D). This
project has ended up being very successful, gaining a large following online (150 stars on
Github for the main OpenVehicleDiag repository). OpenVehicleDiag itself will continue to
receive contributions and improvements in the future.

1.5.1 Passthru driver

The Passthru driver implementation has proven that adapters from the likes of Bosch are far
too expensive, and there is no need for $1000+ adapters, when an open source alternative
which was designed for this project does exactly the same job with open source hardware

CHAPTER 1. INTRODUCTION 5

which costs a fraction of the commercial adapters. This report will even show that the
adapter works with Commercial software from Daimler. Also, this report will show that the
SAE J2534 API can indeed be ported to other operating systems, which in turn makes it easier
for other operating system users to utilize the API with custom Diagnostic software such as
OpenVehicleDiag.

1.5.2 JSON Schema

The JSON Schema has shown that it can be a compatible substitute for the ODX-D data
storage format and other proprietary diagnostic container formats, and more importantly, is a
lot easier and more accessible for users to read or create.

1.5.3 Diagnostic Application (OpenVehicleDiag)

OpenVehicleDiag has proven that the need for large scale OEM or expensive third party
software is somewhat obsolete, when it comes to simple diagnostics such as DTC reading and
clearing, as well as data gathering from the ECU. This should be enough for 90% of use cases
where someone would take their vehicle to the dealer due to a software fault with an ECU.
It has also proven that diagnostic applications can be intuitive for individuals to use, and can
also run on other operating systems other than Windows.

1.6 Organization of the report

This report will first describe the current hardware, software and protocols currently utilized for
car diagnostics, before explaining the solution approach and methodology. Each sub project
(Passthru driver, JSON Schema, Diagnostic application), will have its own solution approach
and methodology.

Towards the end of this report, the results and impact of the work will be discussed, as
well as showing tests conducted with the custom Passthru adapter to prove it is SAE J2534
compliant, and works perfectly with commercial diagnostic software. Also future plans for this
project will be discussed.

Chapter 2

Literature Review

In this chapter, existing vehicle communication protocols, diagnostic protocols, hardware APIs
and diagnostic software will be looked at, with a comparison at the end comparing current
diagnostic software and hardware to what is proposed for this project.

2.1 Communication protocols found in vehicles

Within modern vehicles, there are many different protocols used for allowing ECUs in a ve-
hicle to communicate with each other, or to allow an ECU to communicate with primitive
components on the car. In this part, the 2 most common protocols (CAN and LIN) will be
discussed, outlying how each protocol works, and what they are used for.

2.1.1 CAN

CAN / CANBUS is a high speed transport network used for ECU communication. It consists
of 2 separate ISO specifications:

1. ISO11898-2 - High-Speed CAN (Up to 1Mb/s)

2. ISO11898-3 - Low-Speed CAN (Up to 125Kb/s), also known as fault-tolerant CAN

Both CAN Specifications work on similar principles, except with different electrical properties.
CAN Networks transmit CAN Packets. These are data packets containing up to 8 bytes of

data, as well as a 11 or 29bit Identifier ID (Depending on if the CAN Network uses Standard
of Extended addressing). There is also extra data in each CAN Frame (Bit stuffing and CRC
Checks), however these extra bits are never exposed to the ECUs CPU as the CAN Controller
deals with validating the CRC checks of the CAN Frame.

Figure 2.1: Bit layout of both Standard and Extended CAN Frames

Most commonly, the following data fields are exposed the ECU’s CPU:

6

CHAPTER 2. LITERATURE REVIEW 7

• CAN ID - This is the Unique identifier of the ECU subsystem which transmitted the
frame (Some ECUs transmit multiple CAN Frames with different IDs)

• CAN DLC - The amount of bytes in the data portion of the CAN Frame

• CAN Data - 0-8 bytes of data contained within the CAN Frame

• RTR - Remote frame. This is sometimes used by an ECU to request data from another
ECU. If this value is 1, then the ECU is requesting data from another ECU, if the value
is 0, then there is data within the frame from the requested ECU.

Electrical properties of CAN

Depending on the type of CAN Network, the electrical properties of the bus differs slightly:

• High-Speed CAN ISO11898-2 - Both CAN wires are terminated with a 120Ω resistor
at each node on the bus. The recessive voltage of the CAN Network is 2.5V , with
the dominant voltage being approximately 3.5V for CAN-H, whilst being approximately
1.5V for CAN-L.

• Low-Speed CAN ISO11898-3 - CAN wires are not terminated with a resistor, however
the overall resistance between both wires over the entire bus should not exceed 100Ω.
The recessive voltage of the CAN Network is approximately 0V for CAN-H and 5V
for CAN-L, whilst the dominant voltages are approximately 5V for CAN-H and 0V for
CAN-L.

Both CAN Network types require that a logical ’1’ is the recessive voltage, and a logical ’0’
is the dominant voltage. The logical state of the CAN Network is calculated by applying
a logical AND to both the CAN-H and CAN-L wires. Components on the CAN Networks
(CAN Transceiver chips) are designed to handle anywhere between −27V to +40V without
sustaining any damage. If both CAN Wires are not in the same logical state at the same time
EG: CAN-H being in a dominant state whilst CAN-L is in a recessive state, all transmission
on the network will stop immediately as all the CAN Transceiver chips on the network as
detected that either a wire may be shorted to ground, or that a wire may be shorted to an
ECU’s power supply, and therefore the network is in an unstable state.

This is not always the case however, as some CAN Networks based on ISO11898-3 can
actually run in single wire mode, where the transceivers discard the erroneous wire voltage,
and only use the voltage provided by the ’good’ CAN wire.

Collision detection in a CAN Network

Since a CAN Network does not have ’master ECU’, CAN networks have a passive method
of detecting and avoiding packet collisions. As a logical ’0’ is a dominant voltage, it means
that whilst an ECU is transmitting a ’0’, it is physically impossible for another ECU to flip
the CAN Wire voltages to their recessive ’1’ state. During a frame transmission, each CAN
Transceiver chip on the network checks the CAN Wire voltages after every bit is sent, and
will stop sending if the CAN Wire voltages do not match the bit being sent in order to avoid
a collision. This is why on a CAN Network, ID’s with a lower value have a higher ’priority’
on the network, since lower ID’s will block the transmission of higher IDs in the event of a
collision.

CHAPTER 2. LITERATURE REVIEW 8

CAN ID Bits 10 9 8 7 6 5 4 3 2 1 0 Rest of frame

ECU 1 (CAN ID 0x0005) 0 0 0 0 0 0 0 0 1 0 1 ...

ECU 2 (CAN ID 0x000A) 0 0 0 0 0 0 0 1 STOP TRANSMITTING

CANBUS logical state 0 0 0 0 0 0 0 0 1 0 1 ...

Table 2.1: Transmission with collision detection on CANBUS

Table 2.1 shows how an ECU with a lower CAN ID (0x0005) can stop another ECU with a
larger CAN ID of (0x000A) from transmitting. As soon as ECU transmitting the higher CAN
ID detects the CAN networks logical state does not match that of the bit it just sent, it stops
sending, and the data ECU 1 sent is not impacted. This is all handles by the CAN Transceiver
chip, so the ECU’s Processor is not occupied with checking the CAN network state.

2.1.2 ISO-TP

ISO-TP (ISO15765-2) is a transport layer protocol that runs over a CAN Network, allowing
for multiple ECUs to exchange up to 4096 bytes using multiple structured CAN Frames.

The ISO-TP Standard defines the following 4 frame types, which are denoted by the first
nibble (Half byte) in the CAN Frame, also known as the PCI byte:

CAN frame type Nibble (Hex) Description

Single frame 0 The single frame contains all the data in the payload

First frame 1 This is sent if the data is larger than a single CAN Frame can
contain. It also contains the full length of the payload to be
transmitted

Consecutive frame 2 Contains subsequent data for a larger data payload after a first
frame was sent and the sender received a flow control message.

Flow control 3 This is sent in response to receiving a First frame. This frame
tells the sending ECU how many CAN frames to send next
before waiting for another flow control message, as well as how
quickly to send the frames

A flow control frame contains the following 3 bytes:

CHAPTER 2. LITERATURE REVIEW 9

Byte name Byte position Purpose

PCI 0 Identifies the frame as being a flow control frame. A PCI of 0x30 indicates
that it is a flow control frame, and that the sender can proceed sending
data, and respect the values indicated in BS and ST-MIN. A value of 0x31
indicates the ECU is currently busy, and the sender must wait before at-
tempting to send again.

BS 1 The BS value (Block Size) indicates the maximum number of consecutive
frames the sender can send before the receiving ECU sends another flow
control frame to the sender. A value of 0x00 for block size indicates an
infinite block size, so the sender must send all its data without waiting for
another flow control message.

ST-MIN 2 This indicates the minimum separation time between the sender sending
consecutive frames to the receiving ECU. Any value between 0x01 and 0xF0
is interpreted as milliseconds, and values between 0xF1 and 0xF9 is inter-
preted as 100-900 microseconds. A value of 0x00 here indicates the sender
can send consecutive frames as quickly as it wants.

In order to identify lost data, or out of order CAN frames during multi frame transmissions,
the PCI byte of the consecutive frame is used as a counter. The counter starts with a PCI of
0x21, then increases after every consecutive frame is sent until 0x2F, before wrapping round
to 0x20 and counting up again.

Below is an ISO-TP exchange traced from the interior CAN Network of my Mercedes
W203 C class. This exchange occurred between the Radio and Instrument cluster, where the
Radio is telling the instrument cluster what text to display on the Radio page of its LCD. Red
indicated bytes that are for the ISO-TP protocol

CAN ID CAN Data ASCII

0x01A4 10 12 03 26 01 00 01 0B

0x01D0 30 08 28 00 00 00 00 00 0.(.....

0x01A4 21 10 41 55 44 49 4F 20 !.AUDIO.

0x01A4 22 4F 46 46 00 C4 00 0B "OFF....

In this trace, we can see the Radio has a CAN ID of 0x01A4, and sent a 18 byte payload to
the instrument cluster. Upon receiving the first CAN Frame, the instrument cluster responded
on a CAN ID of 0x01D0, accepting the transmission of more data, and asking for a maximum
of 8 packets to be sent before the radio should wait for another flow control message, and
with each packet being sent at a minimum of 40ms apart. Reassembling the Radio’s payload
without any of the ISO-TP protocol bytes shows the raw payload:

03 26 01 00 01 0B 10 41 55 44 49 4F 20 4F 46 46 00 C4

2.1.3 LIN

LIN (Local interconnect Network) is a much cheaper and simpler interconnect network used
in vehicles. Its main focus is for allowing ECUs to drive more primitive components simply,
rather than using expensive network solutions such as CANBUS.

A LIN network consists of a single wire, which connects 1 master ECU with up to 16 slave
components or ECUs. This single wire acts as a half-duplex serial interface, running at 12V
DC. The data transfer rate of LIN Bus is relatively slow, ranging from 1-20kbps. However,
due to its simplicity, LIN bus is preferred when driving primitive components. For example,
the engine ECU in a vehicle can use a LIN network to drive items like the engine fan and AC

CHAPTER 2. LITERATURE REVIEW 10

compressor on the engine, allowing the engines ECU to also get feedback on the components
state of operation.

A LIN network operates by the master ECU requesting data from a slave component on
its network. The network is otherwise void of any traffic. When requesting data, the master
ECU will send a header frame which looks like the following:

Field name Length (Bits) Purpose

Sync break 14+ Indicates the start of a new frame

Sync byte 8 Allows for resynchronization of slave nodes

ID byte 6 Frame Identifier

Parity 2 parity for the frames ID

As seen above, the ECU starts by sending a sync break. This notifies all the nodes on the
LIN network to begin listening for incoming data and stop transmitting. Following this is the
sync byte, This has a predefined value of 0x55 (01010101 in binary) and allows all the nodes
on the network to calculate and determine the time between the high and low voltages on the
bus, allowing them to listen in sync with the master sending the rest of the frame. Lastly is
the ID followed by 2 bits for parity. This is the ID the ECU is requesting data from, and the
matching node on the network will respond with a data frame, which is structured like so:

Field name Length (Bits) Purpose

Data 1-64 Data to be transmitted

Checksum 8 Checksum calculation

The response sent back to the master ECU contains simply a data field (configurable between
1 and 64 bits) followed by an 8 byte checksum. Since LIN 2.0, the ID of the request determines
the data size of the response:

ID Range Data length

0-31 2 bytes

32-47 4 bytes

48-63 8 bytes

When calculating the checksum of the frame, the following code is used:

1 uint8_t calculate_checksum(uint8_t id , uint8_t* data_ptr , uint8_t data_len ,

uint8_t cs_mode) {

2 uint16_t tmp = 0; // 0 is default for classic checksum

3 if (cs_mode == ENHANCED) { tmp = id; } // Enhanced checksum (LIN 2.0)

4 for (int i = 0; i < data_len; i++) {

5 tmp += *data_ptr ++

6 if (tmp >= 256) {

7 tmp -= 255; // Wrap when overflow

8 }

9 }

10 return ~tmp & 0xff; // Return the lower byte

11 }

Listing 2.1: C code snipped for calculating LIN frame checksum

The classic checksum method (For LIN 1.x slave nodes) does not include the ID as part as
the checksum, where the enhanced method (For LIN 2.x slave nodes), does include the ID
byte.

The use of LIN for ECU diagnostics

A variation of LIN called K-Line exists for diagnostic purposes only. This is a network which
runs from the OBD-II port of the vehicle to a vehicles powertrain ECUs. This bus typically

CHAPTER 2. LITERATURE REVIEW 11

runs at 10.4kbps and allows for the transmission of up to 255 bytes rather than the usual limit
of 8 bytes when being used under the ISO14230-2 protocol (KWP2000).

As the bus is usually powered off during normal operation of the vehicle, it has to be woken
up in one of 2 ways when a OBD-II adapter wants to send or receive data on the K-Line.

Five baud initialization
The Five baud initialization method is a slow wake-up method of the K-Line LIN network typ-
ically used for ISO9141-2 and works by the tester (The OBD-II adapter) sending the request
ID at 5 bps. The requested ECU detects this slow initialization of the network and responds by
waking up the network and sending its response ID back to the tester. Once the response ID
has been received, the network is re-configured to run at 10.4 kbps. Once this is completed,
no data can be sent or received for at least 300ms.

Fast initialization
The fast initialization method is another way to wake up a K-Line network, and is only used
for ISO14230-2. With fast initialization, the tester sends a 25ms pulse on the K-Line, followed
by the request ID at the networks usual bus speed (Typically 10.4kbps)

It should be noted that whilst the five baud initialization method and Fast initialization
methods work very differently from one another, both can be achieved using the same physical
hardware and transceivers.

ISO9141-2

ISO9141-2 ISO (1989) is the transport layer used for ISO9141-4 (OBD 2.3.1) when utilizing the
K-Line diagnostic line of a vehicle. This configuration only utilizes the Five baud initialization
sequence (Fast initialization is never used). This network configuration can run at multiple
baud rates, ranging from 9.6kbps to 15.625kbps, however most common rates found are
9.6kbps and 10.4kbps. This configuration supports a maximum data size of up to 12 bytes,
with an additional 1 byte used for checksum.

ISO14230-2

ISO14230-2 ISO (2000) is the transport layer used for ISO14230-4 (KWP2000 2.3.2) when
utilizing the K-Line diagnostic line of a vehicle. This configuration of K-Line only runs at
10.4kbps (Unless its 5bps during the Five baud initialization sequence), and supports both
Five baud initialization, or Fast initialization wake up methods. This configuration supports
data sizes of up to 255 bytes, with an additional 1 byte for checksum.

With both of these network configurations, the target ECU on the K-Line will go back
into a sleep state if no data is transferred in 5 seconds. Therefore, it is necessary for the tester
to send periodic ”Stay awake” messages on K-Line to keep the target ECU awake and in a
diagnostic session.

CHAPTER 2. LITERATURE REVIEW 12

2.2 Diagnostic adapter hardware and APIs

In this section, I will be discussing the various hardware and software used by most commercial
diagnostic software to communicate with a vehicle using a specialized adapter.

2.2.1 Hardware APIs

In order to make it easier for a third party company such as Bosch to create an adapter for
multiple diagnostic software suits for various OEMs, there are 2 main adapter APIs that most
OEM diagnostic software supports. SAE J2534 (Passthru) and ISO 22900-2 (D-PDU). Each
API has its own requirements and supports different physical communication protocols with
a vehicle.

It should be noted that some OEMs use proprietary protocols for communicating with
their own in-house diagnostic adapters, however in more recent times, such adapters are rare
as most OEM’s tend to support either Passthru or D-PDU, or sometimes both in their own
diagnostic software suites, and offload the production cost of diagnostic adapters to third
parties such as Bosch or XHorse.

SAE J2534

SAE J2534 (Passthru) Drew Technologies, Inc (2003) is a hardware API for diagnostic software
to communicate with a supported adapter via a Windows DLL. It was originally created for
Windows 2000 and Windows XP, however it still works on modern versions on Windows. A
manufacturer of an adapter which supports the Passthru API can support any number of the
following network layer protocols:

1. ISO 9141

2. ISO 14230-4

3. SAE J1850 41.6 KBPS PWM (Pulse width modulation)

4. SAE J1850 10.4 KBPS VPW (Variable pulse width)

5. CAN

6. ISO 15765-4 (ISO-TP)

7. SAE J2610 DaimelrChrysler SCI (Serial communication Interface)

Configuration data about each adapter and library which supports the Passthru API is stored
in the Windows Registry. A typical registry entry for an adapter will contain the following
information about the adapter:

• Hardware name

• Adapter vendor

• Supported protocols (From list above)

• Library path (Location to the Adapters DLL)

The J2534 API DLL must be compiled as a 32bit library DLL, meaning it is incompatible with
64bit software on modern systems. This is however not a problem as all diagnostic software
is also compiled as a 32bit executable, in order to keep backwards compatibility with older
systems.

CHAPTER 2. LITERATURE REVIEW 13

ISO 22900-1 and ISO 22900-2

ISO 22900-1 (MVCI) and ISO 22900-2 (D-PDU API) Softing (2013) are both a hardware
and software API for communicating with vehicles. Unlike SAE J2534, D-PDU is an entire
protocol stack which includes diagnostic servers to do UDS (??), KWP2000 (??) and OBD-II
(2.3.1), but for the context of this report, only ISO 22900-1 (hardware requirements) and
ISO22900-2 (D-PDU API) will be discussed.

ISO 22900-1 mentions that an adapter that can be utilized by the D-PDU API can support
any number of the following network layer protocols:

1. ISO 9141

2. ISO 14230-4

3. SAE J1850 41.6 KBPS PWM (Pulse width modulation)

4. SAE J1850 10.4 KBPS VPW (Variable pulse width)

5. CAN

6. CAN FD

7. ISO 15765-4 (ISO-TP)

8. Ethernet (DoIP)

Interestingly, ISO 22900-2 states that other third party adapter APIs can be utilized by D-
PDU. This includes SAE J2534, however this is up to the application which implements the
D-PDU API. This means that an application that uses the D-PDU API can work with an
adapter that uses the SAE J2534 API, without actually having native support for the API
itself, since D-PDU API server does the work with loading and calling the library for the
J2534 adapter.

2.2.2 Hardware adapters

In this section, various diagnostic adapter hardware will be analysed and discussed. These
adapters are used by a variety of different diagnostic tools/software.

Generic ELM327 BT adapters

ELM327 elmelectronics.com (2017) is a family of micro controllers which is used for commu-
nicating with vehicles using multiple network protocols. These controllers are most commonly
found in cheap Bluetooth scan tools that only support OBD (ISO9141), however the micro
controller itself can additionally support ISO 15765-4, ISO14230-4 and CAN, but these addi-
tional interfaces are rarely found in the cheaper scan tools as they utilize a ’cloned’ version of
the ELM327.

In order to interface with an ELM327, either USB or Bluetooth is utilized. The ELM327
receives and responds to a list of defined AT Commands. interestingly, since the AT Com-
mand set is publicly available and well documented, this has lead to open source projects
which utilize micro controllers such as an ESP32 to emulate an ELM327. An example of such
project can be found here [https://github.com/collin80/A0RET]

The most common application which utilizes the ELM327 is Torque for Android (See
2.4.1).

A typical cost for an ELM327 Bluetooth adapter is about £10.0-20.0. However it is
unknown if these adapter use a genuine ELM327 chipset of a cloned chipset.

https://github.com/collin80/A0RET

CHAPTER 2. LITERATURE REVIEW 14

SDConnect C4

The SDConnect C4 adapter is a diagnostic adapter which Daimler will ship with their diag-
nostic tool set (2.4.3) when provided to authorized workshops and dealers.

Due to this, not much is known about the cost of the adapter, however it is known it
supports the D-PDU API, as well as Daimler’s own proprietary protocol for talking to their
in-house diagnostic adapters.

Whilst Daimler only provide the adapter to authorized workshops, there appears to be a
huge amount of listings on ebay for this adapter, ranging in price from £500-£1000. However,
it is apparent that some of these SDConnect listings might be cloned Chinese manufactured
adapters, rather than a genuine adapter which has come from Daimler.

Bosch VCI

The Bosch VCI adapter is a series of diagnostic adapters which Bosch sells. For this section,
the specifications of the Bosch MTS 6516 VCI adapter will be used.

This adapter can be used with both SAE J2534 and ISO 22900-1/2. It features 3 separate
CAN channels (for CAN and ISO15765-4), 2 UART channels (For ISO9141 and ISO14230-2),
1 J1850 channel for either J1850VPW or J1850PWM. In order to connect to a PC, either
WIFI or USB can be used with this adapter.

Cost of this adapter is unknown, however a similar used adapters by Bosch can be found
on auction sites like Ebay for around £1000-£2000. So it can be concluded that these VCI
adapters are very expensive, and out of the reach of the majority of consumers.

2.3 ECU Diagnostic protocols

In this section, the most common three diagnostic server protocols used in vehicles will be
discussed (OBD-II, UDS and KWP2000).

To begin with, it should be noted that all these 3 services utilizes the same request and
response message structure:

0 8 16 24 32

SID PID Data...

Figure 2.2: Data format of a service request with PID and data

0 8 16 24 32

SID + 0x40 PID Response...

Figure 2.3: Data format of a positive ECU response

0 8 16 24

0x7F SID Error code

Figure 2.4: Data format of a negative ECU response

In the above figures, it should be noted that some services (Such as in OBD-II), do not require

CHAPTER 2. LITERATURE REVIEW 15

a PID or Data, meaning only 1 byte of data (SID) is sent to the ECU. The entire length of the
request and positive response messages can be as long as the underlying transport protocol.
For example, ISO-TP can handle payloads of up to 4096 bytes, where as ISO14230-2 can only
support up to 255 bytes.

2.3.1 OBD-II

On-Board Diagnostics (OBD-II) is a relatively simple and read-only diagnostic protocol, and
is a legal requirement on all vehicles since 2001. It is a standard way to communicate with
the engines ECU in a diagnostic session in order to read standard error codes, read sensor
data from the ECU and carry out emissions tests. OBD-II can be used on any network layer
protocol, but is mainly found to use ISO9141-2 on older vehicles, and ISO-TP on all cars
found after 2008.

OBD have 9 pre-defined services, OEMs are free to choose which services their cars
support, however most commonly services 01,02,03,04,09 are always implemented. It should
be noted as well that OEMs are free to implement their own custom services beyond this
range.

• 0x01 - Request current powertrain data

• 0x02 - Request powertrain freeze frame data

• 0x03 - Request emission-related diagnostic trouble codes (DTC)

• 0x04 - Clear/Reset emissions-related diagnostic information

• 0x05 - Request oxygen sensor monitoring test results

• 0x06 - Request ob-board monitoring test results for specific monitored systems

• 0x07 - Request emissions-related diagnostic trouble codes detected during the current
or previous drive cycle

• 0x08 - Request control of on-board systems

• 0x09 - Request vehicle information

• 0x0A - Permanent DTCs

Every service (SID) has a child PID which will return which subfunctions are supported by the
ECU for the SID. For example, taking a look at the response for SID 0x01, PID 0x00, which
gets the supported PIDs for service 0x01 from 0x00 to 0x20:

1 REQUEST: 0x01 0x00

2 RESPONSE: 0x41 0x00 0xBE 0x1F 0xA8 0x13

Hexidecimal B E 1 F A 8 1 3
Binary 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1

PID supported? Y N Y Y Y Y Y N N N N Y Y Y Y Y Y N Y N Y N N N N N N N N N Y Y
PID ID (Hex) 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

Table 2.2: Encoding example of supported PIDs for Service 01

From this, we can see that this engine ECU supports Service 01 PIDs 0x01, 0x03, 0x04, 0x05,
0x06, 0x07, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x13, 0x15, 0x1F and 0x20.

CHAPTER 2. LITERATURE REVIEW 16

Service 0x01

Service 01 is used to retrieve live data metrics from the engine, PIDs 0x00, 0x20, 0x40, 0x60,
0x80, 0xA0, 0xC0 are special pids that are used to retrieve the next 32 supported PIDs, as
shown in 2.2. A full list of PIDs are found at Wikipedia (2021).

Any response from Service 01 PIDs will result in 4 bytes or less being returned from the
ECU, which are typically converted using either as enumerated values, or using mathematical
formulas.

An example of how this works would be to look at decoding the Odometer reading over
Service 01 (PID 0xA6):

1 REQUEST: 0x01 0xA6

2 RESPONSE: 0x41 0xA6 0x00 0xA0 0xC1 0x0F

The conversion formula is as follows:

Odometer (Hm) =
A(224) + B(216) + C(28) + D

10

The ABCD encoding comes from the response bytes of the ECU, starting at the third byte
in the response payload, since the first byte of a response is always a conformation of the
Service ID being requested, and the second byte being the requested PID. The unit ’hm’
implies Hectometre. 10 Hectometres = 1km

In this case, the bytes are converted to decimal as shown:

Byte Hex Decimal

A 0x00 0

B 0xA0 160

C 0xC1 193

D 0x0F 15

Applied to the bytes from the ECU, the conversion occurs:

=
0(224) + 160(216) + 193(28) + 15

10

=
0 + 10485760 + 49408 + 15

10

To decimal numbers:

=
10535183

10

= 1053518.3 hm =⇒ 105351.83 km

Service 0x02

Service 02 works the same way as 01, however in addition to the PID, the Freeze frame number
is also provided, and the ECU will return the sensor reading when the Freeze Frame occurred.

Service 0x03, 0x07 and 0x0A

Services 03, 07 and 0A are all used to retrieve DTCs (Diagnostic trouble codes) that are
stored on the ECU, and all function in the same manner. Service 03 is used to retrieve DTCs
that are stored on the ECU (malfunctions that have occurred more than once and will result
in the check engine light activating). Service 07 is used to retrieve DTCs that are pending
(malfunctions that have been detected during the current/last drive cycle only, and haven’t

CHAPTER 2. LITERATURE REVIEW 17

since reoccurred). Service 0A is used to retrieve DTCs that are permanent (malfunctions that
cannot be cleared with service 04 and will result in a failure in emissions test)

For all these services, no PID byte is given, and the ECU will return a list of error codes
which are applicable to each service (2 bytes per DTC).

Service 0x04

Service 04 is used to clear any DTCs that are stored on the ECU. No PID bytes are required
for this service, and the ECU does not respond back with any data. This service can only be
used to clear stored and pending DTCs. Permanent DTCs cannot be cleared with this service,
as they usually require the dealers specialist tool to clear.

Service 0x05 and 0x06

Services 05 and 06 work in identical ways, except service 05 is designed for non ISO-TP
network transport layers, where as service 06 will only be executed on ISO-TP. Both services
are used to monitor oxygen sensors in the engine which is a compulsory part of most emissions
tests.

Service 0x08

Service 08 is used to control components in the vehicle when performing tests. For example,
for the duration of some tests, the tester would tell the ECU with service 08 to not log any
DTCs for the duration of the test. Once the test is over, the tester will use service 08 to tell
the ECU to go back to its default state and monitor components and log DTCs.

Service 0x09

Service 09 is used to request vehicle information from the engine ECU. This can include data
such as VIN (Vehicle Identification Number), Calibration ID, Calibration verification numbers
(CVN), ECU Name and more. The majority of data returned in service 09 is returned as
ASCII encoded strings.

Example of requesting the VIN:

1 REQUEST: 0x09 0x02

2 RESPONSE: 0x49 0x02 0x01 0x57 0x43 0x43 0x31 0x30 0x31 0x30 0x30 0x38 0x32 0x42

0x32 0x37 0x33 0x39 0x32 0x32

Parsed VIN: WCC1010082B273922

2.3.2 KWP2000 and UDS

Keyword protocol 2000 (KWP2000 / ISO-14230-4) DaimlerChrysler (2002) is a diagnostic
server protocol utilized by most vehicles from 2000, and was eventually replaced by UDS.

Unified diagnostic services (UDS) ISO (2006) is a diagnostic server protocol utilized by
most vehicles from 2008. It is derived from KWP2000, thus shares a lot of similarities between
KWP2000. Since most commands in UDS share the same functionality in KWP2000, refer to
C.3 for a list of commands in both KWP2000 and UDS, as which onces are identical between
protocols.

Both KWP2000 and UDS are both more advanced with OBD-II, relying on a diagnos-
tic server on the ECU itself to communicate with diagnostic software over either UDS or
KWP2000. The diagnostic server on the ECU can have different modes, which modify the
behavior of the ECU. A default state is what the ECU is typically in on power on, then can

CHAPTER 2. LITERATURE REVIEW 18

be modified to enter an extended diagnostic session, flash session (For firmware updates), or
other protocol dependent modes. In these non-default modes, the ECU can behave unpre-
dictably, or with reduced functionality. KWP2000 and UDS both have the ability to clear
Permanent DTCs from an ECU, which OBD-II cannot do.

Both UDS and KWP2000 function over ISO-TP (2.1.2), however KWP2000 can also func-
tion on top of ISO14230-2 (2.1.3) and UDS can additionally function on DoIP (Diagnostic
over IP). However, DoIP is typically only utilized during firmware updates of large ECUs such
as infotainment systems in modern vehicles, which utilize a full Operating system. This dra-
matically reduces firmware update times from 10-12 hours (Over ISO-TP), to a few minutes
(Over DoIP). This is due to DoIP using half duplex ethernet with a maximum bandwidth of
200Mbps, whilst ISO-TP is a lot slower, due to the underlying CAN network having a maxi-
mum speed of 500kbps, and also the ISO-TP protocol itself having an additional performance
and bandwidth overhead.

2.4 Existing diagnostic software

In this section, the various diagnostic software available for vehicles will be discussed, ranging
from basic OBD-II software to software made by the car manufacturers.

2.4.1 Torque for Android (Generic OBD)

Torque for android is an OBD-II diagnostic tool set designed for Android smartphones. It can
utilize a wide range of adapters, but mainly ELM327 based bluetooth adapters, and comes
in two versions. The ’Lite’ edition is a free version and supports DTC Reading and clearing,
and the ability to display a few Serivce 01 PIDs on graphs. The ’Pro’ version costs £3.6 and
supports everything that the Lite version does, but also includes all the Service 01 PIDs, GPS
data logging and the ability to use external plugins.

2.4.2 Carly (Third party software)

Carly is a third party diagnostic mobile application. They provide specialist mobile apps for a
lot of car manufactures, but also have a generic OBD-II mobile app for other car brands they
don’t natively support. The Carly application is free to use, but requires their own bluetooth
OBD-II adapter must be used, which costs £64.90.

For supported car manufactures, Carly supports advanced code reading (Via KWP2000 /
UDS), as well as the ability to do SCN coding on select ECUs to enable or disable features
on a vehicle. It also has an easy to use interface which can perform a ’used car buy check’,
which scans all the ECUs in a vehicle to ensure all the ECUs have the same milage reported,
to verify that they have not been tampered with.

2.4.3 Xentry (Dealer software)

Xentry diagnostic suite is Daimler’s in-house diagnostic software. It consists of two main
programs, DAS (Diagnostic assist service), which is utilized on pre 2008 vehicles, and Xentry,
which is utilized on all vehicles manufactured after 2008.

In terms of data formats, DAS utilizes the older CBF File format, whilst Xentry utilizes a
newer binary data format called SMR-D.

Both pieces of software work in nearly the same way. When the software is connected to
a vehicle via the means of a valid diagnostic adapter, the software first attempts to retrieve
the vehicles VIN number, which is then used to decode what ECUs the vehicle has. With that

CHAPTER 2. LITERATURE REVIEW 19

knowledge, the diagnostic application can then scan all the ECUs within the vehicle using the
correct communication protocols and typically using KWP2000 or UDS diagnostic servers.
This can be viewed in A.1.

Once the application has established contact with all the ECUs within the vehicle, the
tester (The engineer who uses the software) is then free to probe each individual ECU in the
vehicle in order to locate a problem (A.2). Each ECU in the vehicle has a list of adaptations
and tests that can be carried out in order to test a potential problematic component. The
tester is guided throughout the tests by the diagnostic software as to what to do next, for
instance turning on/off the vehicle. Some tests can even be carried out by the ECU fully
autonomously, with the results being displayed to the user once the test has completed.

Each ECU also has its own view dedicated to displaying a list of error codes stored on the
ECU (DTCs), as well as displaying what the ECU was doing at the time of the error (Freeze
Frame data). The tester can view an error as well as a full description of the error.

2.5 Open Diagnostics eXchange (ODX)

The Open Diagnostic eXchange format (ODX) is a way for vehicle manufactures to define an
entire specification for an ECU or vehicle, which then gets distributed to both ECU manu-
facturers, such as Bosch or Delphi and the organizations which create commercial diagnostic
software for both the OEM and third parties.

The ODX specification consists of six main categories:

ODX-D Diagnostic data

ODX-C Communication parameters

ODX-V Vehicle topology

ODX-F Flash data container

ODX-E ECU Coding data

ODX-FD Mapping to functions

There are very few free tools which can read and interpret ODX files. Instead, companies
such as Vector and Softing have commercial licensed tools that can generate ODX data files,
as well other tools that can be used to test an ECU’s implementation of the ODX data.

Diagnostic software typically utilizes data from all the above ODX categories, which the
OEM or diagnostic software creator will then use to compile custom binary files for their own
tools based on the data from ODX. This is done so that the raw ODX data is no longer in
a raw format, which can be easily understood by individuals, and also saves a lot of space
compared to using the raw XML based ODX containers. An example of this proprietary binary
format that will be utilized in this report is Daimler’s CBF file format.

2.6 The OBD-II port

The OBD-II diagnostic port is a standard connector found on all commercial vehicles since
1996. The connector is very recognizable as a female J1962 plug with 16 (2 rows of 8) pins.

The OBD-II standard dictates that the female plug must be within 2 feet of the steering
wheel of the vehicle, and on the inside of the vehicle. The Standard pin out of the J1962
connector is as follows:

CHAPTER 2. LITERATURE REVIEW 20

1 OEM dependant 9 OEM dependant

2 J1850 bus positive 10 J1850 bus negative

3 OEM dependant 11 OEM dependant

4 Chassis ground 12 Not connected

5 Signal ground 13 Not connected

6 CAN High 14 CAN Low

7 K-Line for ISO1941 and ISO14230 15 L-Line for ISO1941 and ISO14230

8 OEM dependant 16 Battery voltage

However, the pin layout of this connector is modified if the plug is compliant with 13400-2, or
DoIP (Diagnostic over IP). This is a recent addition, and only a few OEM’s currently use it,
however it allows for a DoIP compliant diagnostics adapter to connect to the vehicles internal
Ethernet network for performing operations such as firmware updates.

1 OEM dependant 9 OEM dependant

2 J1850 bus positive 10 J1850 bus negative

3 Ethernet TX+ 11 Ethernet TX-

4 Chassis ground 12 Ethernet RX+

5 Signal ground 13 Ethernet RX-

6 CAN High 14 CAN Low

7 K-Line for ISO1941 and ISO14230 15 L-Line for ISO1941 and ISO14230

8 Ethernet wake up 16 Battery voltage

2.7 Comparisons to the proposed project

As mentioned in (2.2) and (2.4), there are multiple existing solutions for diagnostic adapters
and diagnostic software for vehicles. In this section, a comparison will be made between the
various adapters and existing software, also including the proposed solution for each category.

2.7.1 Hardware adapters

Feature Bosch VCI Elm327 Proposed

Cost £500 £20 £60

OS Support win32 Any win32,OSX,Linux

J2534 API Yes No Yes

D-PDU API Yes No No

CAN Yes Yes Yes

ISO-TP Yes Yes Yes

ISO14230-2 Yes Yes Yes

ISO9141 Yes Yes Yes

Connection method USB/Ethernet BT/USB USB

Table 2.3: Comparison between existing adapters and proposed solution

As seen in the above table, the proposed adapter solution will be the only one which can
support the J2534 API on all desktop operating systems. One thing to note about the
ELM327 column. As discussed in (2.2.2), there can be many clone adapters, which won’t
support all the transport protocols such as ISO-TP, instead, only supporting ISO9141 so that
they can be used with mobile applications such as Torque.

CHAPTER 2. LITERATURE REVIEW 21

2.7.2 Diagnostic software

Feature Xentry (Dealer) Carly (Third party) Torque (OBD) Proposed

Cost Unknown £69 (With adapter) £3 Free

OS Support Win32 Mobile Mobile Win32,OSX,Linux

J2534 API Yes No No Yes

SocketCAN No No No Future

D-PDU API Yes No No Future

OBD-II support No Yes Yes Yes

KWP2000 support Yes Yes No Yes

UDS support Yes Yes No Yes

Clear permanent DTCs Yes Yes No Yes

Communicate with all
ECUs in a vehicle

Yes Yes No Yes

Live data reading Yes Yes Yes (OBD only) Yes

ECU test execution Yes No No Yes

Table 2.4: Comparison between existing diagnostic software and proposed solution

As seen in this table, the proposed solution will be the only one which can support Linux and
OSX. Also, SocketCAN and D-PDU are proposed as future additions to the application, but
for the current scope, they will not be included due to time constraints.

Chapter 3

Methodology

This section will cover the design and implementation of all 3 parts of the project, refer-
encing content discussed in the literature review. Each part is broken down into its design,
implementation and justification.

3.1 Test setup

Prior to designing and implementing any parts of the solution, it was clear that a permanent
test setup would be needed to test with, in order to avoid the risk of accidentally damaging
something in a real vehicle. Therefore, it was decided to use the following test ECUs on a
desk to form a simulated setup of a real vehicle. In this case, the following ECUs were used
which can replicate part of a Mercedes W203.

ECU Name Description CAN C CAN B K-Line

IC203 Instrument cluster Yes Yes No

CRD Engine ECU Yes No Yes

EGS52 Transmission controller Yes No Yes

Table 3.1: ECU List in the desk test setup

OBD2 Port

IC203 Gateway EGS52 CRD

Figure 3.1: Mock-up of how the ECUs are connected in the test setup

In this test setup, the ’Gateway’ is simply An arduino with 2 CAN interfaces on it. Its job
is to relay CAN Frames to and from the CAN C Network (Black) and the CAN B network
(Orange). This is because for diagnostics, the cluster only responds if the diagnostic packets
are sent over CAN B, and not CAN C. In a real vehicle, this functionality is usually handled by
the ignition switch ECU which acts as a CAN Gateway. However, this could not be purchased
for this setup due to its cost.

22

CHAPTER 3. METHODOLOGY 23

3.2 Rust

As part of this project, the Rust programming language was utilized rather than other lan-
guages such as C++ or Java for the majority of the development process, however C++
had to be used for the Passthru adapter firmware [3.4], due to limitations with the standard
Arduino libraries. Rust has some unique advantages compared to other languages, to name a
few:

• Thread and memory safety guaranteed at compile time

• Easy dependency management with Cargo

• Easy cross-compilation support

• Bare-metal performance (Unlike JVM based languages)

However, at the time of writing this, Rust does have bindings for platform GUI library’s, such
as QT, GTK and WINAPI, but not have a mature cross-platform GUI library, which would
be required for the Diagnostic application, as will be mentioned in section 3.5. However,
an experimental cross-platform library called Iced [https://github.com/hecrj/iced] does
exist. This GUI library supports all three major operating systems (Linux, Windows and
MacOS), as well as the Web for WASM build targets. Everything in this library is drawn to
the screen using either Vulkan, OpenGL, Metal or DX11 depending on the platform.

Iced is inspired by the Elm Architecture, meaning that the GUI is built in pure code, rather
than having external XML files to describe the UI. Also due to it being inspired by Elm, the
GUI architecture is split into four main components. Application state, message events within
the UI, view logic and update logic.

3.3 JSON schema creation and CBF parsing

As mentioned in 1, this section will cover the creation of OpenVehicleDiag’s JSON Schema
which is used as a easy-to-read replacement for ODX-D [2.5].

3.3.1 JSON structure

Since Rust has an excellent JSON Serialization with Serde [https://serde.rs/], the follow-
ing UML class diagrams will show the design of the underlying structs used in the application.
This then gets serialized into JSON by Serde. A full JSON Schema is available in section E,
as well a full example of the JSON in section C.4.

Since it is almost guaranteed that the data will be similar, or at least comparable to what
is found in ODX-D [2.5], [emotive de (2014b)] and [emotive de (2014a)] were used as ref-
erences when designing the JSON structure, which heavily document the various data types
and presentation formats found in ODX files.

https://github.com/hecrj/iced
https://serde.rs/

CHAPTER 3. METHODOLOGY 24

server type

1

patterns1..*

�Vec�

�Vec�

connections1..*

�Vec�

variants1..*

wake up method

1

connection type1

OvdECU

+ name: String
+ description: String

Connection

+ baud: u32
+ send id: u32
+ global send id: u32
+ connection type: ConType
+ recv id: u32

ECUVariantDefinition

+ name: String
+ description: String
+ errors: Vec<ECUDTC>
+ adjustments: Vec<Service>
+ actuations: Vec<Service>
+ functions: Vec<Service>
+ downloads: Vec<Service>

ECUVariantPattern

+ vendor: String
+ vendor id: u32

�enum�
ServerType

KWP2000
UDS

�interface�
ConType

LIN

+ max segment size: u32

�enum�
LinWakeUpMethod

FiveBaudInit
FastInit

ISO-TP

+ blocksize: u32
+ st min: u32
+ ext can addr: u32
+ ext isotp addr: u32

Figure 3.2: UML representation of ovdECU Root object, ECUVariantDefinition
and Connection properties

byte order

1 valid bounds

1

Service

+ name: String
+ description: String
+ payload: Vec<u8>
+ input params: Vec<Parameter>
+ output params: Vec<Parameter>

+ service has input(): bool
+ service has output(): bool

ECUDTC

+ error name: String
+ summary: String
+ description: String
+ envs: Vec<Parameter>

�enum�
ParamDecodeError

NotImplemented
BitRangeError
DecodeNotSupported
StringDecodeFailure

Parameter

+ name: String
+ unit: Option<String>
+ start bit: usize
+ length bits: usize
+ data format: DataFormat

+ decode value to string(input: &[u8]): Result<String, ParamDecodeError>
+ decode value to number(input: &[u8]): Result<f32, ParamDecodeError>
+ can plot(): bool
+ get unit(): Option<String>
- get number

Limit

upper bound: f32
lower bound: f32

�enum�
ParamByteOrder

BigEndian
LittleEndian

Figure 3.3: UML representation of JSON Service and ECUDTC

CHAPTER 3. METHODOLOGY 25

encoding1 tables1..*

�Vec�

�interface�
DataFormat

String Binary HexDump Identical Table ScaleLinear ScaleRatFunc

Bool

+ pos name: Option<String>
+ neg name: Option<String>

Linear

+ multipler: f32
+ offset: f32

RatFunc TableInterpretation CompuCode

�enum�
StringEncoding

ASCII
Utf8
Utf16

TableData

+ name: String
+ start: f32
+ end: f32

Figure 3.4: UML representation of JSON DataFormat

Figure 3.2 shows the root object UML representation, as well as connection properties and
the main object for storing a ECU Variant object.

OvdECU is the root structure of the JSON. This contains the name of the ECU, a de-
scription of the ECU, connection properties of the ECU, and all ECU Variants. A ECU must
have at least 1 Connection method and at least VariantDefinition.

Connection is used to define what transport and diagnostic protocols are used when com-
municating with the ECU. This contains data such as the bus speed (baud) of the connection
method as well as various ID’s to use whilst in a diagnostic session. An ECU can have multiple
connection methods, such as KWP2000 over ISO-TP (CAN), or KWP2000 over K-Line (ISO
14230-2). In either configuration, the ECU’s addresses will differ. send id is used to iden-
tify which ID on either network type the tester should send diagnostic messages on. recv id
denotes which ID the ECU will respond on, and the tester will listen for data with this ID.
global send id is an optional entry, and is only used for some ECUs. This value is required
in situations where the TesterPresent message is to be broadcast on a separate address to
the diagnostic request message (Normally they are the same address). In the case of my test
vehicle, this is used for all interior CAN devices located on CAN-B.

ConType represents an interface for each physical network connection method to inherit,
with various attributes related to the network setup. For instance, ISO-TP configuration re-
quires attributes attaining to block size, default separation time, and extended addressing,
whilst the LIN connection (K-Line) requires a maximum packet size that the ECU supports,
as well as which wake up method to use when activating the K-Line network.

ECUVariantDefinition contains the definition for each ECU Variant. A ECU Variant is
an equivalent to a software version on a desktop PC. An ECU can receive updates over time
(via firmware flashes). With each firmware update, diagnostic routines can be altered, as
well as lists of errors, or even in some cases, the description of certain errors changes from
variant to variant. Each ECU Variant can be implemented by multiple hardware manufactures

CHAPTER 3. METHODOLOGY 26

such as Bosch or Delphi. Because of this, the ECUVariantPattern class is required here. This
small class contains the name of the manufacture (Vendor), as well as a defined vendor ID.
This vendor ID can be retrieved over both KWP2000 and UDS, and is unique to the software
version and ECU manufacturer.

Figure 3.3 shows how both Service and ECUDTC both use the Parameter object.
Service represents an IO function that can be executed on the ECU. Each function re-

quires a name, description of what the function does, a raw payload to send to the ECU, and
a list of input and/or output parameters. Input parameters modify the payload that is sent
to the ECU, whilst output parameters are used to convert the ECUs response message into
something that can be easily interpreted by an individual.

ECUDTC represents a Diagnostic trouble code (DTC) that can be stored on the ECU.
Each DTC has a unique name, such as ’P202A’, a summary of what the error means, and a
more detailed description string of what the error means. the envs array is a list of parameters
that are used when querying freeze frame data about the DTC, which is then interpreted using
the list of parameters to decode the freeze frame data into something that is human readable.
Freeze frame data can be acquired with both KWP2000 and UDS.

Parameter contains data which has been interpreted from the ODX-D data structure
[emotive de (2014a)]. Each parameter contains a name which denotes what the parameter
means, as well as an optional unit, which can be used to denote the unit of the parameter,
such as ◦C or Engine RPM. start bit denotes where in the payload the parameter starts at,
and length bits denotes how big the parameter is in bits. This is because the ECU response
message can contain values that are tightly packed, and at odd bit offsets. data format de-
notes which Data format interpreter to use for the raw data within the given bit range. Lastly,
valid bounds is an optional class which can be specified. If it is declared in a Parameter
which is stored in a parent services’ input parameters section, then it is used to check the
user input is within range. If it is stored in a parameter which lies within a parent services’
output parameters section, then it used to set the upper and lower bounds for graphing. Note
that valid bounds is ignored if it is specified in a parameter which cannot be converted to a
number data type.

Figure 3.4 Shows the classes which inherit the DataFormat interface. Classes that appear in
blue exist in code as a placeholder, and do not do anything at this time. They are derived
from the ODX-D specification.

Bool data format is used when the parent parameter shall be interpreted as a boolean.
This class has two optional parameters, which can be used to override the default ’True’,
’False’ interpretation of booleans. This data type can be used for graphing.

Linear format is used when a raw value is to be manipulated using a simple y = mx + c
equation. The input value is x, whilst ’multiplier’ represents m, and ’offset’ represents c. This
data format can be used for graphing.

String format is used when the parent parameters byte range is to be interpreted as a raw
string. This data format has a parameter (encoding), which denotes what text encoding to
use when encoding and decoding the string. This can either be ASCII, Utf8 or Utf16. This
data type cannot be used for graphing.

Binary format is used when the parent parameter shall be interpreted as a binary string,
such as ’0b00110011’. It should be noted that this data type is not in the ODX-D specifica-
tion, but was added at a later date due to finding that Daimler seemed to use Enum tables
to represent binary strings in their CBF files, meaning that an 8 byte parameter would have

CHAPTER 3. METHODOLOGY 27

256 enum entries! This data type cannot be graphed.
HexDump format simply returns a formatted string of the bytes within the parent pa-

rameters bit range.
Identical format is used for when the raw bytes of the parent parameter is to be inter-

preted as a 32bit integer and returned as is without any manipulation such as with the Linear
data type. The parent parameter’s byte order will specify how to interpret the bytes which
make up the integer. This data type can be graphed.

Table format is used for representing enum values. This means that a number value or
range is mapped to a string. This data type takes a compulsory list of more than 1 TableData
entries. Each entry consists of a minimum (inclusive) and maximum (inclusive) value, as well
as the definition string. A number range is used here rather than a one to one mapping since
this is what the ODX-D specification states. This data type cannot be graphed.

3.3.2 Code implementation of the JSON Schema

To translate the UML diagrams to code was a very simple process. Below is the code imple-
mentation of the OvdECU Struct:

1 #[derive(Debug , Clone , Serialize , Deserialize)]

2 pub struct OvdECU {

3 pub name: String ,

4 pub description: String ,

5 pub variants: Vec <ECUVariantDefinition >,

6 pub connections: Vec <Connection >

7 }

On line 1, the #[derive] attribute tells the compiler to implement traits for the Struct at
compile time. Serialize , Deserialize are traits that come from the Serde library, and will
enable this Struct to be serialized and deserialized to and from JSON without any additional
code needing to be written.

Looking at the Service Struct, the implementation in code is a bit more complicated:

1 #[serde_as]

2 #[derive(Debug , Clone , Serialize , Deserialize , PartialEq)]

3 pub struct Service {

4 pub name: String ,

5 pub description: String ,

6 #[serde_as(as = " serde_with :: hex ::Hex < serde_with :: formats :: Uppercase >")]

7 pub payload: Vec <u8>,

8 #[serde(skip_serializing_if = "Vec :: is_empty ")]

9 #[serde(default = "Vec :: new ")]

10 pub input_params: Vec <Parameter >,

11 #[serde(skip_serializing_if = "Vec :: is_empty ")]

12 #[serde(default = "Vec :: new ")]

13 pub output_params: Vec <Parameter >

14 }

In this structure, there are few more additional tags that are used by Serde. skip_serializing_if

is used to tell Serde to skip Serialization if a condition is met for the value. In this case, if
the Vector is empty, Serialization is skipped in order to reduce the Serialized file size. default

tells Serde what to do if the value is not found in JSON when deserializing. In this case,
replace the value with an empty vector. Lastly, the serde_as online 6 tells Serde to serialize
the payload as an upper case Hex String. This because by default Serde will serialize the
payload as a list of numbers, which get re-interpreted as bytes during deserialization. This
was not optimal as both KWP2000 and UDS use Hex bytes in documentation rather than
numbers. Therefore, this tells Serde to strictly serialize the payload as a hex string, which is
more easily understood by people reading the file.

CHAPTER 3. METHODOLOGY 28

Implementing Parameter functions

As shown in figure 3.3, the Parameter object has functions that are used to decode the
parameter to either string or integer. This is then used by any application which utilizes the
JSON Schema to decode an ECU byte stream. The following Matrix denotes which function
is supported by which internal DataFormat (Figure 3.4):

Data format name Format as string? Format as number?

HexDump Yes No

Binary Yes No

String Yes No

Bool Yes Yes

Table Yes No

Identical Yes Yes

Linear Yes Yes

Table 3.2: Supported format options for DataFormat

If decode_value_to_number () is called on a Parameter which cannot be encoded as a
number (such as String), then an Error of type DecodeNotSupported is returned from the
function. This table also shows that decode_value_to_string () is supported by every data
format type.

Both functions work in the same manner. They take a byte stream, which is the ECU
response message to a command, and extract bytes within a specific byte range, then process
the bytes. In the event that the parameter bit range lies outside the ECU response message
(For example, receiving a message of length 120 bits, but the parameter specified a start bit
of 150), the an Error of type BitRangeError is returned.

If either decoder expects its data type to be a number, then get_number () is called, which
can at most return a 32bit long number. This seemingly arbitrary restriction of 32bits is due
to after extensive testing, all ECUs seem to only handle 32bit numbers and nothing more.
This restriction can be increased to 64bits with a simple addition to the codebase.

1 fn get number (& s e l f , r e s p : &[u8]) −> s t d : : r e s u l t : : Resu l t<u32 , ParamDecodeError> {
2 i f s e l f . l e n g t h b i t s <= 32 {
3 l e t r e s u l t = s td : : pan i c : : ca tch unwind (| |{
4 i f s e l f . l e n g t h b i t s <= 8 {
5 r e s p . g e t b i t s (s e l f . s t a r t b i t . . s e l f . s t a r t b i t+s e l f . l e n g t h b i t s) as u32
6 } e l s e {
7 l e t mut r e s = 0 ;
8 l e t mut buf : Vec<u8> = Vec : : new () ;
9 l e t mut s t a r t = s e l f . s t a r t b i t ;

10 wh i l e s t a r t < s e l f . l e n g t h b i t s + s e l f . s t a r t b i t {
11 l e t max read = min (s e l f . s t a r t b i t + s e l f . l e n g t h b i t s , s t a r t + 8) ;
12 buf . push (r e s p . g e t b i t s (s t a r t . . max read)) ;
13 s t a r t += 8 ;
14 }
15
16 i f buf . l e n () > 4 {
17 p a n i c ! (”Number too b i g ! ”) // Cannot hand l e more than 32 b i t s atm
18 } e l s e {
19 i f buf . l e n () >= 4 {
20 r e s = match s e l f . b y t e o r d e r {
21 ParamByteOrder : : B igEndian => BigEndian : : r ead u32 (&buf) ,
22 ParamByteOrder : : L i t t l e E n d i a n => L i t t l e E n d i a n : : r ead u32 (&buf)
23 }
24 } e l s e i f bu f . l e n () >= 2 {
25 r e s = match s e l f . b y t e o r d e r {
26 ParamByteOrder : : B igEndian => BigEndian : : r ead u16 (&buf) as u32 ,
27 ParamByteOrder : : L i t t l e E n d i a n => L i t t l e E n d i a n : : r ead u16 (&buf) as u32
28 }
29 }
30 r e s as u32
31 }
32 }
33 }) ;
34

CHAPTER 3. METHODOLOGY 29

35 match r e s u l t {
36 Ok(r) => Ok(r as u32) ,
37 Er r () => Er r (ParamDecodeError : : B i tRangeEr ro r)
38 }
39 } e l s e {
40 Er r (ParamDecodeError : : B i tRangeEr ro r)
41 }
42 }

This function essentially extracts a 1-32bit long number from the input byte stream, using the
Parameters start bit and length bits values to work out where to extract the number in the
input array. As seen in this code, it also takes into account the Endianness of the expected
value.

When decoding a value to String, each DataFormat has its own parser function that runs
on the input byte stream. Below is a couple examples:

1 DataFormat ::Bool { pos_name , neg_name } => {

2 return match self.get_number(input)? {

3 0 => Ok(neg_name.clone().unwrap_or("False".into())),

4 _ => Ok(pos_name.clone().unwrap_or("True".into()))

5 }

6 }

1 DataFormat :: HexDump => {

2 let start_byte = self.start_bit /8;

3 let end_byte = (self.start_bit+self.length_bits)/8;

4 return Ok(format!("{:02X?}", &input[start_byte ..min(end_byte , input.len())]))

5 }

1 DataFormat :: Linear { multiplier , offset } => {

2 let res = self.get_number(input)? as f32;

3 result.push_str(format!("{}", (res*multiplier) + offset).as_str ())

4 },

As seen here, both Bool and HexDump return early with their formatted Strings, whilst Linear
doesn’t return early, this is because it is a number and therefore might have a unit associated
with it. Further down the decoder there is a check for this, and if a unit exits, it is appended
to the ’result’ string, before being returned.

3.3.3 Parsing Daimler CBF Files to JSON

For this section, CaesarSuite [https://github.com/jglim/CaesarSuite/] was heavily used
as a reference on how to extract data from Daimlers CBF Files. CaesarSuites creator (JinGen
Lim) has spent countless hours reverse engineering c32s.dll, which is a DLL file which ships
with Daimler’s diagnostic tool set, and is responsible for loading CBF files amongst other
things.

After re-writing the majority of the CBF Parser code found in CaesarSuite to Rust (CBF-
Parser), the codebase now had to convert between Daimler’s CBF representation structures
to the JSON Schema structure. This proved to be a challenge since the data structures are
completely different. Below is the UML representation of a CBF File, without any field values:

https://github.com/jglim/CaesarSuite/

CHAPTER 3. METHODOLOGY 30

1 1

1..*

1..*

1..*

0..*

0..1

1

1..*

1..*

1..*

1..* 1..*1..*1..*1..*

1..*1..*

1..*

1..*

Container

CFFHeader CTFHeader

CTFLanguage

ECU

ECUInterface InterfaceSubType DTC PresentationService

ECUVariant

ComParameter

Scale

Preparation

InferredDataType VariantPattern

Figure 3.5: Simplified UML representation of the data structure in a CBF File

As shown in figure 3.5, a CBF File has a completely different data structure when com-
pared to the JSON Schema. To solve this, a parser script was written to process the root
Container and convert this data structure to the JSON structures. This will be very briefly
touched upon here, since the code to convert to the JSON schema is far too long.

As an example, here is the code which converts the ComParameter’s found in Interface-
SubType to a Connection property for the JSON:

1 l e t mut c onn e c t i o n s = Vec : : new () ;
2 f o r x i n e . i n t e r f a c e s u b t y p e s . i t e r () {
3 l e t c onne c t i on = i f x . comm params . i t e r () . any (| x | x . param name == ”CP REQUEST CANIDENTIFIER”) { // ISOTP
4 Connect ion {
5 baud : x . ge t cp by name (”CP BAUDRATE”) . e xpec t (”No CAN Baudrate on i n t e r f a c e ! ?”) ,
6 s e n d i d : x . ge t cp by name (”CP REQUEST CANIDENTIFIER”) . e xpec t (”No CAN ReqID on i n t e r f a c e ! ?”) ,
7 r e c v i d : x . ge t cp by name (”CP RESPONSE CANIDENTIFIER”) . e xpec t (”No CAN RespID on i n t e r f a c e ! ?”) ,
8 g l o b a l s e n d i d : x . ge t cp by name (”CP GLOBAL REQUEST CANIDENTIFIER”) ,
9 c o nn e c t i o n t y p e : ConType : : ISOTP {

10 b l o c k s i z e : 8 , // Some r ea son MB a lways u s e s 8
11 s t m in : x . ge t cp by name (”CP STMIN SUG”) . unwrap or (20) , // Seems d e f a u l t f o r MB
12 e x t i s o t p a d d r : f a l s e , // MB neve r use extended ISO−TP add r e s i n g
13 // Check CAN ID to see i f the CAN network i t s e l f i s ex tended
14 e x t c a n add r : x . ge t cp by name (”CP REQUEST CANIDENTIFIER”) . unwrap () > 0x7FF
15 | | x . ge t cp by name (”CP RESPONSE CANIDENTIFIER”) . unwrap () > 0x7FF
16 } ,
17 s e r v e r t y p e : i f x . q u a l i f i e r . c o n t a i n s (”UDS”) { // I n t e r f a c e type i s i n q u a l i f i e r name f o r ISO−TP
18 Serve rType : : UDS
19 } e l s e {
20 Serve rType : : KWP2000
21 }
22 }
23 } e l s e { // Assume LIN (ISO14230−2)
24 Connect ion {
25 baud : 10400 , // Always f o r ISO14230−2 wi th MB
26 s e n d i d : x . ge t cp by name (”CP REQTARGETBYTE”) . e xpec t (”No LIN Request ID on i n t e r f a c e ! ?”) ,
27 r e c v i d : x . ge t cp by name (”CP RESPONSEMASTER”) . e xpec t (”No LIN Response ID on i n t e r f a c e ! ?”) ,
28 g l o b a l s e n d i d : x . ge t cp by name (”CP TESTERPRESENTADDRESS”) ,
29 c onn e c t i o n t y p e : ConType : : LIN {
30 max segment s i z e : x . ge t cp by name (”CP SEGMENTSIZE”) . unwrap or (254) , // De f au l t f o r ISO14230−2
31 wake up method : LinWakeUpType : : F i v eBaud In i t , // MB a lways u s e s t h i s w i th ISO14230−2
32 } ,
33 s e r v e r t y p e : Se rve rType : : KWP2000 // Always wi th LIN
34 }
35 } ;
36 c onn e c t i o n s . push (conne c t i on) ;
37 }

What this code does is iterate over each of the CBF’s InterfaceSubTypes, which represents

CHAPTER 3. METHODOLOGY 31

a connection method for the ECU, and try to work out what kind of connection it is based
on the ComParameters found in the InterfaceSubType, then mapping the ComParameters to
data in the Connection object for the JSON Schema.

The name of the ComParameters (EG: CP_BAUDRATE) are all found within the ODX specifi-
cation, so it is simple to know what they do. Also to note is that especially for a LIN connection
type, there is a lot of assumptions about what Mercedes utilizes. This was done by looking
at how Daimler’s own software tries to initialize contact with an ECU using ISO14230-2 for
over 50 different ECUs in various cars that supported ISO1423-4.

CBF parser optimizations

After processing many CBF files, it was noticed that CBF files seem to contain many Services
with the same request payload, and only the output parameters would vary. This significantly
increased the size of the output JSON file. An example of this behavior is shown below from
parsing the CRD ECU’s CBF file:

1 ” downloads ” : [
2 . . .
3 {
4 ”name” : ”DT IOC0 Dpf spy cata temp nvv 5 ” ,
5 ” d e s c r i p t i o n ” : ” ca ta t empe ra tu r e i n r e g e n e r a t i o n [5]] : 610 C” ,
6 ” pay load ” : ”30C001 ” ,
7 ” output params ” : [
8 {
9 ”name” : ”CRD. PRES Convers ion 52 S ta tu s ” ,

10 ” u n i t ” : ”” ,
11 ” s t a r t b i t ” : 2024 ,
12 ” l e n g t h b i t s ” : 16 ,
13 ” b y t e o r d e r ” : ”BigEndian ” ,
14 ” da ta f o rma t ” : {
15 ” L i n e a r ” : {
16 ” m u l t i p l i e r ” : 1 . 0 ,
17 ” o f f s e t ” : 0 . 0
18 }
19 }
20 }]
21 } ,
22 {
23 ”name” : ”DT IOC0 Dpf spy cata temp nvv 6 ” ,
24 ” d e s c r i p t i o n ” : ” ca ta t empe ra tu r e i n r e g e n e r a t i o n [6]] : 620 C” ,
25 ” pay load ” : ”30C001 ” ,
26 ” output params ” : [
27 {
28 ”name” : ”CRD. PRES Convers ion 52 S ta tu s ” ,
29 ” u n i t ” : ”” ,
30 ” s t a r t b i t ” : 2040 ,
31 ” l e n g t h b i t s ” : 16 ,
32 ” b y t e o r d e r ” : ”BigEndian ” ,
33 ” da ta f o rma t ” : {
34 ” L i n e a r ” : {
35 ” m u l t i p l i e r ” : 1 . 0 ,
36 ” o f f s e t ” : 0 . 0
37 }
38 }
39 }]
40 } ,
41 . . .
42]

This is just one example. The CRD ECU in total has over 3500 services that look like this.
By grouping services’ output params together based on the request payload, it was possible
to significantly reduce the file size of the output JSON. Below is the same service’s grouped
together:

1 ” downloads ” : [
2 . . .
3 {
4 ”name” : ”DT 30 C0 ” ,
5 ” d e s c r i p t i o n ” : ”Data download 30 C0” ,
6 ” pay load ” : ”30C001 ” ,
7 ” output params ” : [
8 . . .
9 {

10 ”name” : ” coun t e r f o r the c o n d i t i o n s at the end o f the r e g e n e r a t i o n [0] ” ,
11 ” u n i t ” : ”” ,
12 ” s t a r t b i t ” : 56 ,
13 ” l e n g t h b i t s ” : 16 ,
14 ” b y t e o r d e r ” : ”BigEndian ” ,
15 ” da ta f o rma t ” : {

CHAPTER 3. METHODOLOGY 32

16 ” L i n e a r ” : {
17 ” m u l t i p l i e r ” : 1 . 0 ,
18 ” o f f s e t ” : 0 . 0
19 }
20 }
21 } ,
22 {
23 ”name” : ” coun t e r f o r the c o n d i t i o n s at the end o f the r e g e n e r a t i o n [1] ” ,
24 ” u n i t ” : ”” ,
25 ” s t a r t b i t ” : 72 ,
26 ” l e n g t h b i t s ” : 16 ,
27 ” b y t e o r d e r ” : ”BigEndian ” ,
28 ” da ta f o rma t ” : {
29 ” L i n e a r ” : {
30 ” m u l t i p l i e r ” : 1 . 0 ,
31 ” o f f s e t ” : 0 . 0
32 }
33 }
34 } ,
35 . . .
36 }
37 . . .
38]

The only down side to this approach is that the name and description of the parent service is
now a generic name, since the name is now no longer known. However, this is not a problem
as shown in section 3.5, the GUI for interfacing with this generated JSON will search both
input and output parameters for a user’s search terms, meaning that the parent service name
doesn’t have to be descriptive. Also, by doing this the file size of the output JSON shrunk by
approximately 15%, which in tern decreases parse times and load times in OpenVehicleDiag.

3.4 Cross platform Passthru adapter

The Macchina M2 Under-the-dash adapter was chosen for this task, primarily due to the
following reasons:

• Open source hardware schematics available on Github

• Excellent support with library authors

• Built on a mature platform based on hardware found in the Arduino Due

• Can be easily programmed using existing tools designed for Arduino based devices such
as Arduino IDE or VSCode

• Native USB support - Data transfers over a USB cable can occur at much higher speeds
when compared to other Arduino based solutions that require a USB to Serial converter
chip. This is a feature of the AT91SAM3X8E CPU rather than an explicit feature of
this OBD-II adapter.

• Supports all of the necessary interfaces for the J2534 API (CAN, LIN, J1850, SCI)

• Reasonably priced at $99 - Which is a lot cheaper compared to a lot of alternative J2534
devices as discussed in section 2.2

Figure 3.6: Macchina’s M2 Under the dash OBD-II module

CHAPTER 3. METHODOLOGY 33

(a) Processor board (b) Interface board

Figure 3.7: Macchina M2 board layouts

The SAE J2534 reference manual [Drew Technologies, Inc (2003)] was used as a reference
for the API implementation. Specifically, this will be an implementation of V04.04 of the
Passthru API 1. Due to the short time constraints of this project, Only CAN and ISO-TP will
be implemented.

3.4.1 Architecture

In order to reliably allow the J2534 library and adapter to communicate, the architecture of
the communication between the adapter and J2534 library will revolve around Request and
Response messages. This can be executed without overly complex code since the J2534 API
states the the API is designed to be single threaded, meaning that any application that utilizes
the J2534 API will not be making asynchronous calls to the library.

Execute

Request bytes

Response bytes

Send Msg

Ok(Resp Msg)

Library function Communication server passthru adapter

The above figure shows how communication between the library and adapter itself will be
handled. The library will contain various functions for tasks like channel creation or trans-
mitting data, and they will construct Payloads to send to the adapter. These payloads are
forwarded to a communication server which is part of the library, and sends the payload as a
byte stream to the adapter. The adapter will execute what the payload specifies, and then
return a response message to indicate if the action completed successfully, or failed (Which
will contain the error message). This response is then forwarded back to the caller library
function.

Since the M2 has 5 LED’s and an additional RGB LED, it was decided to utilize these
LEDs so the user knows what is going on without the need to check log files:

1List of Passthru API functions: C.1

CHAPTER 3. METHODOLOGY 34

LED Name Colour Usage

DS6 Green Indicate an application is currently utilizing the adapter.

DS5 Yellow Indicates a J1850 channel is active.

DS4 Yellow Indicates a SCI, ISO9141 or ISO14230 channel is active.

DS3 Yellow Indicates a CAN or ISO-TP channel is active.

DS2 Red On when adapter first boots, indicates firmware is ready,
but no application is utilizing it.

DS7 RED RGB Red On when adapter receives data from PC

DS7 GREEN RGB Green Not used

DS7 BLUE RGB Blue On when adapter transmits data to PC

3.4.2 Creating the driver in Rust

Firstly, the J2534 library had to be ported to Rust from C++. This means converting the
definitions found in the J2534 API [Comer352L (2019)], to something that Rusts type system
can work with more easily. As part of this conversion process. Most of the define’s found in
the J2534 header file were converted to enum decelerations in Rust.

Below is an example of the protocols’ section of J2534.h:

1 // Protocols:

2 #define J1850VPW 0x01

3 #define J1850PWM 0x02

4 #define ISO9141 0x03

5 #define ISO14230 0x04

6 #define CAN 0x05

7 #define ISO15765 0x06

8 #define SCI_A_ENGINE 0x07

9 #define SCI_A_TRANS 0x08

10 #define SCI_B_ENGINE 0x09

11 #define SCI_B_TRANS 0x0A

and here is how that is translated into an enum structure in Rust:

1 #[repr(u32)]

2 #[derive(Debug , Copy , Clone , FromPrimitive , Deserialize , Serialize)]

3 #[allow(non_camel_case_types , dead_code)]

4 pub enum Protocol {

5 J1850VPW = 0x01 ,

6 J1850PWM = 0x02 ,

7 ISO9141 = 0x03 ,

8 ISO14230 = 0x04 ,

9 CAN = 0x05 ,

10 ISO15765 = 0x06 ,

11 SCI_A_ENGINE = 0x07 ,

12 SCI_A_TRANS = 0x08 ,

13 SCI_B_ENGINE = 0x09 ,

14 SCI_B_TRANS = 0x0A ,

15 }

and here is an example of how the Passthru function calls are converted from C++ to Rust:

1 #if defined __WIN32__

2 #define APICALL __stdcall

3 #else

4 #define APICALL

5 #endif

6 ...

7 typedef long APICALL (* J2534_PassThruWriteMsgs)(unsigned long ChannelID ,

PASSTHRU_MSG *pMsg , unsigned long *pNumMsgs , unsigned long Timeout);

8 ...

and here the function is declared in Rust:

CHAPTER 3. METHODOLOGY 35

1 #[no_mangle]

2 #[allow(non_snake_case)]

3 pub extern "stdcall" fn PassThruWriteMsgs(

4 ChannelID: u32 ,

5 pMsg: *const PASSTHRU_MSG ,

6 pNumMsgs: *mut u32 ,

7 Timeout: u32 ,

8) -> i32 {

The #[no_magle] macro tells Rusts compiler to not mangle or modify the function name, but
to keep it as is in order for the function to be exposed as part of a library and for it to be
callable by external applications.

Windows ordinals

During testing, it was found that some applications such as Daimler’s DAS software would call
the Passthru API functions by their ordinal numbers rather than function name. An ordinal is
a unique ID assigned to a function. Since Rust’s compiler assigns a random ordinal number
to each function by default, this would cause the custom Passthru library to not load, since
the ordinal numbers did not match to the correct Passthru function. Therefore, a fix was to
utilize a .def file with Windows’ MSVC compiler in order to force Rust to assign the correct
ordinal number to each function in the Passthru library:

1 LIBRARY

2 EXPORTS

3 PassThruOpen @1

4 PassThruClose @2

5 PassThruConnect @3

6 PassThruDisconnect @4

7 PassThruReadMsgs @5

8 PassThruWriteMsgs @6

9 PassThruStartPeriodicMsg @7

10 PassThruStopPeriodicMsg @8

11 PassThruStartMsgFilter @9

12 PassThruStopMsgFilter @10

13 PassThruSetProgrammingVoltage @11

14 PassThruReadVersion @12

15 PassThruGetLastError @13

16 PassThruIoctl @14

Then, using a custom build.rs file (Which gets executed by the compiler), its possible to tell
the compiler to use the .def file during the compile process, but only under Windows:

1 use std::env;

2 fn main() {

3 let target_os = env::var("CARGO_CFG_TARGET_OS");

4 match target_os.as_ref ().map(|x| &**x) {

5 Ok("macos") | Ok("linux") => {}

6 Ok("windows") => println!("cargo:rustc -cdylib -link -arg=/DEF:driver.def"),

7 tos => panic!("unknown target os {:?}!", tos),

8 }

9 }

3.4.3 Communication between the adapter and driver

As mentioned in section 3.4, the Macchina M2 utilizes native USB in order to send and receive
data, rather than an onboard UART to USB converter. The Serial functionality is instead
provided by a virtual serial port driver. The Serialport-Rs library2 provides an easy to use,
cross platform Rust library for serial communication. Although there were initial issues with

2https://gitlab.com/susurrus/serialport-rs

https://gitlab.com/susurrus/serialport-rs

CHAPTER 3. METHODOLOGY 36

the serial communication API under windows3, the library was able to function as expected
and transfer data between the M2 and a PC, regardless of the operating system.

The following data structure was defined on both the firmware and Rust library, in order
for both ends to send and receive data correctly. Below is the C++ definition in the adapter
firmware:

1 #define COMM_MSG_SIZE 4096

2 #define COMM_MSG_ARG_SIZE COMM_MSG_SIZE -4

3

4 struct __attribute__ ((packed)) COMM_MSG {

5 uint8_t msg_id;

6 uint8_t msg_type;

7 uint16_t arg_size;

8 uint8_t args[COMM_MSG_ARG_SIZE];

9 };

The attributes in the message are used as follows:

1. msg id - Unique identifier of the message. This ID will keep repeating in the range of
1-254, (0x01-0xFF), and is used by the PC and Firmware to identify a response message
to a requested command. Each request and response message will have the same ID.
Messages that do not require a response will have a message ID of 0x00.

2. msg type - A byte which identifies what kind of message is being sent by either the
adapter of PC driver. See section C.2 for a full list of the message types and what they
signify, as well as which end sends and receives them.

3. arg size - A 2 byte value indicating how long the parameters of the message are which
reside in args

4. args - The parameters or payload of the message itself.

Communication server

Tx OK

Poll

Execute

Send bytes

Send bytes

Response Msg

Poll

Poll
Send Msg

Server Thread sender Thread poller Adapter

Figure 3.8: Expanded sequence diagram of communication server

3See B.1.1

CHAPTER 3. METHODOLOGY 37

Figure 3.8 shows an expanded view of the communication server sequence diagram. The
’server’ endpoint is the interface other functions in the Passthru library can call to send
messages to the Adapter. A sent message is sent to the server’s sender thread, which then
attempts to send the payload to the adapter. A maximum of 3 attempts are used to try and
send the payload. If all 3 attempts fail, a Tx Fail status is sent back to the caller function,
which then handles the appropriate action, as it assumes that the adapter is not connected
to the PC. If payload sending was completed successfully, a Tx OK message is sent back to
the caller function. In this event, the caller will now poll for a maximum of 2 seconds for a
response message. Constantly in the background, there is the poller thread, which constantly
polls the serial port for new bytes, reading them in order to ensure the serial port’s buffer is
not full (Linux has a maximum serial buffer size of 4096 bytes where as Windows’ is 16384
bytes). When a full payload is received by the poller thread, the response message is sent back
to the sender via a thread channel. If the incoming message is a log message (See below),
the poller instead logs the message to the libraries log file. In order to ensure the sender
and receiver message are for the same operation, the server checks the message ID, which
is unique to each IO operation which requires a response. If a response is not received in 2
seconds, the server terminates and returns a Timeout error back to the caller function. This
Timeout is also sent back to the poller thread, which will then discard the received message if
it does eventually get read. A timeout of 2 seconds is considered adequate as during testing,
all commands usually get executed within 10ms.

3.4.4 Reading battery voltage

In order to read the battery voltage of the M2, there is a library called M2 12VIO4 that can
be used to read the voltage on pin 16 of the OBD-II connector, which connects directly to
the cars battery. However, this library is slightly inaccurate as the below table shows:

0 2 4 6 8 10 12 14
0

5

10

15

PSU Voltage V

R
ep

or
te

d
vo

lt
ag

e
V

M2 (Stock)
Multimeter

M2 (Corrected)

Figure 3.9: Voltage reading comparison between M2 (Stock and corrected) and
Multimeter

As figure 3.9 shows, the reported voltage by the M2 12VIO library seems to level out at
6.1V , even if the actual supply voltage is lower than 6.1V . Therefore, the adapter firmware

4https://github.com/TDoust/M2_12VIO

https://github.com/TDoust/M2_12VIO

CHAPTER 3. METHODOLOGY 38

(Black line) will cut off the voltage, interpreting any value less or equal to 6.1V as 0.0V .
This way, when the adapter is unplugged from the vehicle, it will report 0V rather than 6.1V ,
which makes more sense.

3.4.5 ISO-TP Communication

Application Passthru lib Adapter CANBUS ECU

PassthruConnect

Open ISO-TP Req

StartMsgFilter

Set filters

PassthruWriteMsgs

PassThruReadMsgs

Msg 20 bytes

ISO-TP FirstFrame

ISO-TP FirstFrame

PassThruReadMsgs

ISO-TP FlowControl

ISO-TP FlowControl

Consecutive frame

Consecutive frame

Tx complete

PassThruReadMsgs

Figure 3.10: Sequence diagram for sending ISO-TP Data to an ECU

When transmitting ISO-TP data to an ECU. PassthruConnect is first called. This tells the
adapter to open an ISO-TP Communication channel, with a specified baud rate, and also
indications as to weather the CAN Network uses extended addressing or if ISO-TP uses
extended addressing.

Then StartMsgFilter is called, this tells the adapter to apply 3 filters. Pattern and Mask
(Which are both applied to listen to a specific CAN ID), and the Flow control filter. This
filter is only used for ISO-TP and contains the CAN ID to transmit data on back to the ECU.

After this, PassthruWriteMsgs is called, where the application tries to transmit data to
the ECU. This payload can be up to 4096 bytes long. The adapter receives this payload and
sends the ISO-TP First frame to the ECU, initiating the data transfer.

The ECU Then responds back with a flow control frame. The adapter reads this, and
applies the necessary block size and separation time, before transmitting ISO-TP consecutive
frames to the ECU.

Once the transmission is complete, the adapter sends a message back to the Passthru
library to indicate the data transfer is now complete. During the entire data transfer process,
the Application has been polling the Passthru library for new data. When the data transfer

CHAPTER 3. METHODOLOGY 39

is complete, a blank message is returned to the Application, with the TX MSG TYPE bit set
to 1, indicating data transfer complete.

Application Passthru lib Adapter CANBUS ECU

PassthruConnect

Open ISO-TP Req

StartMsgFilter

Set filters

ISO-TP FirstFrame

ISO-TP FirstFrame

FF indication

PassThruReadMsgs

ISO-TP FlowControl

ISO-TP FlowControl

Consecutive frame

Consecutive frame

Consecutive frame

Rx complete

PassThruReadMsgs

Figure 3.11: Sequence diagram for receiving ISO-TP Data from an ECU

When receiving data from an ECU, PassthruConnect and StartMsgFilter are called just
like when transmitting data. Once the filters have been applied, the adapter can listen to
incoming data from the ECU.

When adapter receives a first frame indication from an ECU, it sends a flow control frame
back to the ECU, initiating the rest of the data transfer. At the same time, the adapter sends
a message to the Passthru library which contains the CAN ID of the sending ECU with the
ISO15765 FIRSTF bit set. This message is then read by the user application and it will then
begin polling for the full payload.

Upon receiveing the flow control frame from the adapter, the ECU then sends all the
consecutive CAN Frames which make up the full payload. Once the adapter verifies it has all
the data, it sends the full payload back to the Passthru library, which is then read by the user
application.

3.4.6 Porting the Passthru API to Linux and OSX

In order to port the J2534 API to Linux and OSX, 2 potential issues has to be overcome:

1. Mac OSX has a very tight security policy forbidding modification to its root filesystem.
This means that a user cannot simply copy the library file to a directory like /usr/

share/

2. Mac OSX and Linux have no equivalent to the Windows registry system

CHAPTER 3. METHODOLOGY 40

To work around the issue mentioned in 1, it was decided that the J2434 library driver and info
data should reside in ~/.passthru/. This is because on both Linux and OSX, writing to the
users home directory (~/) does not require any elevated privileges.

To mitigate the section issue mentioned 2, it was decided the best approach would be to
create a JSON file containing the attribute data defined in the J2534 API:

1 {

2 "CAN": true ,

3 "ISO15765": true ,

4 "ISO9141": true ,

5 "ISO14230": true ,

6 "SCI_A_TRANS": true ,

7 "SCI_A_ENGINE": true ,

8 "SCI_B_TRANS": false ,

9 "SCI_B_ENGINE" : false ,

10 "J1850VPW" : false ,

11 "J1850PWM" : false ,

12 "FUNCTION_LIB": "~/. passthru/macchina.so",

13 "NAME": "Macchina M2 Under the dash",

14 "VENDOR": "rnd -ash@github.com",

15 "COM -PORT": "/dev/ttyACM0"

16 }

This means that every potential J2534 device would have its own JSON file stored in ~/

.passthru/. The above example being ~/.passthru/macchinam2.json for the created
Macchina M2 driver.

Every key name within this JSON is an exact copy of the key names found in the official
J2534 specification for the Windows Registry.

From within the passthru library code itself, fetching the COM-PORT attribute now re-
quires 2 code bases, one for Windows to locate the registry key within the Registry, and
another for UNIX OS’s to read the JSON file and find the COM-PORT attribute.

This was done with the conditional compilation flags on the library code to generate 2
versions of the get com port function, based on the compile target:

1 #[cfg(unix)]

2 fn get_comm_port () -> Option <String > {

3 if let Ok(content) = std::fs:: read_to_string(shellexpand ::tilde("~/. passthru/

macchina.json").to_string ()) {

4 return match serde_json :: from_str::< serde_json ::Value >(content.as_str ()) {

5 Ok(v) => v["COM -PORT"]. as_str ().map(String ::from),

6 Err(_) => None

7 }

8 }

9 None

10 }

11

12 #[cfg(windows)]

13 fn get_comm_port () -> Option <String > {

14 if let Ok(reg) = RegKey :: predef(HKEY_LOCAL_MACHINE).open_subkey("SOFTWARE \\

WOW6432Node \\ PassThruSupport .04.04\\ Macchina -Passthru") {

15 return match reg.get_value("COM -PORT") {

16 Ok(s) => Some(s),

17 Err(_) => None

18 }

19 }

20 None

21 }

Both functions work in the same way. They try to locate the COM-PORT key and read it.
If the value was successfully read, then the COM-PORT value is returned, if it wasn’t found,
None is returned.

CHAPTER 3. METHODOLOGY 41

3.4.7 Logging activity

In order to aid debugging, log messages generated by either the M2 itself or passthru library
are saved to a log file. On Linux, this Log file exists in ~/. passthru/macchina_log.txt and
on Windows it exists in C:\Program Files (x86)\macchina\passthru\macchina_log.txt.

Each log message generated has a unique tag:

Tag Description

[DEBUG] Messages for debugging only. These messages do not
appear in release builds of the driver.

[ERROR] Error messages, something has gone terribly wrong and
the Passthru adapter cannot continue functioning.

[WARN] An error has occured somewhere, but the adapter can
continue to function.

[INFO] Info messages that can track what the adapter is doing

[M2LOG] Messages that originate from the adapter itself

The generated log file has a dual purpose. It aids debugging of the library when used by
an external application, but also shows in detail what the adapter is doing with regards to
setting up CAN and ISO-TP channels, which can aid reverse engineering by snooping what a
diagnostic application is requesting an adapter to listen for. An example of some log messages:

1 [INFO] − PassthruOpen c a l l e d
2 [DEBUG] − M2 s e r i a l w r i t e r t h r ead s t a r t i n g !
3 [DEBUG] − M2 channe l s ende r th r ead s t a r t i n g !
4 [DEBUG] − M2 s e r i a l r e a d e r t h r ead s t a r t i n g !
5 [DEBUG] − Reque s t i ng channe l open . ID : 0 , P r o t o co l : ISO15765 , baud : 83333 , f l a g s : 0 x0000
6 [M2LOG] − Standard CAN de t e c t ed !
7 [M2LOG] − Normal ISO−TP Add r e s s i ng d e t e c t ed !
8 [DEBUG] − Command took 15544 us to exe cu t e
9 [DEBUG] − M2 opened channe l !

10 [DEBUG] − F i l t e r s p e c i f i e d . Type : Mask f i l t e r , Data : [0 , 0 , 255 , 255]
11 [DEBUG] − F i l t e r s p e c i f i e d . Type : Pa t t e rn f i l t e r , Data : [0 , 0 , 4 , 244]
12 [DEBUG] − F i l t e r s p e c i f i e d . Type : Flow c o n t r o l f i l t e r , Data : [0 , 0 , 5 , 180]
13 [DEBUG] − S e t t i n g ISO−TP f l ow c o n t r o l f i l t e r (ID : 0) on channe l 0 . Mask : [0 0 , 00 , FF , FF] , Pa t t e rn : [0 0 , 00 ,

04 , F4] , F lowCont ro l : [0 0 , 00 , 05 , B4]

3.4.8 Performance optimizations with CAN Interrupts

During testing, it was found that the adapter would miss incoming CAN Frames on high traffic
CAN Networks, with prevents ISO-TP receiving from working properly. This was because the
default behavior of the M2’s CAN Library is to have an Rx queue of CAN Frames, and pile
all incoming CAN Frames onto the queue, which only has 30 slots. Once this queue is full,
Any more incoming CAN Frames are simply dropped.

The solution to this problem was to register a callback for each of the 7 CAN mailbox’s
on the M2. When a frame is received by the mailbox, it triggers a hardware interrupt, which
then executes the callback function. The callback function then places each incoming CAN
Frame onto an assigned FIFO queue for each Mailbox.

Since the Passthru API can have 0-7 CAN Filters active at once (0-7 mailboxes with
unique mask and pattern filters), the FIFO Queues are created dynamically in order to save
memory. If a mailbox is not active, then no FIFO queue exists for it. Each FIFO queue is
actually a Ring buffer, with a fixed size. Below is a few code snippets in order to allow for
this unique interrupt handling:

1 // Each ma i lbox has a rxMa i l box o f 10 f rames
2 #d e f i n e MAX RX QUEUE 10
3 s t r u c t rxQueue {
4 v o l a t i l e CAN FRAME b u f f e r [MAX RX QUEUE] ;
5 u i n t 8 t head ;
6 u i n t 8 t t a i l ;

CHAPTER 3. METHODOLOGY 42

7 } ;

Listing 3.1: RxQueue structure

1 vo i d CustomCan : : e n a b l e C a nF i l t e r (i n t id , u i n t 3 2 t pa t t e rn , u i n t 3 2 t mask , boo l i sEx t ended) {
2 i f (i d < 0 | | i d >= 7) r e t u r n ; // I n v a l i d ma i lbox ID
3
4 // Set p a t t e r n and mask on the s p e c i f i e d ma i lbox
5 Can0 . s e t RXF i l t e r (id , pa t t e rn , mask , i sEx t ended) ;
6 // De l e t e any o l d b u f f e r i f i t f o r some r ea son e x i s t s
7 d e l e t e c h e c k r x r i n g (i d) ;
8 // Crea te our new r i n g
9 c r e a t e c h e c k r x r i n g (i d) ;

10 // Now r e g i s t e r the c a l l b a c k so tha t f rames ge t pushed to our ma i lbox
11 }

Listing 3.2: Function to enable CAN Filter. This sets up the RxQueue for the specified mailbox

1 vo i d CustomCan : : d i s a b l e C a n F i l t e r (i n t i d) {
2 i f (i d < 0 | | i d >= 7) r e t u r n ; // I n v a l i d ma i lbox ID
3 Can0 . s e t RXF i l t e r (id , 0xFFFF , 0x0000 , f a l s e) ;
4 d e l e t e c h e c k r x r i n g (i d) ;
5 }

Listing 3.3: Function that removes the CAN Filter from the mailbox and deletes the RxQueue

1 vo i d CustomCan : : r x q u e u e pu s h f r ame (rxQueue &r , CAN FRAME &f) {
2 u i n t 8 t nex tEn t r y = (r . head + 1) % MAX RX QUEUE;
3 // Queue i s f u l l , data i s l o s t
4 i f (n ex tEn t r y == r . t a i l) r e t u r n ;
5 memcpy ((vo i d ∗)&r . b u f f e r [r . head] , (vo i d ∗)&f , s i z e o f (CAN FRAME)) ;
6 r . head = nex tEn t r y ;
7 }

Listing 3.4: Function that pushes a CAN Frame to a RxQueue during an interrupt

1 // This f u n c t i o n g e t s c a l l e d by the channe l s
2 boo l CustomCan : : r e c e i v eF rame (i n t ma i l b o x i d , CAN FRAME ∗ f) {
3 i f (ma i l b o x i d < 0 | | ma i l b o x i d >= 7) r e t u r n f a l s e ; // I n v a l i d malbox ID
4 r e t u r n r x qu eu e pop f r ame (rxQueues [ma i l b o x i d] , ∗ f) ;
5 }
6
7 boo l CustomCan : : r x qu eu e pop f r ame (rxQueue &r , CAN FRAME &f) {
8 // No f rames i n r i n g b u f f e r
9 i f (r . head == r . t a i l) r e t u r n f a l s e ;

10 memcpy ((vo i d ∗)&f , (vo i d ∗)&r . b u f f e r [r . t a i l] , s i z e o f (CAN FRAME)) ;
11 r . t a i l = (r . t a i l + 1) % MAX RX QUEUE;
12 r e t u r n t r u e ;
13 }

Listing 3.5: Funtions which handles pulling CAN Frames from a specific mailboxes’ RxQueue
when requested.

1 vo i d CustomCan : : c a l l b a c k mb0 (CAN FRAME ∗ f) { r x q u e u e pu s h f r ame (rxQueues [0] , ∗ f) ; }
2 vo i d CustomCan : : c a l l b a c k mb1 (CAN FRAME ∗ f) { r x q u e u e pu s h f r ame (rxQueues [1] , ∗ f) ; }
3 vo i d CustomCan : : c a l l b a c k mb2 (CAN FRAME ∗ f) { r x q u e u e pu s h f r ame (rxQueues [2] , ∗ f) ; }
4 vo i d CustomCan : : c a l l b a c k mb3 (CAN FRAME ∗ f) { r x q u e u e pu s h f r ame (rxQueues [3] , ∗ f) ; }
5 vo i d CustomCan : : c a l l b a c k mb4 (CAN FRAME ∗ f) { r x q u e u e pu s h f r ame (rxQueues [4] , ∗ f) ; }
6 vo i d CustomCan : : c a l l b a c k mb5 (CAN FRAME ∗ f) { r x q u e u e pu s h f r ame (rxQueues [5] , ∗ f) ; }
7 vo i d CustomCan : : c a l l b a c k mb6 (CAN FRAME ∗ f) { r x q u e u e pu s h f r ame (rxQueues [6] , ∗ f) ; }

Listing 3.6: Callback functions for each mailbox

3.5 Diagnostic GUI

As described in (1.4.3), the diagnostic application must be able to do the following things:

1. Allow the user to scan for UDS/KWP2000 compatible ECUs in their vehicle that rely
on the ISO-TP transport protocol as described by [Nils Weiss, Sebastian Renner, Jürgen
Mottok, Václav Matoušek (n.d.)]

2. Allow the user to select an ECU from their vehicle, and for the application to establish
a diagnostic session with the ECU

CHAPTER 3. METHODOLOGY 43

3. Allow a user to run basic KWP2000/UDS commands on an ECU whilst the ECU is in
its diagnostic session

4. have a simple CAN analyzer page for showing CAN Traffic on the OBD-II port

5. Use the OVD JSON (3.3) to run advanced functions on an ECU that are usually only
able to be executed by commercial diagnostic software, and to interpret DTC Error
codes and freeze frame data.

Due to the complexity of the user interface and underlying architecture, only the major points
will be discussed in this report. Refer to D for the full code of the user interface.

3.5.1 Diagnostic server architecture

�interface�
ProtocolServer

start diag session(): ProtocolResult<Self>
exit diag session()
run command(sid: u8, args: &[u8]): ProtocolResult<Vec<u8>>
read errors(): ProtocolResult<Vec<DTC>>
is in diag session(): bool
get last error(): Option<String>

DTC

error: String
state: DTCState
mil on: bool
id: u32

�enum�
DTCState

None
Stored
Pending
Permanent

KWP2000Server UDSServer OBDServer

Figure 3.12: Diag servers UML overview

As discussed in (2.3), KWP2000, UDS and OBD all inherit the same request and response
message format, with only the actual SID and PID’s differing. Therefore, figure 3.12 shows how
all three diagnostic servers inherit the same common interface. This will allow all diagnostic
servers to work under a common UI interface, using dynamic dispatch to call the appropriate
diagnostic server. Also to note. The storage format will be the same regardless of the protocol
used. The DTC object can accommodate the DTC format of all 3 diagnostic protocols.

3.5.2 Communication server architecture

As discussed earlier, the idea of the communication server is to create a common server type
system,which can use dynamic dispatch to load different adapter protocols. Although only
SAE J2534 (Passthru) API implementation is planned for now, its worth creating a dynamic
system so that in future, D-PDU and SocketCAN can be added easily to the application
without major code modifications.

In its current form, the communication server UML is structured like so:

CHAPTER 3. METHODOLOGY 44

�interface�
ComServer

open device()
close device()
is connected()
send can packets(&[CanFrame], timeout ms: u32): usize
read can packets(timeout ms: u32, max msgs: usize): Vec<CanFrame>
send iso15765 data(&[ISO15765Data], timeout ms: u32): usize
read iso15765 data(timeout ms: u32, max msgs: usize): Vec<ISO15765Data>
open can interface(baud: u32, ext can: bool)
close can interface()
open iso15765 interface(baud: u32, ext can: bool, ext addr: bool)
close iso15765 interface()
add can filter(filter: FilterType, id: u32, mask: u32): u32
rem can filter(id: u32)
add iso15765 filter(id: u32, mask: u32, fc id: u32): u32
configure iso15765(cfg: &ISO15765Config)
rem iso15765 filter(id: u32): u32
clear can rx buffer()
clear can tx buffer()
clear iso15765 rx buffer()
clear iso15765 tx buffer()
read battery voltage(): u32
get capabilities(): DeviceCapabilities
get api name(): String

passthru-api dpdu-api socketcan-api

CanFrame

id: u32
dlc: u8
data: [u8; 8]

ISO15765Data

id: u32
data: Vec<u8>
pad frame: bool
ext addressing: bool

ISO15765Config

baud: u32
send id: u32
recv id: u32
bs: u32
st min: u32
use ext can: bool
use ext addr: bool

�enum�
FilterType

Pass
Block

�enum�
Capability

Yes
No
NA

DeviceCapabilities

name: String
vendor: String
lib path: String
device fw version: String
lib version: String
sci: Capability
j1850: Capability
can: Capability
iso15765: Capability
iso9141: Capability
iso14230: Capability
doip: Capability
batt voltage: Capability

Figure 3.13: UML of ComServer

As seen in figure 3.13, there are multiple data classes to represent data such as CAN and
ISO-TP payloads. This is done because each communication API has its own way of trans-
mitting data to and from hardware with various communication protocols. Therefore, data
types such as ISO15765Data exist as a portable data type that the rest of the application can
work with, and the implementors of ComServer (Such as passthru api) will internally convert
to and from data types.

CHAPTER 3. METHODOLOGY 45

The DeviceCapabilities object is to be implemented by every API, and contains data
about which functions the device supports. Currently, this does nothing, other than be dis-
played in the Applications home page. However, it is planned for future releases to use this
capability data to automatically select the best protocol for communicating with an ECU. For
an example, if the device does not support ISO14230, then there is no point in having a button
in the user interface for the user to try and establish communication with the ECU using a
protocol that is not supported by the adapter. The batt voltage capability is currently used
in order to enable or disable battery voltage monitoring. This avoids 0.0V being displayed in
the user interface in the event the adapter does not support it. Instead, ”Not supported” will
be displayed in grey.

3.5.3 Implementation of the Passthru API

OpenVehicleDiags Passthru library implementation is an abstraction layer over the Passthru
API. It is designed to use as little unsafe code as possible. The libloading5 library is used
as a cross platform library loader, being able to load Windows DLLs and Linux SO files and
OSX dynlib files. This library also contains functions to locate the library data automatically
(Windows uses Registry, Linux/OSX uses JSON).

Passthru functions are declared as type aliases in the Passthru library like so:

1 pub type Result <T> = std:: result ::Result <T, j2534_rust :: PassthruError >;

2 type PassThruCloseFn = unsafe extern "stdcall" fn(device_id: u32) -> i32;

The first line in this extract creates a type alias for the library. This way, if a function returns
an error code (Rather than 0 - OK), it gets wrapped in Rust’s return Err type. However if
the function succeeded, then the Error’s OK variant is returned, along with any data.

The second line shows an example of defining the Passthru API’s functions as a type alias
(Example shown is for PassThruClose).

The API also contains a struct which encapsulates all the library functions and reference
to the loaded passthru library:

1 #[d e r i v e (Clone)]
2 pub s t r u c t Pass th ruDrv {
3 /// Loaded l i b r a r y to i n t e r f a c e wi th the d e v i c e
4 l i b : Arc<l i b l o a d i n g : : L i b r a r y >,
5 /// Open d e v i c e conne c t i on
6 open fn : PassThruOpenFn ,
7 /// C lo s e d e v i c e conne c t i on
8 c l o s e f n : PassThruCloseFn ,
9 /// Connect a communicat ion channe l

10 c onn e c t f n : PassThruConnectFn ,
11 /// D i s connec t a communicat ion channe l
12 d i s c o n n e c t f n : PassThruDisconnectFn ,
13 /// Read messages from a communicat ion channe l
14 r ead msg fn : PassThruReadMsgsFn ,
15 /// Wri te messages to a communicat ion channe l
16 w r i t e msg f n : PassThruWriteMsgsFn ,
17 /// S t a r t a p e r i o d i c message
18 s t a r t p e r i o d i c f n : PassThruStar tPer iod i cMsgFn ,
19 /// Stop a p e r i o d i c message
20 s t o p p e r i o d i c f n : PassThruStopPer iod icMsgFn ,
21 /// S t a r t a f i l t e r on a channe l
22 s t a r t f i l t e r f n : Pas sThruSta r tMsgF i l t e rFn ,
23 /// Stop a f i l t e r on a channe l
24 s t o p f i l t e r f n : PassThruStopMsgFi l te rFn ,
25 /// Set programming v o l t a g e
26 s e t p r o g v f n : PassThruSetProgrammingVoltageFn ,
27 /// Get the l a s t d r i v e r e r r o r d e s c r i p t i o n i f ERR FAILED
28 g e t l a s t e r r f n : PassThruGetLastEr rorFn ,
29 /// IOCTL
30 i o c t l f n : Pas sThru Ioc t lFn ,
31 /// Get d r i v e r d e t a i l s
32 r e a d v e r s i o n f n : PassThruReadVers ionFn ,
33 }

In order to call the Passthru API functions, the Passthru library contains wrapper functions
such as the one shown below:

5https://github.com/nagisa/rust_libloading

https://github.com/nagisa/rust_libloading

CHAPTER 3. METHODOLOGY 46

1 //type PassThruCloseFn = unsafe extern "stdcall" fn(device_id: u32) -> i32;

2 pub fn close(&mut self , dev_id: u32) -> Result <()> {

3 let res = unsafe { (&self.close_fn)(dev_id) };

4 if res == 0x00 {

5 self.is_connected = false;

6 }

7 ret_res(res , ())

8 }

The function above shows the abstraction libraries implementation of PassthruClose. This
function takes a mutable reference to the PassthruDrv struct (Similar to ’this’ in other lan-
guages), as well as the device ID to close. The function returns a Result with OK variant type
of unit. Then, the PassthruDrv’s close function is called in an unsafe block. The unsafe block
here is necessary as it is calling external code, which might not guarantee the same memory
safety as Rust. If the function succeeded, the the OK Variant is returned. If the function call
failed, then the Result’s Err variant is returned, along with the error code.

Another example of the abstraction this library does is with PassthruReadMsgs function.
This function is supposed to take a mutable reference to an array of PASSTHRU MSGS, and
attempts to fill the array up based on what the adapter can read. Instead, the abstraction
library’s implementation looks like the following:

1 //type PassThruReadMsgsFn = unsafe extern "stdcall" fn(channel_id: u32 , msgs: *mut

PASSTHRU_MSG , num_msgs: *mut u32 , timeout: u32) -> i32;

2 pub fn read_messages (&self , channel_id: u32 , max_msgs: u32 , timeout: u32) -> Result

<Vec <PASSTHRU_MSG >> {

3 let mut msg_count: u32 = max_msgs;

4 // Create a blank array of empty passthru messages according to the max we

should read

5 let mut write_array: Vec <PASSTHRU_MSG > = vec![

6 PASSTHRU_MSG :: default ();

7 max_msgs as usize

8];

9 // Call Passthru library PassthruReadMsgs

10 let res = unsafe {

11 (&self.read_msg_fn)(

12 channel_id ,

13 write_array.as_mut_ptr () as *mut PASSTHRU_MSG ,

14 &mut msg_count as *mut u32 ,

15 timeout ,

16)

17 };

18 // Error , but due to timeout waiting for more!

19 // Just return what we have and say OK!

20 if res == PassthruError :: ERR_BUFFER_EMPTY as i32 && msg_count != 0 {

21 write_array.truncate(msg_count as usize);

22 return ret_res (0x00 , write_array);

23 }

24 if msg_count != max_msgs {

25 // Trim the output vector to size

26 write_array.truncate(msg_count as usize);

27 }

28 ret_res(res , write_array)

29 }

This function simplifies the PassthruReadMsgs call significantly for the application. It inter-
nally constructs an array to pass a mutable pointer to PassthruReadMsgs itself, then return
a Vector of PassthruMsgs that have been read by the adapter. If no messages are read, by
default the Passthru library will return an error (ERR BUFFER EMPTY). This function can
catch that error and simply return an empty array of messages, which is easier to handle in
higher levels of the communication server.

CHAPTER 3. METHODOLOGY 47

3.5.4 User Interface

The Iced GUI library was utilized for the user interface, allowing for the user interface to be
defined entirely in the rust codebase. Due to Iced being inspired by the Elm architecture,
every page within the user interface has three main functions. An initialization function, an
update function, which takes a Message type unique to each page, and a view function, which
draws the user interface itself. Each page is stored in the form of a Struct with internal
variables that can be only updated from the update function. To make the UI do something,
the view function can place elements such as buttons, which emit a message which is sent to
the update function. By default, Iced contains the following useful widgets:

• button

• Progress bar

• Drop-down

• Image view

• Radio button

• Checkbox

• Text view

• Text input view

• Scroll view

• Padding widget

Each element of the user interface can have its own custom ’style’ struct applied to it, and
also have its own alignment (Relative to its parent in the user interface)

Interface style

Iced has the ability to apply a ’style’ struct on each element of the user interface. It was
decided that as part of the user interface, there should be a dark theme. This will hopefully
allow for less eye-strain when working with the application, especially in darker environments
such as garages.

To theme the entire user interface, there is a global variable which indicates which theme
is currently in use:

1 s t a t i c mut CURR THEME: S t y l e = S t y l e : : Dark ;
2 #[d e r i v e (Debug , Copy , Clone , Ord , Pa r t i a lO rd , Eq , P a r t i a l E q)]
3 pub enum S t y l e {
4 L ight ,
5 Dark ,
6 }
7
8 pub fn s e t da r k t h eme () {
9 un sa f e { CURR THEME = S t y l e : : Dark }

10 }
11
12 pub fn s e t l i g h t t h em e () {
13 un sa f e { CURR THEME = S t y l e : : L i g h t }
14 }
15
16 pub fn togg l e theme () {
17 i f ∗get theme () == S t y l e : : L i g h t {
18 s e t da r k t h eme ()
19 } e l s e {
20 s e t l i g h t t h em e ()
21 }
22 }
23

CHAPTER 3. METHODOLOGY 48

24 pub (c r a t e) fn get theme<’a>() −> &’a S t y l e {
25 un sa f e { &CURR THEME }
26 }

For the main user interface components, builder functions were created which can apply, then
return a newly created user interface element. Only helper for button creation will be shown,
but a similar process occurs for other UI elements. The user interface is somewhat inspired
by the Material design guidelines.

Buttons in the user interface comes in two flavours. Outlined, and Solid. Each button
flavour has eight different themes. Primary colour, Secondary colour, Success, Danger, Warn-
ing, Info, Light and Dark.

To create the buttons, the following code is used:

1 pub enum ButtonType {
2 Primary ,
3 Secondary ,
4 Success ,
5 Danger ,
6 Warning ,
7 I n f o ,
8 L ight ,
9 Dark ,

10 }
11
12 imp l ButtonType {
13 pub (c r a t e) fn g e t c o l o u r (& s e l f) −> Co lo r {
14 match &s e l f {
15 ButtonType : : Pr imary => Co lo r : : f r om rgb8 (0 x0d , 0x6e , 0 x fd) ,
16 ButtonType : : Secondary => Co lo r : : f r om rgb8 (0 x66 , 0x10 , 0 x f 2) ,
17 ButtonType : : Succe s s => Co lo r : : f r om rgb8 (0 x00 , 0xb7 , 0 x4a) ,
18 ButtonType : : Danger => Co lo r : : f r om rgb8 (0 xf9 , 0x31 , 0 x54) ,
19 ButtonType : : Warning => Co lo r : : f r om rgb8 (0 x f f , 0xa9 , 0x00) ,
20 ButtonType : : I n f o => Co lo r : : f r om rgb8 (0 x39 , 0xc0 , 0 xed) ,
21 ButtonType : : L i gh t => Co lo r : : f r om rgb8 (0 xfb , 0 xfb , 0 x fb) ,
22 ButtonType : : Dark => Co lo r : : f r om rgb8 (0 x26 , 0x26 , 0x26) ,
23 }
24 }
25 }
26
27 pub fn bu t t on co l ou r ed <’a , T : Clone>(
28 s t a t e : &’a mut button : : State ,
29 t e x t : &s t r ,
30 b tn t yp e : ButtonType ,
31) −> Button<’a , T> {
32 l e t c o l o r = b tn t yp e . g e t c o l o u r () ;
33 Button : : new (s t a t e , Text : : new (t e x t))
34 . s t y l e (Bu t t onS t y l e : : new (co l o r , f a l s e))
35 . padd ing (8)
36 }

The ButtonType enum has an implementation for each element to retrieve the desired colour
of the button. These colours come from the Material design guidelines. When creating a
button (button coloured), a standard Iced button is created, then a style is applied to it,
along with a desired padding.

The process of creating the style for the button looks like this:

1 pub s t r u c t Bu t tonS ty l e {
2 c o l o r : Co lor ,
3 i s o u t l i n e d : bool ,
4 }
5
6 imp l Bu t tonS ty l e {
7 pub fn new (c o l o r : Co lor , i s o u t l i n e d : boo l) −> S e l f {
8 S e l f { co l o r , i s o u t l i n e d }
9 }

10 }
11
12 imp l but ton : : S t y l e Sh e e t f o r Bu t t onS t y l e {
13 fn a c t i v e (& s e l f) −> S t y l e {
14 match supe r : : get theme () {
15 supe r : : S t y l e : : L i gh t => button : : S t y l e {
16 s h adow o f f s e t : De f au l t : : d e f a u l t () ,
17 background : i f s e l f . i s o u t l i n e d {
18 WHITE. i n t o ()
19 } e l s e {
20 s e l f . c o l o r . i n t o ()
21 } ,
22 b o r d e r r a d i u s : BUTTON RADIUS,
23 bo r d e r w i d t h : i f s e l f . i s o u t l i n e d {
24 BUTTON BORDER WIDTH
25 } e l s e {
26 0 .0
27 } ,

CHAPTER 3. METHODOLOGY 49

28 b o r d e r c o l o r : i f s e l f . i s o u t l i n e d { s e l f . c o l o r } e l s e { WHITE } ,
29 t e x t c o l o r : i f s e l f . i s o u t l i n e d { s e l f . c o l o r } e l s e { WHITE } ,
30 } ,
31 supe r : : S t y l e : : Dark => button : : S t y l e {
32 s h adow o f f s e t : De f au l t : : d e f a u l t () ,
33 background : i f s e l f . i s o u t l i n e d {
34 DARK BG. i n t o ()
35 } e l s e {
36 s e l f . c o l o r . i n t o ()
37 } ,
38 b o r d e r r a d i u s : BUTTON RADIUS,
39 bo r d e r w i d t h : i f s e l f . i s o u t l i n e d {
40 BUTTON BORDER WIDTH
41 } e l s e {
42 0 .0
43 } ,
44 b o r d e r c o l o r : i f s e l f . i s o u t l i n e d { s e l f . c o l o r } e l s e { WHITE } ,
45 t e x t c o l o r : i f s e l f . i s o u t l i n e d { s e l f . c o l o r } e l s e { WHITE } ,
46 } ,
47 }
48 }
49
50 fn hove red (& s e l f) −> S t y l e { /∗ Code not shown ∗/ }
51 fn p r e s s e d (& s e l f) −> S t y l e { /∗ Code not shown ∗/ }
52 fn d i s a b l e d (& s e l f) −> S t y l e { /∗ Code not shown ∗/ }

In this code block, the theme style for the button changes based on the global theme of the
rest of the interface (Dark/Light). Then the returned button style is also modified based on
if the button is supposed to be coloured (solid), or outlined. Not shown here is the styling for
a hovered button, pressed button, or disabled button. All 3 follow the exact same method of
creating the return style as the active button style, except with different colours.

Launcher

The launcher is responsible for enumerating located diagnostic adapters on the users computer,
and to then display them to the user, allowing them to select which adapter to use with
OpenVehicleDiag.

When the user selects Launch after selecting an adapter. A ComServer is created with
the specified adapter API. If an error occurs during this process, then the launcher bails out
and displays the error to the end user.

Figure 3.14: OpenVehicleDiag’s launcher (Passthru device enumeration)

CHAPTER 3. METHODOLOGY 50

Figure 3.15: OpenVehicleDiag’s launcher displaying Passthru error

As seen in figure 3.15, the Passthru library for the M2 was loaded, but returned an error
as the M2 was not connected to the PC. This error is then displayed in the launcher.

The code to achieve this looks like the following in the Launcher’s update function:

1 pub fn update (&mut s e l f , msg : &LauncherMessage) −> Option<WindowMessage> {
2 match msg {
3 LauncherMessage : : SwitchAPI (ap i) => s e l f . a p i s e l e c t i o n = ∗ap i ,
4 LauncherMessage : : D e v i c eS e l e c t e d (d) => {
5 i f s e l f . a p i s e l e c t i o n == API : : Pa s s th ru {
6 s e l f . s e l e c t e d d e v i c e p a s s t h r u = d . c l o n e ()
7 } e l s e i f s e l f . a p i s e l e c t i o n == API : : DPdu {
8 s e l f . s e l e c t e d d e v i c e d p d u = d . c l o n e ()
9 }

10 }
11 LauncherMessage : : LaunchRequested => {
12 i f s e l f . a p i s e l e c t i o n == API : : Pa s s th ru {
13 match s e l f . g e t d e v i c e p a s s t h r u () {
14 Ok((d e t a i l s , d r i v e r)) => {
15 l e t mut s e r v e r = Pas s th ruAp i : : new (d e t a i l s , d r i v e r) ;
16 i f l e t E r r (e) = s e r v e r . o p en d e v i c e () {
17 s e l f . s t a t u s t e x t = e . t o s t r i n g ()
18 } e l s e {
19 // Ready to l aunch OVD!
20 r e t u r n Some(WindowMessage : : StartApp (s e r v e r . c l o n e box ())) ;
21 }
22 }
23 Er r (x) => s e l f . s t a t u s t e x t = x . t o s t r i n g () ,
24 }
25 } e l s e i f s e l f . a p i s e l e c t i o n == API : : DPdu {
26 // TODO D−PDU Launch ing
27 }
28 }
29 }
30 None
31 }

This code block receives a signal ’msg’ when a UI element is interacted with. In the case
of ”LaunchRequested”, which occurs when the Launch button is pressed. When this occurs,
if the API selection is Passthru, and the listed device was located, the PassthruAPI library
attempts to load the device. If it was OK, then a message is emitted to the Main Window,
telling it to launch the Home page. As part of this message, the dynamic ComServer (from
the PassthruAPI) is passed to the main window.

If the loading of the Passthru device was unsuccessful, then the status text is set to the
error message returned by the Passthru API.

Home page

The home page is a gateway to all of OpenVehicleDiag’s various functions and pages. It also
displays details about the application, and adapter specifications being utilized.

CHAPTER 3. METHODOLOGY 51

The ’Supported Protocols” section is built by querying the ComServer’s DeviceCapabilities
value to see which communication interfaces are supported. ’Yes’ (Green) indicates a method
is supported by both the adapter API and the adapter itself. ’No’ (Red) indicates that the
API (EG: Passthru) does support the communication method, but the adapter itself does
not. ’N/A’ (Grey) indicates that the adapter API itself does not support the communication
protocol.

Status bar

The status bar is a small part of the overall user interface. Taking its inspiration from Daimler’s
DAS software, it provides status on the connection to the vehicle (If an interface is currently
open and communicating with a vehicle), and also the battery voltage of the vehicle. The
status bar also provides a ’Go Home’ button, and also a ’Back’ button which allows users
to quickly go back, or go to the home page. Both the ’Back’ and ’Go Home’ button can
be disabled by any page in the user interface. This is used so that certain operations can
be cancelled safely within the main user interface, rather than by clicking Go back or home,
which forcibly destroys the current page.

The battery voltage is queried every two seconds. This is done by submitting ’events’ to
the main window every two seconds:

1 fn s u b s c r i p t i o n (& s e l f) −> Sub s c r i p t i o n<S e l f : : Message> {
2 l e t mut batch : Vec<Sub s c r i p t i o n<WindowMessage>> = ve c ! [] ;
3 i f s e l f . p o l l v o l t a g e {
4 batch . push (
5 t ime : : e v e r y (s t d : : t ime : : Dura t i on : : f r om s e c s (2)) .map(WindowMessage : : StatusUpdate) ,
6) ;
7 S u b s c r i p t i o n : : batch (batch)
8 }

This allows for the battery voltage to be polled every two seconds, but to also be done on
the same thread as the user interface, rather than a background thread. This is done because
certain API’s such as Passthru do not support multi-threading.

the variable ’poll voltage’ is set when the main window loads, by querying the ComServer’s
DeviceCapabilities. If battery voltage reading is supported, ’poll voltage’ is true, else it is false.

This is then utilized by the Status bar draw code:

1 l e t v = i f s e l f . p o l l v o l t a g e {
2 i f s e l f . v o l t a g e < 12 .0 && s e l f . v o l t a g e > 11 .5 {
3 t e x t (f o rma t ! (”{}V” , s e l f . v o l t a g e) . a s s t r () , TextType : : Warning) // Amber
4 } e l s e i f s e l f . v o l t a g e < 11 .5 {
5 t e x t (f o rma t ! (”{}V” , s e l f . v o l t a g e) . a s s t r () , TextType : : Danger) // Red
6 } e l s e {
7 t e x t (f o rma t ! (”{}V” , s e l f . v o l t a g e) . a s s t r () , TextType : : Succe s s) // Green
8 }
9 } e l s e {

CHAPTER 3. METHODOLOGY 52

10 t e x t (”Not suppo r t ed ” , TextType : : D i s ab l e d) // Grey
11 } ;

As seen above, there are 4 styles for battery voltage display. If the voltage is between 11.5V
and 12.0V , then the battery voltage colour will be Amber. If the voltage is less that 11.5V ,
the text is Red. Any voltage higher than 12.0V is displayed in Green. If battery voltage
reading is not supported by the adapter, Grey text saying ”Not Supported” will be displayed.

CAN Analyser

The CAN Analyser is a simple page which is designed to show CAN traffic on the OBD-II
port. The user interface initially has a simple ’Connect’ button. When pressed, the CAN
Analyser will begin by setting up an open CAN interface on the ComServer, and wake up the
OBD-II port by sending a OBD-II over CAN request message. This message is used since the
vast majority of cars will respond to it, thus wake up the OBD-II port allowing for traffic to
be monitored. This button is also togglable to disable the CAN Interface. When pressed, the
following code is executed:

1 i f s e l f . i s c o n n e c t e d { // A l r eady connected − We are d i s c o n n e c t i n g CAN
2 i f l e t E r r (e) = s e l f . s e r v e r . as mut () . c l o s e c a n i n t e r f a c e () {
3 s e l f . s t a t u s t e x t = fo rma t ! (” E r r o r c l o s i n g CAN I n t e r f a c e {}” , e)
4 } e l s e {
5 s e l f . i s c o n n e c t e d = f a l s e ;
6 s e l f . can queue . c l e a r () ;
7 }
8
9 }

10 // Try to open CAN I n t e r f a c e (Detect e r r o r i f any)
11 e l s e i f l e t E r r (e) = s e l f . s e r v e r . as mut () . o p e n c a n i n t e r f a c e (500 000 , f a l s e) {
12 s e l f . s t a t u s t e x t = fo rma t ! (” E r r o r open ing CAN I n t e r f a c e {}” , e)
13 }
14 // Opening CAN i n t e r f a c e was OK!
15 e l s e {
16 s e l f . i s c o n n e c t e d = t r u e ;
17 i f l e t E r r (e) =
18 s e l f . s e r v e r
19 . as mut ()
20 . a d d c a n f i l t e r (F i l t e rT y p e : : Pass , 0x0000 , 0 x0000)
21 {
22 s e l f . s t a t u s t e x t = fo rma t ! (” E r r o r s e t t i n g CAN F i l t e r {}” , e)
23 // Send OBD− I I wakeup packe t to wake up car ’ s OBD− I I p o r t
24 } e l s e i f l e t E r r (e) = s e l f . s e r v e r . s e nd c an pa c k e t s (
25 &[CanFrame : : new (
26 0x07DF ,
27 &[0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0 x00] ,
28)] ,
29 0 ,
30) {
31 s e l f . s t a t u s t e x t = fo rma t ! (” E r r o r s end i ng wake−up packe t {}” , e)
32 }
33 }

Once connected, the CAN interface is polled every 10 milliseconds for new data:
1 pub fn s u b s c r i p t i o n (& s e l f) −> Sub s c r i p t i o n<TracerMessage> {
2 i f s e l f . i s c o n n e c t e d {
3 r e t u r n t ime : : e v e r y (s t d : : t ime : : Dura t i on : : f r om m i l l i s (10)) .map(TracerMessage : : NewData) ;
4 }
5 S u b s c r i p t i o n : : none ()
6 }

When the message is received, the following code is executed to push each CAN Frame to its
own location within a HashMap

CHAPTER 3. METHODOLOGY 53

1 i f l e t Ok(m) = s e l f . s e r v e r . a s r e f () . r e a d c a n p a c k e t s (0 , 100) {
2 f o r f i n m {
3 s e l f . can queue . i n s e r t (f . id , f) ;
4 }
5 }

Each hashMap entry uses the CAN ID as a unique key (Which will always be unique), with
the CAN Data array being the value stored in the hashmap.

In order to display CAN Frames to the user, there are two available formats, which can be
switched by using a checkbox:

Figure 3.16: Standard CAN display (Hex) vs Binary CAN

The code to complete this looks like the following:

1 l e t mut c o l = Column : : new () ;
2 l e t mut x : Vec<u32> = cu r r d a t a . keys () . i n t o i t e r () . c op i ed () . c o l l e c t () ;
3 x . s o r t b y (| a , b | a . p a r t i a l cmp (b) . unwrap ()) ;
4 f o r c i d i n x { // For each CAN ID
5 l e t mut c o n t a i n e r = Row : : new () ;
6 c o n t a i n e r = c o n t a i n e r . push (
7 Row : : new ()
8 . push (Text : : new (f o rma t ! (”CID : { :04X}” , i . i d)))
9 . width (Length : : Un i t s (100)) ,

10) ;
11 f o r by te i n i . g e t d a t a () { // Add by t e s to v iew
12 c o n t a i n e r = match s e l f . b i n a r y {
13 // B ina ry d i s p l a y
14 t r u e => c o n t a i n e r . push (Row : : new () . push (Text : : new (f o rma t ! (”{ :08 b}” , by te)))) ,
15 // Hex d i s p l a y
16 f a l s e => c o n t a i n e r . push (
17 Row : : new () . push (Text : : new (f o rma t ! (”{ :02X}” , by te)) . w idth (Length : : Un i t s (30))) ,
18) ,
19 }
20 }
21 }

3.5.5 KWP2000 and UDS implementations

As mentioned in section 2.3, KWP2000 and UDS are very similar. Therefore, they will both
be covered in this section.

Each Diagnostic server uses the same function for sending and receiving command re-
sponses from an ECU over an ISO-TP connection:

1 fn run command i so tp (
2 s e r v e r : &dyn ComServer ,
3 s e n d i d : u32 ,
4 cmd : u8 ,
5 a r g s : &[u8] ,
6 r e c e i v e r e q u i r e : bool ,
7 r e s p on s e t imeou t : u128 ,
8) −> s t d : : r e s u l t : : Resu l t<Vec<u8>, P r o t o c o lE r r o r> {
9 l e t mut data = ISO15765Data {

10 i d : s end i d ,
11 data : v e c ! [cmd] ,
12 pad f rame : f a l s e ,
13 e x t a d d r e s s i n g : t rue ,
14 } ;
15 data . data . e x t e n d f r om s l i c e (a r g s) ;
16 i f ! r e c e i v e r e q u i r e {
17 s e r v e r
18 . s e nd i s o 15765 da t a (&[data] , 0)
19 .map (| | v e c ! [])
20 . map er r (P r o t o c o l E r r o r : : CommError)
21 } e l s e {
22 // Await max 1 second f o r r e s pon s e
23 l e t r e s = s e r v e r . s e n d r e c e i v e i s o 1 5 7 6 5 (data , 1000 , 1) ? ;
24 i f r e s . i s emp ty () {

CHAPTER 3. METHODOLOGY 54

25 r e t u r n Er r (P r o t o c o l E r r o r : : Timeout) ;
26 }
27 l e t mut tmp res = r e s [0] . data . c l o n e () ;
28 i f tmp re s [0] == 0x7F && tmp res [2] == 0x78 {
29 // ResponsePending
30 p r i n t l n ! (”DIAG − ECU i s p r o c e s s i n g r e q u e s t − Wai t i ng ! ”) ;
31 l e t s t a r t = I n s t a n t : : now () ;
32 wh i l e s t a r t . e l a p s e d () . a s m i l l i s () <= 2000 {
33 // ECU accep ted the r eque s t , but cannot re spond at the moment!
34 i f l e t Some(msg) = s e r v e r . r e a d i s o 1 5 7 6 5 p a c k e t s (0 , 1) ? . ge t (0) {
35 tmp res = msg . data . c l o n e () ;
36 }
37 }
38 }
39 i f tmp re s [0] == 0x7F {
40 // S t i l l e r r o r : (
41 Er r (P r o t o c o l E r r o r : : P r o t o c o l E r r o r (Box : : new (
42 S e l f : : E r r o r : : f r om by te (tmp res [2]) ,
43)))
44 } e l s e i f tmp re s [0] == (cmd + 0x40) {
45 Ok(tmp res)
46 } e l s e {
47 e p r i n t l n ! (
48 ”DIAG − Command r e s pon s e d i d not match r e q u e s t ? Send : { :02X} − Recv : { :02X}” ,
49 cmd , tmp res [0]
50) ;
51 Er r (P r o t o c o l E r r o r : : Timeout)
52 }
53 }
54 }
55 }

This function starts by building an ISO15765Data payload to transmit to the ECU. The ’cmd’
byte is the SID of the protocol, and args contain any additional data. If ’receive response’ is
set, the server does not require a response from the ECU, so it immediately bails upon sending
the data. If response from the ECU is required, it begins waiting for up to 2 seconds for a
response from the ECU.

If the ECU responds with an error, it is returned as a ProtocolError. However, if the
error code is 0x78, then the server begins a holding sequence, blocking the thread for up to
another 2 seconds until the ECU responds. This is because the error 0x78 implies the ECU has
accepted the request, but is unable to respond to the request immediately. Both KWP2000
and UDS state that in this event, the diagnostic server is to stop sending any data to the
ECU (Including TesterPresent commands), until the ECU responds, or a timeout occurs. This
second timeout is 2 seconds. If the ECU responds with a positive response, the response is
returned as a byte array back to whichever diagnostic server sent the message.

Utilizing both the KWP2000 specification [DaimlerChrysler (2002)] and UDS specification
[ISO (2006)], basic diagnostic functions were implemented such as clear / Read DTCs, as well
as some additional functions for KWP2000 which allow for querying detailed ECU software
and hardware version data.

For reading DTCs from ECUs, each protocol returns a different data format, so the Diag-
nostic servers consolidate the data into a generic DTC structure. Below is the code to read
DTCs with KWP2000:

1 fn r e a d e r r o r s (& s e l f) −> Pro t o co lR e s u l t<Vec<DTC>> {
2 // 0x02 − Request Hex DTCs as 2 by t e s
3 // 0xFF00 − Request a l l DTCs (Mandatory pe r KWP2000)
4 l e t mut by t e s = s e l f . run command (S e r v i c e : : ReadDTCByStatus . i n t o () , &[0x02 , 0xFF , 0x00]) ? ;
5 by t e s . d r a i n (. . 1) ;
6 l e t count = by t e s [0] as u s i z e ;
7 by t e s . d r a i n (0 . . 1) ;
8
9 l e t mut r e s : Vec<DTC> = Vec : : new () ;

10 f o r i n 0 . . count {
11 l e t name = fo rma t ! (”{ :02X}{ :02X}” , b y t e s [0] , b y t e s [1]) ;
12 l e t s t a t u s = by t e s [2] ;
13 // l e t f l a g = (s t a t u s >> 4 & 0b00000001) > 0 ;
14 //0b011
15 l e t s t o r a g e s t a t e = (s t a t u s >> 5) & 0b0000011 ;
16
17 l e t s t a t e = match s t o r a g e s t a t e {
18 1 => DTCState : : Stored ,
19 2 => DTCState : : Pending ,
20 3 => DTCState : : Permanent ,
21 => DTCState : : None
22 } ;

CHAPTER 3. METHODOLOGY 55

23
24 // I s check eng i n e l i g h t on?
25 l e t m i l = (s t a t u s >> 7 & 0b00000001) > 0 ;
26
27 r e s . push (DTC {
28 e r r o r : name ,
29 s t a t e ,
30 ch e c k eng i n e on : mi l ,
31 i d : ((b y t e s [0] as u32) << 8) | by t e s [1] as u32
32 }) ;
33 by t e s . d r a i n (0 . . 3) ; // DTC i s 3 by t e s (1 f o r s t a t u s , 2 f o r the ID)
34 }
35 Ok(r e s)
36 }

3.5.6 Automated ECU Scanner

The Automated ISO-TP ECU Scanner is the main part of OpenVehicleDiag. Based on the
work done in [Nils Weiss, Sebastian Renner, Jürgen Mottok, Václav Matoušek (n.d.)], it shows
it is possible to detect ISO-TP endpoints in a vehicle by sending bogus ISO-TP First frames
to the ECU, as it will always respond with a flow control message, regardless if the incoming
data is valid or not.

Prior to the scan, a warning message must be presented to the user. This message is
to notify the users in advance that many warning lights might briefely illuminate on their
instrument cluster, as will be shown later on.

Figure 3.17: Warning message presented to the user prior to the ECU scan

To begin the scan, the scanner begins by setting up an open CAN Interface on the appli-
cations ComServer, and configures the filter to be open to all incoming traffic:

1 s e l f . s e r v e r . o p e n c a n i n t e r f a c e (500 000 , f a l s e) ;
2 s e l f . s e r v e r . a d d c a n f i l t e r (commapi : : comm api : : F i l t e rT y p e : : Pass , 0 x00000000 , 0 x00000000) ;

This allows for OpenVehicleDiag to receive ALL incoming CAN Packets from the OBD-II port
as it is an open filter.

Next, an OBD-II request is sent to the OBD-II ports CAN interface. This is done to
wake-up the CAN Interface on the vehicles side:

1 s e l f . s e r v e r . s e nd c an pa c k e t s (&[CanFrame : : new(0x07DF , &[0x09 , 0x02])] , 0)

The next step is important. In order to ensure that OpenVehicleDiag does not accidentally
send a CAN Frame to a vehicle which already exists on the bus, it listens to traffic on the
OBD-II port for 15 seconds. During this listening period, any incoming CAN Traffic is noted,
and the CAN ID’s of the incoming traffic are added to a blacklist of CAN ID’s to not send to
the vehicle for probing ISO-TP endpoints.

CHAPTER 3. METHODOLOGY 56

Figure 3.18: Listing to existing CAN traffic

After the initial poll period, the scan begins iterating over every CAN ID between 0x000 and
0x7FF (CAN’s Maximum CAN ID with Standard 11 bit addressing). During every iteration,
it will send a fake ISO-TP Start frame, and poll for 100ms for incomming data that is not in
the existing blacklist. If the incomming data looks like an ISO-TP Flow control message, it is
added to an array, along with the Send CAN ID used.

1 s e l f . g e t n e x t c a n i d () ;
2 s e l f . s e r v e r . c l e a r c a n r x b u f f e r () ;
3 // Send a f ak e ISO−TP f i r s t f rame . T e l l the p o t e n t i a l ECU we a r e s end i ng 16 by t e s to i t . I f i t u s e s ISO−TP, i t

’ l l send back a
4 // f l ow c o n t r o l message back to OVD
5 s e l f . s e r v e r . s e nd c an pa c k e t s (
6 &[CanFrame : : new (
7 s e l f . c u r r s c a n i d ,
8 // Fake pay load to t a r g e t add r e s s . Send ing 0x10 by t e s o f data (16 by t e s)
9 &[0x10 , 0x10 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00] ,

10)] ,
11 0 ,
12) ;
13 s e l f . c l o c k = I n s t a n t : : now () ;
14 wh i l e s e l f . c l o c k . e l a p s e d () . a s m i l l i s () < 100 {
15 // Keep p o l l i n g CAN!
16 f o r f rame i n &s e l f . s e r v e r . r e a d c a n p a c k e t s (0 , 10000) . u nw r a p o r d e f a u l t () {
17 i f s e l f . c a n t r a f f i c i d l i s t . ge t (&frame . i d) . i s n o n e () {
18 // I t s a new frame we haven ’ t seen b e f o r e !
19 l e t pay load = frame . g e t d a t a () ;
20 i f pay load [0] == 0x30 && pay load . l e n () == 8 {
21 // P o s s i b l e r e c v ID? − I t might p i c k up mu l t i p l e IDs du r i ng the scan , we f i l t e r i t l a t e r on
22 i f l e t Some(r) = s e l f . s t a g e 2 r e s u l t s . get mut(& s e l f . c u r r s c a n i d) {
23 r . push (frame . i d)
24 } e l s e {
25 s e l f . s t a g e 2 r e s u l t s . i n s e r t (s e l f . c u r r s c a n i d , v e c ! [f rame . i d]) ;
26 }
27 }
28 }
29 }
30 }

Figure 3.19: Locating potential ISO-TP endpoints

Once this initial list of potential ISO-TP endpoints has been created, it is then iterated over
again, but this time using a specified CAN Filter in order to remove any false positives. If
the incoming frame is seen again with the CAN filter applied, then it is defiantly an ISO-TP
endpoint.

1 l e t keys : Vec<u32> = s e l f . s t a g e 2 r e s u l t s . key s () . c op i ed () . c o l l e c t () ;
2 l e t f i l t e r i d = s e l f
3 . s t a g e 2 r e s u l t s
4 . ge t (&keys [s e l f . c u r r s c a n i d as u s i z e])
5 . unwrap () ;
6 s e l f . f i l t e r i d x = s e l f
7 . s e r v e r

CHAPTER 3. METHODOLOGY 57

8 // S p e c i f i e d f i l t e r w i th our s p e c i f i c CAN ID we a r e s e a r c h i n g f o r .
9 . a d d c a n f i l t e r (commapi : : comm api : : F i l t e rT y p e : : Pass , f i l t e r i d [0] , 0xFFFF)

10 . unwrap () ;
11 s e l f . s e r v e r . s e nd c an pa c k e t s (
12 &[CanFrame : : new (
13 keys [s e l f . c u r r s c a n i d as u s i z e] ,
14 &[0x10 , 0x10 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00] ,
15)] , 0) ;
16 f o r f rame i n &s e l f . s e r v e r . r e a d c a n p a c k e t s (0 , 10000) . u nw r a p o r d e f a u l t () {
17 l e t pay load = frame . g e t d a t a () ;
18 i f pay load [0] == 0x30 && pay load . l e n () == 8 {
19 // True p o s i t i v e ! We can add the Con f i g to l i s t !
20 s e l f . s t a g e 3 r e s u l t s . push (ISO15765Conf ig {
21 baud : 500000 ,
22 // −1 i s c u r r e n t scan ID wh i l s t i n t h i s l oop
23 s e n d i d : ∗ keys . ge t ((s e l f . c u r r s c a n i d − 1) as u s i z e) . unwrap () ,
24 r e c v i d : f rame . id ,
25 b l o c k s i z e : pay load [1] as u32 ,
26 s ep t ime : pay load [2] as u32 ,
27 u s e e x t i s o t p : f a l s e ,
28 u s e e x t c a n : f a l s e
29 })
30 }
31 }

Figure 3.20: Finalizing ISO-TP scan results

At this point, a full list of positive ISO-TP endpoints on the vehicle have been recorded. Next,
the scanner needs to determine which diagnostic protocol each endpoint supports. For each
ISO15765 Config generated in the ISO-TP scan, it is iterated over, and both a KWP2000
and UDS diagnostic server are created for the ISO-TP endpoint. Due to the architecture of
both servers, if the ECU rejects the start diagnostic session command ([0x10, 0x03] for UDS,
[0x10, 0x92] for KWP2000), then the diagnostic server will return an Error upon initialization,
and therefore the scanner knows the ECU does not support the protocol.

1 l e t ecu = s e l f . s t a g e 3 r e s u l t s [s e l f . c u r r s c a n i d as u s i z e] ;
2
3 l e t mut e c u r e s = ECUDiagSett ings {
4 name : ”Unknown ECU name” . i n t o () ,
5 s e n d i d : ecu . s end i d ,
6 f l o w c o n t r o l i d : ecu . r e c v i d ,
7 b l o c k s i z e : ecu . b l o c k s i z e ,
8 sep t ime ms : ecu . s ep t ime ,
9 ud s s uppo r t : f a l s e ,

10 kwp suppor t : f a l s e ,
11 } ;
12
13 // I n t e r r o g a t e the ECU with KWP2000 extended d i a g n o s t i c s e s s i o n
14 match KWP2000ECU : : s t a r t d i a g s e s s i o n (s e l f . s e r v e r . c l o n e () , &ecu , None) {
15 Ok(mut s) => {
16 i f l e t Ok(i d) = read dcx mmc id (&s) {
17 e c u r e s . name = fo rma t ! (”ECU Part number : {}” , i d . par t number) ;
18 p r i n t l n ! (”ECU 0x{ :04X} s uppo r t s KWP2000!” , ecu . s e n d i d) ;
19 e c u r e s . kwp suppor t = t r u e ;
20 }
21 s . e x i t d i a g s e s s i o n () ;
22 }

CHAPTER 3. METHODOLOGY 58

23 Er r (e) => {
24 p r i n t l n ! (”KWP2000 s e r v e r f a i l e d ! { :?}” , e) ;
25 }
26 }
27 // I n t e r r o g a t e the ECU with UDS extended d i a g n o s t i c s e s s i o n
28 match UDSECU : : s t a r t d i a g s e s s i o n (s e l f . s e r v e r . c l o n e () , &ecu , None) {
29 Ok(mut s) => {
30 // TODO f i n d a UDS on l y CMD to t e s t w i th
31 p r i n t l n ! (”ECU 0x{ :04X} s uppo r t s UDS!” , ecu . s e n d i d) ;
32 s e l f . s t a g e 4 r e s u l t s [s e l f . c u r r s c a n i d as u s i z e] . u d s s uppo r t = t r u e ;
33 s . e x i t d i a g s e s s i o n () ;
34 }
35 Er r (e) => {
36 p r i n t l n ! (”UDS s e r v e r f a i l e d ! { :?}” , e) ;
37 }
38 }
39 s e l f . c u r r s c a n i d += 1 ;

Since KWP2000 has a standard way of reading the ECU part number, Line 16 shows that
the KWP2000 scan attempt also tries to grab the part number from the ECU. If successful,
this part number replaces the default ”Unknown ECU Name” text. This is because this part
number can be easily searched online to find out what ECU it is.

Figure 3.21: Scan progress for UDS compatible ECUs

As mentioned above, the reason for showing a large warning to the end user prior to
starting the scan is because putting ECUs into diagnostic mode will cause them to partially
deactivate. On modern cars, this can result in hundreds of warning lights illuminating on the
users instrument cluster. These warning messages disappear after a couple seconds (As the
ECU returns into its default session state).

Figure 3.22: Instrument cluster warning lights being displayed during the final
stages of ECU detection

The last stage is to present the results of the scan to the user, and save the results to a
JSON File.

CHAPTER 3. METHODOLOGY 59

Figure 3.23: Results page of ECU Scanner

3.5.7 JSON Diagnostic session

The JSON diagnostic session UI is what allows the OpenVehicleDiag JSON to be used for
diagnostics. It is the highest level of the diagnostic architecture for the application. As a
sequence diagram, it communicated with the ECU like so:

Tx bytes
Rx bytes

Request payload

Response bytes

ECU Request

ECU Response

UI interaction

Presented data

User JSON Session DiagServer ComServer Adapter

When a JSON file is loaded into OpenVehicleDiag, it is automatically deserialized into
the code structs described in section 3.3. From here, the diagnostic session server type and
communication parameters are setup and applied. Next, OpenVehicleDiag attempts to read
the variant ID from the ECU. This returns the software ID of the ECU. It is then matched
against the variant list in the JSON. If nothing is found, the JSON session bails out and
returns an error ”No matching ECU variants discovered”. If an ECU variant is located, the
data about that variant is loaded into the JSON diagnostic session and the session begins.

CHAPTER 3. METHODOLOGY 60

Figure 3.24: JSON Session home with CRD ECU

As the above image shows, this is the hom page of the JSON diagnostic session. At the
top is the name of the ECU along with the vendor name and software version of the ECU.
This is all found within the JSON.

1 l e t d i a g s e r v e r t y p e = match c o n n e c t i o n s e t t i n g s . s e r v e r t y p e {
2 common : : schema : : Se rve rType : : UDS => DiagPro toco l : : UDS,
3 common : : schema : : Se rve rType : : KWP2000 => DiagPro toco l : : KWP2000
4 } ;
5 p r i n t l n ! (”Detect . ECU use s { :?}” , d i a g s e r v e r t y p e) ;
6
7 // For now , Diag s e r v e r ONLY suppo r t s ISO−TP, not LIN!
8 l e t c r e a t e s e r v e r = match c o n n e c t i o n s e t t i n g s . c o nn e c t i o n t y p e {
9 ConType : : ISOTP { b l o c k s i z e , s t min , e x t i s o t p a d d r , e x t c a n add r } => {

10 l e t c f g = ISO15765Conf ig {
11 baud : c o n n e c t i o n s e t t i n g s . baud ,
12 s e n d i d : c o n n e c t i o n s e t t i n g s . s end i d ,
13 r e c v i d : c o n n e c t i o n s e t t i n g s . r e c v i d ,
14 b l o c k s i z e : b l o c k s i z e ,
15 s ep t ime : s t min ,
16 u s e e x t c a n : e x t c an add r ,
17 u s e e x t i s o t p : e x t i s o t p a d d r
18 } ;
19 // Dynamic d i a g n o s t i c s e r v e r c r e a t i o n
20 D iagSe r v e r : : new (comm server , &cfg , c o n n e c t i o n s e t t i n g s . g l o b a l s e n d i d d i a g s e r v e r t y p e)
21 } ,
22 ConType : : LIN { . . } => r e t u r n Er r (S e s s i o nE r r o r : : Other (”K−L ine i s not implemented at t h i s t ime ” . i n t o ()))
23 } ;

The above code reads the JSON data about connection info before building an ISOTP con-
figuration setting, and applying it to a special ’DiagServer’ class. This class is a dynamic
wrapper around both the KWP2000 and UDS diagnostic servers.

DTC Errors

When the ’read errors’ button is pressed, the JSON Session requests the underlying diagnostic
server to read all the DTCs stored on the ECU. Then, for every DTC which is read, the session
will then query freeze frame data about it. This returns both a DTC struct, and a sequence of
bytes which represents the DTC Freeze frame request response message. Using the decoder
function within the JSON, as mentioned earlier in section 3.3, the freeze frame bytes are fed
through a decoder for the DTC’s freeze frame array, in order to extract data about the freeze
frame. Also, each read DTC’s ID is cross-referenced with the DTC list in JSON. If a matching
name is found, the error description is also presented to the end user. This is all shown in the
DTC error view:

CHAPTER 3. METHODOLOGY 61

The user can click on each DTC, and the freeze frame table will display the interpreted
freeze-frame data from the ECU. There is also a button to clear DTCs stored on the ECU.
Since this utilizes KWP2000 or UDS, it is indeed possible to clear Permanent DTCs, unlike
with generic OBD-II applications.

Reading ECU data

In OpenVehicleDiag’s current state, only Read functions are executable (Reading data from
an ECU using a defined payload without any additional user input). Loaded from JSON are
a list of readable functions for the ECU:

When selected and executed, the log view displays the outputted presentation data using
the decoder functions found in section 3.3. If the ECU responds negatively to the request, a
human readable error message is displayed in red:

CHAPTER 3. METHODOLOGY 62

These error messages come from either the ComServer (Indicating something wrong with
the adapter), or DiagServer (Indicating the ECU Rejected the request message).

3.6 Summary

As shown in this chapter, it has been shown that it is possible to implement all 3 major parts
of this project, and all whilst keeping the code modular enough to be easily expanded on at
a later date.

Especially with OpenVehicleDiag’s UI, there are a lot of details not covered by this report,
mainly due to the length of the implementation, however this report has covered the major
points which would be useful to 99% of end users when it comes to car diagnostics.

Chapter 4

Results, Discussion and Analysis

In this chapter, results and conclusions of utilizing OpenVehicleDiag with be discussed, as well
as validating that the Open source J2534 (Passthru) driver works with other software that
utilizes the Passthru protocol

4.1 Passthru driver

Due to time constraints, as as mentioned in section 3.4, the driver is currently limited to CAN
and ISO-TP protocols, since there was not enough time to implement all 6 protocols that the
J2534 specification uses. However, this adapter is still in its current form J2534 compliant,
since the driver details indicate the adapter currently only supports CAN and ISO-TP.

For verifying J2534 compliance, a copy of Mercedes’ DAS diagnostic system was utilized
(Diagnostic Assistance System), which supports the J2534 API.

Figure 4.1: DAS utilizing the custom J2534 adapter

However, DAS only transmit small ISO-TP payloads to and from the ECU. Nothing comes
close to the maximum 4096 byte limit of the ISO-TP protocol. Therefore, in order to verify
that the driver and adapter can indeed handle the limits of the ISO-TP protocol, my own cars
ECU was purposly bricked (Put into a bootloader state), and using Veidmao (Daimler’s ECU
Flashing tool that supports the J2534 API), was successfully restored. As shown in the below

63

CHAPTER 4. RESULTS, DISCUSSION AND ANALYSIS 64

image, Vediamo sends thousands of 4096 byte ISO-TP payloads to the adapter to send to the
ECU over ISO-TP, which contain the data to be flashed onto the ECU. Also transmitted are
some smaller payloads, which keep the ECU in a flash diagnostic session and to control other
ECUs in the vehicle.

Vediamo tells the other ECUs in the vehicle to stop sending normal CAN messages, and
go silent. This allows the full 500kbps of the CAN Network to be utilized for the firmware
update, which in turn reduces the chances of lost CAN Packets and makes the flashing process
faster.

Figure 4.2: Vediamo utilizing the custom J2534 adapter to flash a ECU

From running these 2 applications with the custom Passthru driver, it is possible to conclude
that for the 2 implemented protocols (CAN and ISO-TP), the adapter is fully function and
therefore is a success.

4.2 Diagnostic application

In this section, parts of the diagnostic application will be tested on multiple vehicles, as well
as the impact it has on consumer car diagnostics. All tests and findings mentioned in this
part of the report will be based on the following two vehicles:

For testing, two vehicles were used in order to verify both UDS and KWP2000 function:

1. Mercedes W203 (2006 C class) - For KWP2000

2. Mercedes W246 (2018 B class) - For UDS

4.2.1 Automated ISO-TP Scanner

After completing a scan on both cars, the following ISO-TP endpoints were discovered:

CHAPTER 4. RESULTS, DISCUSSION AND ANALYSIS 65

ISO-TP configuration Diagnostic info

Send addr. Receive addr. BS ST (ms) KWP2000 UDS ECU name ECU description

0x0563 0x04E3 8 40 Yes No SAM-H Front SAM

0x05B4 0x04F4 8 40 Yes No KOMBI Cluster

0x0662 0x04E2 8 40 Yes No SAM-V Rear SAM

0x0667 0x04E7 8 40 Yes No DBE Overhead panel

0x06C8 0x04E8 8 40 Yes No TVL Front left door

0x06CA 0x04EA 8 40 Yes No TVR Front right door

0x0749 0x04E9 8 40 Yes No THL Rear left door

0x074B 0x04EB 8 40 Yes No THR Rear right door

0x0778 0x0789 8 10 Yes No EWM Gear selector module

0x07E0 0x07E8 8 10 Yes No MS Engine control module

0x07E1 0x07E9 8 10 Yes No GS Gearbox control module

0x0784 0x0785 8 10 Yes No BS ESP control module

Table 4.1: Automated scan results on the Mercedes W203

ISO-TP configuration Diagnostic info

Send addr. Receive addr. BS ST (ms) KWP2000 UDS

0x06C9 0x0459 8 20 No No

0x0642 0x0488 8 20 No Yes

0x06F3 0x04DE 8 20 No Yes

0x07E3 0x07EB 8 20 No Yes

0x0753 0x04EA 8 10 No Yes

0x064A 0x0489 8 20 No Yes

0x0703 0x04E0 8 20 No Yes

0x06A3 0x04D4 8 20 No Yes

0x07E5 0x07ED 8 20 No Yes

0x068B 0x04D1 8 20 No Yes

0x07F1 0x07F9 8 20 No Yes

0x0632 0x0486 0 0 No Yes

0x06A9 0x0455 8 20 No No

0x078A 0x04B1 8 20 No Yes

0x0691 0x0452 8 20 No No

0x065A 0x048B 8 20 No Yes

0x0622 0x0484 8 20 No Yes

0x06B2 0x0496 8 20 No Yes

0x0612 0x0482 8 20 No No

0x0652 0x048A 8 20 No Yes

0x06E2 0x06E1 8 20 No No

0x0743 0x04E8 8 10 No Yes

0x06E1 0x06E2 8 20 No No

0x063B 0x04C7 8 20 No Yes

0x070B 0x04E1 8 20 No Yes

0x0732 0x04A6 8 20 No Yes

0x07E0 0x07E8 8 10 No Yes

0x07E1 0x07E9 8 20 No Yes

0x0733 0x04E6 8 10 No Yes

Table 4.2: Automated scan results on the Mercedes W246

CHAPTER 4. RESULTS, DISCUSSION AND ANALYSIS 66

As seen in table 4.1, the automated scanner only located diagnosable ECUs. the ECU
name is found by cross referencing the part number in the JSON with google, which gives the
name of the ECU. This unfortunately is not possible with UDS, so table 4.2 does not show
ECU identification data.

One interesting thing about these two results is that in the W203, it appears the OBD-II
port is properly firewalled, only allowing diagnosable ISO-TP addresses to be located, without
also locating other ISO-TP endpoints such as Radio to Instrument cluster communication.
This however is not true for the W246, as it located multiple ISO-TP endpoints in the vehicle
which don’t support either UDS or KWP2000, meaning these are likely ECU to ECU ISO-TP
endpoints.

4.2.2 Diagnostic session mode (JSON)

The main thing users would be using this for is to get a clear description of error codes stored
on an ECU, and to clear the error codes. Here, DTC errors are shown using data provided by
JSON, as well as the description of each error, the status of each error, and additional freeze
frame data about each error when the user selects an error in the top table.

When pressing the ’clear errors’ button, the ECU successfully clears all these errors, the
JSON session re-reads the DTCs on the ECU immediately after clearing to verify that the
errors have actually been cleared.

CHAPTER 4. RESULTS, DISCUSSION AND ANALYSIS 67

To prove that this works with multiple ECUs that are not necessarily engine ECUs, here is
OpenVehicleDiag communicating with EGS52. This is a transmission controller for the 722.6
series gearboxes by Mercedes. In this picture, OpenVehicleDiag is connected to the ECU and
reading data from the ECU about solenoid pressures. This data can only normally be retrieved
using Daimler’s own diagnostic software.

Lastly, here is the JSON sesison working with the Mercedes W246. In the below image,
the JSON session is being used to talk to the vehicles instrument cluster to read various data:

This proves that both KWP2000 and UDS have been correctly implemented within Open-
VehicleDiag, and work reliably to do ECU diagnostics on both older and modern vehicles
without any proprietary software.

4.2.3 Generic diagnostic session

As mentioned in section 3.5, a lot of features were not discussed in their implementation. One
of those features was the Generic diagnostic session. This is launched within the application
by using the results of an ECU detection scan (Or entering manual ISO-TP details). This

CHAPTER 4. RESULTS, DISCUSSION AND ANALYSIS 68

allows for basic diagnostics, but still being able to read and clear DTCs from ECUs that
cannot normally be done under OBD-II. This works by opening up a generic KWP2000 or
UDS session based on the output of the ECU scan results:

In this interface, the user has to manually enter commands to the ECU in hex form
(However there is a button to read and clear DTCs). When reading DTCs in this mode,
only the name of the error and state of the DTC can be read, the description of the error is
unknown:

4.3 Summary

As shown in this chapter, everything mentioned in section 1 has been achieved, and is working
reliably enough for it to be used in vehicles. Since a lot of OpenVehicleDiag’s UI features
are dynamic, a lot of the user interface has not been demonstrated in this chapter, just the
main points. However, there is a video1 that shows the entire interface and feature-set in use.
There are also additional images of other parts of OpenVehicleDiag’s user interface located
at A.0.2.

The JSON diagnostic session results show that the decoder functions in JSON Schema
code work perfectly as well, being able to decode Enums, Booleans, Integers and Strings from
ECU response message byte streams, and nicely present them to the end user in a way which
they can understand. The only thing that could not be tested here is verifying the decoder
works with different endiannes. This is because the vast majority of ECUs utilize Big-Endian.

1https://youtube.com/_k-dWdNRVr0

https://youtube.com/_k-dWdNRVr0

Chapter 5

Conclusions and Future Work

5.1 Conclusions

With the initial goal of this project being to attempt to create an open source alternative
to commercial / proprietary diagnostic software for vehicle ECUs, as well as an open storage
format for ECU diagnostic data, the initial results as outlined in this report have shown that
it is indeed possible.

The Passthru library has shown that it is indeed possible to write firmware for a custom
Passthru compliant adapter, and utilize it with applications that utilize the API. Although
K-Line and J1850 based protocols were not implemented as part of this project, the testing
with just CAN and ISO-TP protocols proves that the M2 is fully compliant with the API
protocol, and more importantly, is stable.

With OpenVehicleDiag, the application has proven that a cross-platform ECU diagnostics
platform can be achieved, and more importantly, be done in a way which can theoretically
work with any vehicle, without any prior knowledge of the vehicle (For basic diagnostics
with OBD-II, KWP2000 and UDS). Combining OpenVehicleDiag with the JSON Schema can
improve the diagnostic capability of the application significantly, allowing for some functions
only found in OEM tools.

The JSON Schema has shown that there can be an easy accessible replacement for the
ODX specification. However, there are things that are missing, which would need to be added
later on in order for it to be a true competitor to the ODX specification. In diagnostic tools,
there are tests which are defined as a list of operations to perform on the ECU

5.2 Future work

With the success of this project so far, this project will be continued long into the future. This
is especially relevant at the time of writing with movements such as ’Right to repair’ gaining
traction in the United States and European Union, as such an application would open the
possibility for consumers to diagnose ECUs themselves with a simple, easy to use application.

The Macchina M2 Passthru library has also been successful, proving that expensive pro-
prietary adapters are not necessarily needed for car diagnostics. At the time of writing, work is
already underway1 to create a unified repository based on the code that was written for the M2
adapter, and port it to the Macchina A0. The A0 is a cheaper and smaller adapter which only
supports CAN, and is based on the ESP32 micro-controller running FreeRTOS. This means
that it is only good for more modern vehicles built around 2006 and newer. Eventually, there

1https://github.com/rnd-ash/Macchina-J2534

69

https://github.com/rnd-ash/Macchina-J2534

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 70

are also plans to create a D-PDU (2.2.1) driver for both the M2 and A0, and add D-PDU
functionality to OpenVehicleDiag itself, which would widen the list of supported protocols and
existing adapter that can be utilized.

OpenVehicleDiag at the time of writing this now has initial support for SocketCAN [ker-
nel.org (n.d.)] on Linux based OS’s, meaning that in theory it is possible to use OpenVehi-
cleDiag on nothing more than a raspberry Pi and a $5 CAN Shield based on the MCP2515
CAN Transceiver (Assuming the target vehicle supports CAN). This will hopefully encourage
more users to utilize OpenVehicleDiag due just how low cost this solution will be compared
to purchasing other adapter.

Stated in 1, it was mentioned that ECU Flashing will not be a part of OpenVehicleDiag,
however, eventually it might be a good idea to add ECU firmware dumping to OpenVehicle-
Diag, which would allow more advanced users who want to reverse engineer their own ECUs
to dump the firmware of the ECU and load it up in a disassembler such as Ghidra to under-
stand how it operates. This would aid in the development of open source ECU firmware, such
as projects like Speeduino2. This is because every engine operates slightly differently, and
also modern engine ECUs broadcast tons of CAN Data to other ECUs in a vehicle. Reverse
engineering ECU firmware will allow such projects to cater for more engines and vehicles.

Lastly, one area of future work would be to create a Graphical user interface for users to
create the JSON format used for ECU diagnostics, using simple ’drag and drop’ blocks. This
would vastly simplify the process of creating ECU diagnostic data in JSON. This would be a
direct parallel to Vector’s ODXStudio, which allows for OEMs to create ODX diagnostic data
using a graphical tool, and then for the data to be saved in an ODX XML file.

2https://speeduino.com/home

https://speeduino.com/home

Chapter 6

Reflection

This project has given me loads of insights and understanding of how ECU diagnostic protocols
function and how easy they actually are to implement once obtaining the correct knowledge on
the specification. One interesting skill from this project is creating a user interface dynamically
in pure code without any form of UI designer. When looking back at the original objectives
of the project, the outcome was more than was originally planned, and with the community
support received during the projects development, the project will live on and gain more
features over time.

With regards to the JSON Schema for OpenVehicleDiag, this was probably the hardest
component out of the the three components developed for this project, since the ODX file
specification is not well known. Therefore, creating my own parallel for ODX-D but in JSON
opens the possibility for others to create diagnostic containers for ECUs without the need of
advanced commercial tools.

The Passthru library creation using Macchina’s M2 has shown that it is indeed possible
to create an open source alternative to professional diagnostic adapters. Although difficult
to implement, it was interesting to see how its possible to create a cross-platform of an API
which was originally designed for older versions of Windows, utilizing certain cross-platform
libraries in Rust.

71

References

Comer352L (2019), ‘Sae j2534 definitions header’.
URL: https: // github. com/ Comer352L/ FreeSSM/ blob/ master/ src/ J2534. h

DaimlerChrysler (2002), ‘Keyword protocol 2000 requirements definition’.
URL: http: // read. pudn. com/ downloads554/ ebook/ 2284613/ KWP2000_

release2_ 2. pdf

Drew Technologies, Inc (2003), ‘Sae j2534 api reference’. J2534 API reference.
URL: http: // read. pudn. com/ downloads209/ ebook/ 984970/ PassThru_ API-1.

pdf

elmelectronics.com (2017), ‘Elm327’.
URL: https: // www. elmelectronics. com/ wp-content/ uploads/ 2017/ 01/

ELM327DS. pdf

emotive de (2014a), ‘Diagnoselayer und diagnosedienste’. ODX information webpage.
URL: https: // www. emotive. de/ wiki/ index. php? title= Diagnoselayer_ und_

Diagnosedienste

emotive de (2014b), ‘Odx basic structure’. ODX information webpage.
URL: https: // www. emotive. de/ wiki/ index. php? title= ODX_ Grundstruktur

ISO (1989), ‘Road vehicles — diagnostic systems — requirements for interchange of digital
information’.
URL: https: // www. iso. org/ standard/ 16737. html

ISO (2000), ‘Road vehicles – diagnostic systems – keyword protocol 2000 – part 4: Require-
ments for emission-related systems’.
URL: https: // www. iso. org/ standard/ 28826. html

ISO (2006), ‘Road vehicles - unified diagnostic services (uds) - specification and require-
ments’.
URL: http: // read. pudn. com/ downloads191/ doc/ 899044/ ISO+ 14229+ (2006)

.pdf

kernel.org (n.d.), ‘Readme file for the controller area network protocol family (aka socketcan)’.
URL: https: // www. kernel. org/ doc/ Documentation/ networking/ can. txt

Nils Weiss, Sebastian Renner, Jürgen Mottok, Václav Matoušek (n.d.), ‘Transport layer scan-
ning for attack surface detection in vehicular networks’.

Softing (2013), ‘D-pdu api software for communication interfaces’. D-PDU API reference.
URL: https: // www. slideshare. net/ linhdoanbro/ d-pduapi-usermanual

72

https://github.com/Comer352L/FreeSSM/blob/master/src/J2534.h
http://read.pudn.com/downloads554/ebook/2284613/KWP2000_release2_2.pdf
http://read.pudn.com/downloads554/ebook/2284613/KWP2000_release2_2.pdf
http://read.pudn.com/downloads209/ebook/984970/PassThru_API-1.pdf
http://read.pudn.com/downloads209/ebook/984970/PassThru_API-1.pdf
https://www.elmelectronics.com/wp-content/uploads/2017/01/ELM327DS.pdf
https://www.elmelectronics.com/wp-content/uploads/2017/01/ELM327DS.pdf
https://www.emotive.de/wiki/index.php?title=Diagnoselayer_und_Diagnosedienste
https://www.emotive.de/wiki/index.php?title=Diagnoselayer_und_Diagnosedienste
https://www.emotive.de/wiki/index.php?title=ODX_Grundstruktur
https://www.iso.org/standard/16737.html
https://www.iso.org/standard/28826.html
http://read.pudn.com/downloads191/doc/899044/ISO+14229+(2006).pdf
http://read.pudn.com/downloads191/doc/899044/ISO+14229+(2006).pdf
https://www.kernel.org/doc/Documentation/networking/can.txt
https://www.slideshare.net/linhdoanbro/d-pduapi-usermanual

REFERENCES 73

Wikipedia (2021), ‘Obd-ii pids’.
URL: https: // en. wikipedia. org/ wiki/ OBD-II_ PIDs

https://en.wikipedia.org/wiki/OBD-II_PIDs

Appendix A

Screenshots and diagrams

A.0.1 Daimler Xentry software

Figure A.1: Xentry Diagnostics establishing communication with all the ECUs
within a vehicle. During this stage of diagnostics, Xentry is trying to locate all the
ECUs on the vehicle, and checking what variation each ECU is in order to parse
their diagnostic data correctly

74

APPENDIX A. SCREENSHOTS AND DIAGRAMS 75

Figure A.2: Xentry diagnostics with a list of all possible ECUs in the vehicle to
talk to, each in their own category

Figure A.3: Obtaining advanced data from the ECU in Xentry - Querying various
attributes about the ESP ECU. The serial number of this part has been hidden.

Figure A.4: Xentry showing a live ’actuation’ value of certain items the ESP ECU
controls

APPENDIX A. SCREENSHOTS AND DIAGRAMS 76

Figure A.5: Show Xentry obtaining real-time data from the CDI Engine ECU. The
values in Green are within tolerance, and values in red are outside tolerance. Black
values indicate no tolerances are specified for the value

Figure A.6: Xentry showing advanced real-time data from the CDI Engine ECU.
This allows for advanced analytics of how the engine is performing.

APPENDIX A. SCREENSHOTS AND DIAGRAMS 77

Figure A.7: More advanced real-time diagnostics with the CDI Engine ECU. This
shows the injector calibration values for the number 1 cylinder

A.0.2 OpenVehicleDiag

Figure A.8: OVD Home page (Dark theme)

APPENDIX A. SCREENSHOTS AND DIAGRAMS 78

Figure A.9: OVD Home page (Light theme)

Figure A.10: OVD Can Scanner (Hex mode)

Figure A.11: OVD Can Scanner (Binary mode)

APPENDIX A. SCREENSHOTS AND DIAGRAMS 79

Figure A.12: Loading a ECU Scan save file in OVD

Figure A.13: Selected CRD ECU in OVD

Figure A.14: OVD KWP2000 generic session - Home

Figure A.15: OVD KWP2000 generic session - Scanning DTCs

APPENDIX A. SCREENSHOTS AND DIAGRAMS 80

Figure A.16: OVD KWP2000 generic session - Clearing DTCs

Figure A.17: OVD KWP2000 generic session - Sending valid manual payload

Figure A.18: OVD KWP2000 generic session - Sending invalid manual payload

Figure A.19: OVD Json session - Connected to CRD engine ECU

APPENDIX A. SCREENSHOTS AND DIAGRAMS 81

Figure A.20: OVD Json session - ECU Info page

Figure A.21: OVD Json session - DTC page

APPENDIX A. SCREENSHOTS AND DIAGRAMS 82

Figure A.22: OVD Json session - DTC page with Freeze frame interpretation

Figure A.23: OVD Json session - Selecting function to read data from

APPENDIX A. SCREENSHOTS AND DIAGRAMS 83

Figure A.24: OVD Json session - Data presentation

Figure A.25: OVD Json session - Reading data from EGS52 transmission ECU

Appendix B

Issues and resolutions

B.1 A full list of issues encountered during development of the
M2 driver

B.1.1 Windows Serial API

The serialport-rs library has a flaw in Windows due to Windows’s poorly documented Serial
API. Unlike the UNIX world, In Windows, reading and writing to a COM Port are blocking
by default, and will only return if the serial buffer is full. This means that if loads of data is
being sent from the M2 module, the buffer would overflow before the driver has a chance to
read all the data from within the buffer. This issue is still on-going, and can be tracked with
an open issue with the serial library https://gitlab.com/susurrus/serialport-rs/-/issues/95

B.1.2 CAN Due library

During development with the CAN Interface on the M2, it transpired that the due can library
does not support mailbox reading (The ability to poll an individual Can Rx mailbox), even
though the library does contain functions to do so.

After a discussion with Colin (The library Author), it was suggested that the M2 driver
instead take advantage of the hardware interrupt feature of the CAN Mailboxes. This then
led to the creation of ’custom can.cpp’ in which each mailbox now has its own Ring buffer,
and whenever a CAN Frame is received by the mailbox, it triggers a hardware interrupt which
allows the M2 to move the incoming CAN Frame to the mailboxes own ring buffer.

84

Appendix C

Code snippets and tables

C.1 List of SAE J2534 API functions

The following table is from [Drew Technologies, Inc (2003)]

Function name Description

PassThruConnect Establish a logical communication channel using the specified
vehicle network protocol. Protocols supported can be extended
by the Scan Tool vendor

PassThruDisconnect Terminate an existing logical communication channel

PassthruReadMsgs Receive network protocol messages from an existing logical
communication channel

PassThruWriteMsgs Transmit network protocol messages over an existing logical
communication channel

PassThruStartPeriodicMsg Transmit network protocol messages at the specified time in-
terval over an existing logical communication channel

PassThruStopPeriodicMsg Terminate the specified periodic message

PassThruStartMsgFilter Transmit a network protocol filter that will selectively restrict
or limit network protocol messages received by the User Appli-
cation

PassThruStopMsgFilter Terminate the specified message filter

PassThruSetProgrammingVoltage Set the programmable voltage level on the specified J1962 con-
nector pin

PassThruReadVersion Retrieve the PassThru device firmware version, DLL version
and API version information

PassThruGetLastError Retrieve the text description for the last PassThru function that
generated an error

PassThruIOCTL General purpose I/O control function for retrieving and setting
the various network protocol timing related parameters. Can
be extended by the Scan Tool vendor to provide tool specific
functionality

C.2 A full list of driver message types

For this table, the Sender column indicates which endpoint sent the first message containing
this message type. The other end has to respond to the message unless stated otherwise.

85

APPENDIX C. CODE SNIPPETS AND TABLES 86

Value Definition (comm.h) Sender Description

0x00 MSG NO RESPONSE Either Identifies a message where no acknowledgment response
is required from either the driver or firmware

0x01 MSG LOG Adapter Identifies a log message from the adapter firmware. The
payload bytes of this message shall me an ASCII String,
which the PC driver will log

0x02 MSG OPEN CHANNEL Driver This message indicates the driver has requested that the
adapter opens a logical communication channel on one of
the OBD-II interfaces. The args of this message include
the request Channel ID, the interface type, baud rate,
and any additional arguments that are interface specific
(EG: ISO-TP interface requires an additional argument
to indicate if it is using extended addressing or not)

0x03 MSG CLOSE CHANNEL Driver This message indicates the driver wants the adapter to
close a logical communication interface with the vehicle
that was opened with MSG OPEN CHANNEL

0x04 MSG SET CHAN FILT Driver This message tells the adapter to set a filter on a channel.
The message’s parameters will contain the target channel
ID, msg lengths and filter bytes

0x05 MSG REM CHAN FILT Driver This message tells the adapter to destroy a filter on a
specified channel. The parameters will contain both the
filter ID and channel ID

0x06 MSG TX CHAN DATA Driver This message is sent to the adapter when data is to
be transmitted to the vehicle. The parameters of this
message will contain the channel ID as well as the raw
bytes of the data to be sent to the vehicle.

0x07 MSG RX CHAN DATA Adapter This message is sent to the driver from the adapter
whenever the adapter has received any data on any ac-
tive interface channels. Upon receiving this message,
the drive will buffer the data in PASSTHRU MSG struc-
tures and send them back to the user application when
PassthruReadMsgs is called for the receiving channel.

0x08 MSG READ BATT Driver Requests the adapter to read the batter voltage on pin
16 of the OBD-II port. The response message args are
formatted as a Big endian unsigned integer representing
the voltage in millivolts

0x09 MSG IOCTL SET Driver Requests the adapter to set a specified IOCTL parameter
for a specified channel to a specified value

0x10 MSG IOCTL GET Driver Requests the adapter to return a specified IOCTL pa-
rameter value for a specified channel

0xAA MSG STATUS Driver This message is sent to the adapter when the driver first
loads or when the driver is unloaded, and is used to tell
the adapter to either get ready to receive messages (On
driver load), or to destroy all channels and reset to its
default state (On driver unload)

0xAB MSG GET FW VERSION Driver Requests the adapter shall return a response message
with an ASCII String in the parameters section which
represents the current firmware version running on the
adapter.

0xFF MSG TEST Driver Only used in tests and test compiled firmware. The
adapter shall echo back this message with whatever data
was received.

APPENDIX C. CODE SNIPPETS AND TABLES 87

C.3 List of KWP2000 and UDS Services

SID: Service ID

SID Service name Description
Hex KWP2000 UDS

10 StartDiagnosticSession DiagnosticSessionControl Used to control which diagnostic session ses-
sion the ECU is in. A default session is what
the ECU is in after power on, and prohibits cer-
tain commands. Extended diagnostic session
can be used to execute all commands. Flash
session mode is typically used during firmware
updates.

11 ECUReset Used to tell the ECU to reset with a specified
reset method. Once the ECU is reset, it will
be back in a default session

14 ClearDiagnosticInfo Used to clear DTCs from the ECU. A mask is
typically provided, and DTCs which match the
mask are cleared from the ECU.

17 ReadStatusOfDTC Used to retrieve freeze frame data from the
ECU about a given DTC code.

18 ReadDTCByStatus Used to retrieve DTCs from the ECU by a pro-
vided status flag.

19 ReadDTCInformation Used to retrieve DTCs from the vehicle by ei-
ther status, group or mask.

1A ReadECUIdentification Requests identification data from the ECU.

21 ReadDataByLocalIdentifier Reads data from the ECU’s memory by a Local
ID. A local ID is used to define what kind of
data to retrieve. Multiple Local IDs can be pro-
vided within the same request message. Each
local ID corresponds to a attribute in the ECU
such as VIN number or OS version.

22 ReadDataByIdentifier Used to request blocks of data from the ECU.
The ID’s are the same as what is used by Write-
DataByIdentifier.

23 ReadMemoryByAddress Used to retrieve data from the ECU’s memory
given a raw memory address.

24 ReadScalingDataByIdentifierSame as ReadDataByIdentifier, except the
ECU shall respond with a scaling data type
(EG: Integer or Float), along with the algo-
rithm used to convert it from raw to parsed.

27 SecurityAccess Used to either generate a seed key, or to input
a response to the ECU. If the response is valid
to the provided seed key, the ECU will allow
writing and reading of protected memory areas.

28 DisableNormalMsgTransmission Used to disable normal ECU communication
with other ECUs, leaving only diagnostic traffic
untouched. This is typically sent to all ECUs in
a vehicle prior to flashing a ECU in the vehicle
as it allows for more bandwidth on the vehicles
communication networks to be used for flash-
ing.

28 CommunicationControl Works in the same way as KWP2000’s Dis-
ableNormalMsgTransmission and EnableNor-
malMsgTransmission commands.

29 EnableNormalMsgTransmission used to re-enable normal ECU communication
after they have been disabled with DisableNor-
malMsgTransmission

2C DynamicallyDefineDataIdentifier Used to dynamically create a new Local Iden-
tifier if none exists on the ECU already.

APPENDIX C. CODE SNIPPETS AND TABLES 88

2E WriteDataByIdentifier Used to write blocks of data to the ECU. The
ID’s are the same as what is used by Read-
DataByIdentifier

2F IoctlByIdentifier Used to control Input and output of the ECU
for a specific component attached to the ECU.
For example, the tester can use this function
to manually actuate components on the ECU,
then once done, return control back to the
ECU.

30 IoctlByIdentifier Used to control Input and output of the ECU
for a specific component attached to the ECU.
For example, the tester can use this function
to manually actuate components on the ECU,
then once done, return control back to the
ECU.

31 StartRoutineByLocalIdentifier Used to start execution of a test or routine in
the ECU’s memory. These routines will run
a sequence of operations on the ECUs com-
ponents. The test will not stop on the ECUs
own accord, instead StopRoutineByLocalIden-
tifier must be used to stop the routine.

31 RoutineControl This function combines the functionalities
found in KWP2000’s StopRoutineByLocalI-
dentifier, StartRoutineByLocalIdentifier and
RequestRoutineResultsBylocalIdentifier com-
mands.

32 StopRoutineByLocalIdentifier Used to stop or terminate a routine that was
started with StartRoutineByLocalIdentifier.

33 RequestRoutineResultsBylocalIdentifier Used to retrieve the results of a routine execu-
tion that was started with StartRoutineByLo-
calIdentifier and stopped with StopRoutineBy-
LocalIdentifier.

34 RequestDownload Used to start a transfer between the tester
and ECU. It is typically used in Flash routines.
This function provides the memory address and
compression type and uncompressed size of the
data to be download

35 RequestUpload Used to start a data transfer between the ECU
and Tester. This function provides the mem-
ory address and compression type and uncom-
pressed size of the data to be uploaded.

36 TransferData Used to transfer data between the tester and
ECU. The direction of data transfer would
have been determined depending on if Re-
questDownload or RequestUpload was first ex-
ecuted.

37 RequestTransferExit This is used to indicate that a data transfer
has been completed.

3B WriteDataByLocalIdentifier Used to write data to the ECU given a speci-
fied Local ID. Each local ID corresponds to a
attribute in the ECU such as VIN number or
OS version.

3D WriteMemoryByAddress Used to write data to the ECU’s memory given
a raw memory address and content.

3E TesterPresent Sent periodically to the ECU in order to keep
the ECU in a non-default diagnostic session.

83 AccessTimingParameter Used to read and modify the default timing
parameters utilizes for the communication link
during a diagnostic session.

APPENDIX C. CODE SNIPPETS AND TABLES 89

84 SecuredDataTransmission Used to transfer data between the tester and
ECU in a secure fashion, which is protected
from attacks from third parties.

85 ControlDTCSetting Used to enable or disable the logging of DTCs
on the ECU.

86 ResponseOnEvent Used to tell the ECU to either start or stop
transmission of response messages on a spec-
ified event type, during a given window. An
event can be anything which the ECU has ac-
cess to such as timer interrupts, fault settings
etc.

87 LinkControl This is used in order to modify the baud rate
of the transport protocol the ECU is utilizing
during the diagnostic session.

C.4 Extract of OVD’s JSON (EGS52) from CBFParser

The following is an extract from the JSON created by CBFParser for EGS52 (722.6 transmis-
sion TCM). All Strings here have been converted from German to English for easier under-
standing.

1 {
2 ”name” : ”EGS52” ,
3 ” d e s c r i p t i o n ” : ”new Con t r o l u n i t For NAG” ,
4 ” v a r i a n t s ” : [
5 {
6 ”name” : ” D i ag v e r s i o n02 ” ,
7 ” d e s c r i p t i o n ” : ” EGS52 Diagver s ion02 ” ,
8 ” p a t t e r n s ” : [
9 {

10 ” vendor ” : ” Siemens ” ,
11 ” v e n d o r i d ” : 4294935042
12 } ,
13 {
14 ” vendor ” : ” Siemens ” ,
15 ” v e n d o r i d ” : 514
16 }
17] ,
18 ” e r r o r s ” : [
19 {
20 ” e r ro r name ” : ”P2000 ” ,
21 ”summary” : ”” ,
22 ” d e s c r i p t i o n ” : ”58 : Con t r o l u n i t EGS (Test i n t e r n a l Watchdog) ” ,
23 ” envs ” : [
24 {
25 ”name” : ” EPS Error d e t e c t i o n s i n c e I n i t ” ,
26 ” u n i t ” : ”” ,
27 ” s t a r t b i t ” : 48 ,
28 ” l e n g t h b i t s ” : 8 ,
29 ” b y t e o r d e r ” : ”BigEndian ” ,
30 ” da ta f o rma t ” : {
31 ”Bool ” : {
32 ”pos name” : ” d e t e c t e d s i n c e I n i t ” ,
33 ”neg name” : ” r e s t o r e d out Sto rage ”
34 }
35 }
36 } ,
37 {
38 ”name” : ” E P S E r r o r s t a t u s i n t e r n a l l y ” ,
39 ” u n i t ” : ”” ,
40 ” s t a r t b i t ” : 48 ,
41 ” l e n g t h b i t s ” : 8 ,
42 ” b y t e o r d e r ” : ”BigEndian ” ,
43 ” da ta f o rma t ” : ”HexDump”
44 } ,
45 {
46 ”name” : ”EPS time a f t e r Reset , l a s t Occur ” ,
47 ” u n i t ” : ” s e c ” ,
48 ” s t a r t b i t ” : 248 ,
49 ” l e n g t h b i t s ” : 16 ,
50 ” b y t e o r d e r ” : ”BigEndian ” ,
51 ” da ta f o rma t ” : {
52 ” L i n e a r ” : {
53 ” m u l t i p l i e r ” : 1 . 0 ,
54 ” o f f s e t ” : 0 . 0
55 }

APPENDIX C. CODE SNIPPETS AND TABLES 90

56 }
57 }
58]
59 }
60] ,
61 ” downloads ” : [
62 {
63 ”name” : ”DT 21 33 ” ,
64 ” d e s c r i p t i o n ” : ”Data download 21 33” ,
65 ” pay load ” : ”2133” ,
66 ” output params ” : [
67 {
68 ”name” : ” Va l v e s F l a g ” ,
69 ” u n i t ” : ”” ,
70 ” s t a r t b i t ” : 16 ,
71 ” l e n g t h b i t s ” : 1 ,
72 ” b y t e o r d e r ” : ”BigEndian ” ,
73 ” da ta f o rma t ” : {
74 ”Bool ” : {
75 ”pos name” : ” Ac t i v e ” ,
76 ”neg name” : ” I n a c t i v e ”
77 }
78 }
79 } ,
80 {
81 ”name” : ” Should a c t i v a t e s o l e n o i d 1−2/4−5”,
82 ” u n i t ” : ”” ,
83 ” s t a r t b i t ” : 18 ,
84 ” l e n g t h b i t s ” : 1 ,
85 ” b y t e o r d e r ” : ”BigEndian ” ,
86 ” da ta f o rma t ” : {
87 ”Bool ” : {
88 ”pos name” : ” Ac t i v e ” ,
89 ”neg name” : ” I n a c t i v e ”
90 }
91 }
92 } ,
93 {
94 ”name” : ” S h i f t s o l e n o i d t a r g e t s t a t u s ” ,
95 ” u n i t ” : ”” ,
96 ” s t a r t b i t ” : 24 ,
97 ” l e n g t h b i t s ” : 8 ,
98 ” b y t e o r d e r ” : ”BigEndian ” ,
99 ” da ta f o rma t ” : {

100 ”Table ” : [
101 {
102 ”name” : ”None ” ,
103 ” s t a r t ” : 0 . 0 ,
104 ”end” : 0 . 0
105 } ,
106 {
107 ”name” : ”1−2/4−5”,
108 ” s t a r t ” : 1 . 0 ,
109 ”end” : 1 . 0
110 } ,
111 {
112 ”name” : ”2−3”,
113 ” s t a r t ” : 2 . 0 ,
114 ”end” : 2 . 0
115 } ,
116 {
117 ”name” : ”1−2/4−5 and 2−3”,
118 ” s t a r t ” : 3 . 0 ,
119 ”end” : 3 . 0
120 } ,
121 {
122 ”name” : ”3−4”,
123 ” s t a r t ” : 4 . 0 ,
124 ”end” : 4 . 0
125 } ,
126 {
127 ”name” : ”1−2/4−5 and 3−4”,
128 ” s t a r t ” : 5 . 0 ,
129 ”end” : 5 . 0
130 } ,
131 {
132 ”name” : ”2−3 and 3−4”,
133 ” s t a r t ” : 6 . 0 ,
134 ”end” : 6 . 0
135 } ,
136 {
137 ”name” : ”1−2/4−5 and 2−3 and 3−4”,
138 ” s t a r t ” : 7 . 0 ,
139 ”end” : 7 . 0
140 }
141]
142 }
143 } ,
144 {
145 ”name” : ” Should a c t i v a t e s o l e n o i d 2−3”,
146 ” u n i t ” : ”” ,
147 ” s t a r t b i t ” : 25 ,
148 ” l e n g t h b i t s ” : 1 ,
149 ” b y t e o r d e r ” : ”BigEndian ” ,
150 ” da ta f o rma t ” : {

APPENDIX C. CODE SNIPPETS AND TABLES 91

151 ”Bool ” : {
152 ”pos name” : ” Ac t i v e ” ,
153 ”neg name” : ” I n a c t i v e ”
154 }
155 }
156 } ,
157 {
158 ”name” : ” Should a c t i v e s o l e n o i d 3−4”,
159 ” u n i t ” : ”” ,
160 ” s t a r t b i t ” : 26 ,
161 ” l e n g t h b i t s ” : 1 ,
162 ” b y t e o r d e r ” : ”BigEndian ” ,
163 ” da ta f o rma t ” : {
164 ”Bool ” : {
165 ”pos name” : ” Ac t i v e ” ,
166 ”neg name” : ” I n a c t i v e ”
167 }
168 }
169 } ,
170 {
171 ”name” : ” So l e no i d 1−2/4−5”,
172 ” u n i t ” : ”” ,
173 ” s t a r t b i t ” : 27 ,
174 ” l e n g t h b i t s ” : 1 ,
175 ” b y t e o r d e r ” : ”BigEndian ” ,
176 ” da ta f o rma t ” : {
177 ”Bool ” : {
178 ”pos name” : ” Ac t i v e ” ,
179 ”neg name” : ” I n a c t i v e ”
180 }
181 }
182 } ,
183 {
184 ”name” : ” So l e no i d 2−3”,
185 ” u n i t ” : ”” ,
186 ” s t a r t b i t ” : 28 ,
187 ” l e n g t h b i t s ” : 1 ,
188 ” b y t e o r d e r ” : ”BigEndian ” ,
189 ” da ta f o rma t ” : {
190 ”Bool ” : {
191 ”pos name” : ” Ac t i v e ” ,
192 ”neg name” : ” I n a c t i v e ”
193 }
194 }
195 } ,
196 {
197 ”name” : ” So l e no i d 3−4”,
198 ” u n i t ” : ”” ,
199 ” s t a r t b i t ” : 29 ,
200 ” l e n g t h b i t s ” : 1 ,
201 ” b y t e o r d e r ” : ”BigEndian ” ,
202 ” da ta f o rma t ” : {
203 ”Bool ” : {
204 ”pos name” : ” Ac t i v e ” ,
205 ”neg name” : ” I n a c t i v e ”
206 }
207 }
208 } ,
209 {
210 ”name” : ” S h i f t p r e s s u r e ” ,
211 ” u n i t ” : ”mbar ” ,
212 ” s t a r t b i t ” : 32 ,
213 ” l e n g t h b i t s ” : 16 ,
214 ” b y t e o r d e r ” : ”BigEndian ” ,
215 ” da ta f o rma t ” : ” I d e n t i c a l ”
216 } ,
217 {
218 ”name” : ”Modulat ing p r e s s u r e ” ,
219 ” u n i t ” : ”mbar ” ,
220 ” s t a r t b i t ” : 48 ,
221 ” l e n g t h b i t s ” : 16 ,
222 ” b y t e o r d e r ” : ”BigEndian ” ,
223 ” da ta f o rma t ” : ” I d e n t i c a l ”
224 } ,
225 {
226 ”name” : ” Sw i t ch i ng p r e s s u r e : Target c u r r e n t ” ,
227 ” u n i t ” : ”mA” ,
228 ” s t a r t b i t ” : 64 ,
229 ” l e n g t h b i t s ” : 16 ,
230 ” b y t e o r d e r ” : ”BigEndian ” ,
231 ” da ta f o rma t ” : ” I d e n t i c a l ”
232 } ,
233 {
234 ”name” : ” Sw i t ch i ng p r e s s u r e : Ac tua l c u r r e n t ” ,
235 ” u n i t ” : ”mA” ,
236 ” s t a r t b i t ” : 80 ,
237 ” l e n g t h b i t s ” : 16 ,
238 ” b y t e o r d e r ” : ”BigEndian ” ,
239 ” da ta f o rma t ” : ” I d e n t i c a l ”
240 } ,
241 {
242 ”name” : ”Modulat ing p r e s s u r e : Target c u r r e n t ” ,
243 ” u n i t ” : ”mA” ,
244 ” s t a r t b i t ” : 96 ,
245 ” l e n g t h b i t s ” : 16 ,

APPENDIX C. CODE SNIPPETS AND TABLES 92

246 ” b y t e o r d e r ” : ”BigEndian ” ,
247 ” da ta f o rma t ” : ” I d e n t i c a l ”
248 } ,
249 {
250 ”name” : ”Modulat ing p r e s s u r e : Ac tua l c u r r e n t ” ,
251 ” u n i t ” : ”mA” ,
252 ” s t a r t b i t ” : 112 ,
253 ” l e n g t h b i t s ” : 16 ,
254 ” b y t e o r d e r ” : ”BigEndian ” ,
255 ” da ta f o rma t ” : ” I d e n t i c a l ”
256 } ,
257 {
258 ”name” : ”Torque c o n v e r t e r t a r g e t l ockup ” ,
259 ” u n i t ” : ”1/255” ,
260 ” s t a r t b i t ” : 128 ,
261 ” l e n g t h b i t s ” : 8 ,
262 ” b y t e o r d e r ” : ”BigEndian ” ,
263 ” da ta f o rma t ” : ” I d e n t i c a l ”
264 }]
265 }
266]
267 }
268]
269 }

Appendix D

A list of project repositories

The below repositories are where the code for this thesis is located at. Each repository has
its own purpose.

• Macchina M2 Passthru driver - https://github.com/rnd-ash/MacchinaM2-J2534-Rust/

• OpenVehicleDiag application and CBFParser - hhttps://github.com/rnd-ash/OpenVehicleDiag/
tree/v1.0.0

• Common J2534 code (Rust) - https://github.com/rnd-ash/J2534-Rust

93

https://github.com/rnd-ash/MacchinaM2-J2534-Rust/
hhttps://github.com/rnd-ash/OpenVehicleDiag/tree/v1.0.0
hhttps://github.com/rnd-ash/OpenVehicleDiag/tree/v1.0.0
https://github.com/rnd-ash/J2534-Rust

Appendix E

OpenVehicleDiag JSON Schema

The following has been adapted from the Json Schema document from the OpenVe-
hicleDiag repository at release 1.01

Version 1.0 (31/03/2021)

This document outlines the JSON Specification which OpenVehicleDiag uses for ECU di-
agnostics. It is designed to be a simple, easy to understand replacement for ODX, and
proprietary data formats such as Daimler’ CBF and SMR-D data format.

JSON Root

Example

1 {

2 "name": "Awesome ECU",

3 "description": "My awesome engine ECU!",

4 "variants": [],

5 "connections": []

6 }

Properties

Type Description Required

name String Name of the ECU Yes

description String A brief description of the ECU Yes

variants Array A list of ECU Variants (See below) Yes

connections Array A list of connection methods for communicating with the ECU.
See below

Yes

ECU Variant

An ECU Variant is used to identify a particular software version of an ECU. Since an ECU can
get software updates over time, this is necessary as with certain software updates, an ECU
can change or modify error code descriptions and also add or remove diagnostic routines.
Example

1https://github.com/rnd-ash/OpenVehicleDiag/blob/v1.0.0/SCHEMA.md

94

https://github.com/rnd-ash/OpenVehicleDiag/blob/v1.0.0/SCHEMA.md

APPENDIX E. OPENVEHICLEDIAG JSON SCHEMA 95

1 {

2 "name": "SW_V_01",

3 "description": "My Awesome ECU software version 0.1",

4 "patterns": [],

5 "errors": [],

6 "adjustments": [],

7 "actuations": [],

8 "functions": [],

9 "downloads": []

10 }

Properties

Type Description Required

name String A short version string of the ECU software version Yes

description String Description of the ECU software version Yes

patterns Array A list of pattern objects that are used to identify the hardware
vendor which implements this variant of ECU software

Yes

errors Array A list of errors that this ECU variant could potentially throw Yes

adjustments Array A list of services that can be executed on the ECU variant
in order to permanently modify certain features of the ECU,
such as setting a new idle RPM. It should be noted that these
services do not require seed key access prior to execution

Yes

actuations Array A list of services that can be executed on the ECU variant in
order to manipulate components temporarily during a diagnos-
tic session

Yes

functions Array A list of services that can be executed on the ECU variant that
have no user input or output. These can include things such
as ECU Reset or modifying the diagnostic session type

Yes

downloads Array A list of services that can be executed on the ECU variant in
order to read data from the ECU

Yes

Pattern

An ECU Pattern is used to identify which hardware vendor is responsible for implementing
the parent variant software version, since its possible for 1 ECU software to be installed on
multiple vendors’ ECUs, such as Bosch, Simens and Delphi.
Example

1 {

2 "vendor": "rnd -ash@github.com",

3 "vendor_id": 12345

4 }

Properties

Type Description Required

vendor String The manufacture name of the ECU Yes

vendor id Integer The vendor ID pattern. Every vendor has a unique ven-
dor id for every ECU. This is a 2 or 4 byte integer retrieved
with read dcs id or read dcx mmc id with ECUs that utilize
KWP2000, or read vendor id for ECUs that utilize UDS

Yes

APPENDIX E. OPENVEHICLEDIAG JSON SCHEMA 96

Error

An error block represents a DTC (Diagnostic trouble code) which the ECU could potentially
throw under certain circumstances to signify something is wrong.
Example

1 {

2 "error_name": "P2082 -002",

3 "summary": "MAF implausible",

4 "description": "Mass airflow sensor is producing inconsistent readings",

5 "envs": []

6 }

Properties

Type Description Required

error name String The shorthand error code, usually in the SAE J2012 or ISO
15031-6 format

Yes

summary String The summary of what the error signifies Yes

description String A more detailed description of the error Yes

envs Array A list of parameters for interpreting data returned about the
DTC using get error status. This essentially interprets the
ECU specific freeze frame data, which is a list of sensor mea-
surements that the ECU captures when the error is triggered,
which can be useful for debugging the error.

No

Service

A service is used to describe an operation that can be executed on the ECU during a diagnostic
session
Example

1 {

2 "name": "Read injector status",

3 "description": "Retrieves the injector quantity per stroke for all cylinders",

4 "payload": "22FB",

5 "input_params": [],

6 "output_params": [],

7 }

Properties

Type Description Required

name String The name of the service Yes

description String A description of what the service does Yes

payload Hex string The raw payload to be sent to the ECU Yes

input params Array A list of parameters that are used for interpreting user input
for values to append to the ECU request payload

No

output params Array A list of parameters that are used to decode the ECU’s positive
response message to the command

No

Parameter

A parameter is used to define the data format used for either input or output data that the
ECU uses, as well as defining where in the ECU Request or response message the value is

APPENDIX E. OPENVEHICLEDIAG JSON SCHEMA 97

located at.
Example

1 {

2 "name": "Supply voltage",

3 "description": "Supply voltage being measured by the ECU",

4 "unit": "V",

5 "start_bit": 32,

6 "length_bits": 8,

7 "byte_order": "BigEndian",

8 "data_format": "Identical",

9 "valid_bounds": {

10 "upper": 100.0 ,

11 "lower": 0.0

12 }

13 }

Properties

Type Description Required

name String Name of the parameter Yes

description String Description of the parameter Yes

unit String Optional unit string, which will be appended to the output
value when being displayed as a string

No

start bit Integer The position in the ECU payload or response where this pa-
rameter is located at

Yes

length bits Integer The length in bits of the parameter Yes

byte order String The byte order of the parameter. Allowed values are BigEndian
or LittleEndian

Yes

data format Enum Data format (see below) of the parameter Yes

valid bounds JSON Multi use. If the parameter is in the input parameters section
of the parent service, this field denotes the upper and lower
bounds of the user input. If the parameter is in the parent
services’ output parameters section, it is used for denoting
the maximum and minimum y axis values for graphing

No

A list of valid data formats for Parameter

Below is a full list of all possible allowed entries in a Parameter.

Binary

Description: The output value is formatted as a binary string.

Example JSON

1 "data_format": "Binary ,

Example parsing

1 INPUT: [0x20]

2 OUTPUT: "0 b00100000"

3

4 INPUT: [0x20 , 0xFF]

5 OUTPUT: "[0 b00100000 , 0b11111111]"

APPENDIX E. OPENVEHICLEDIAG JSON SCHEMA 98

HexDump

Description: The output value is formatted as a hex string like array.

Example JSON

1 "data_format": "HexDump ,

Example parsing

1 INPUT: [0x20 , 0xFF , 0x00]

2 OUTPUT: "[0x20 , 0xFF , 0x00]"

String

Description: The output value is formatted as a String using a specified encoding option.
This uses lossless decoding, so if bytes don’t map to specific characters, �? will be displayed
in its place.

Example JSON

1 "data_format": {

2 "String": "Utf8"

3 },

Example parsing

1 INPUT: [0x54 , 0x65 , 0x73 , 0x74 , 0x20 , 0x6D , 0x65 , 0x73 , 0x73 , 0x61 , 0x67 , 0x65]

2 OUTPUT: "Test message"

Notes For the string encoding option, 3 possible values are allowed:

• ASCII - The String is encoded as ASCII (1 byte per character)

• Utf8 - The String is encoded as UTF-8 (1 byte per character)

• Utf16 - The String is encoded as UTF-16 (2 bytes per character)

Bool

Description: The output value is formatted as a Boolean, where 0 is interpreted as False,
and any other value is interpreted as True. If the fields pos name and neg name are present,
then the strings in those fields will replace the default ”True”, ”False” Strings.

Example JSON

1 "data_format": "Bool",

1 "data_format": {

2 "Bool": {

3 "pos_name": "This is positive",

4 "neg_name": "This is negative"

5 }

6 },

Example parsing

1 # First JSON example

2 INPUT: 0x01

3 OUTPUT: "True"

4

5 INPUT: 0x00

6 OUTPUT: "False"

7

APPENDIX E. OPENVEHICLEDIAG JSON SCHEMA 99

8

9 # Second JSON example

10 INPUT: 0x01

11 OUTPUT: "This is positive"

12

13 INPUT: 0xFF

14 OUTPUT: "This is positive"

15

16 INPUT: 0x00

17 OUTPUT: "This is negative"

Table

Description: The output value is formatted as a String based on a table which represents
an Enum. Each enum entry in the table has a defined start and end (inclusive) value. Any
number between the start and end value are accepted into the enums variant. If no Enum
could be found for a given input value, then ”UNDEFINED” is returned (See example parsing
below).

Example JSON

1 "data_format": {

2 "Table": [

3 {

4 "name": "This value is between 0 and 10",

5 "start": 0.0,

6 "end": 10.0

7 },

8 {

9 "name": "This value is only 11",

10 "start": 11.0,

11 "end": 11.0

12 },

13 {

14 "name": "This value is only 100",

15 "start": 100.0 ,

16 "end": 100.0

17 }

18]

19 },

Example parsing

1 INPUT: [0x00]

2 OUTPUT: "This value is between 0 and 10"

3

4 INPUT: [0x05]

5 OUTPUT: "This value is between 0 and 10"

6

7 INPUT: [0x64]

8 OUTPUT: "This value is only 100"

9

10 INPUT: [0xFF]

11 OUTPUT: "UNDEFINED (0xFF)"

Identical

Description: The output value is formatted as a number based on the raw value extracted
from the parent parameter’s bit range.

Example JSON

1 "data_format": "Identical"

APPENDIX E. OPENVEHICLEDIAG JSON SCHEMA 100

Example parsing

1 INPUT: [0x00]

2 OUTPUT: "0"

3

4 INPUT: [0x05]

5 OUTPUT: "5"

6

7 INPUT: [0x64]

8 OUTPUT: "100"

9

10 INPUT: [0xFF , 0xFF]

11 OUTPUT: "65565"

Linear

Description: The output value is calculated using a simple y = mx + c equation, where
the ”multiplier” field represents the m component of the equation, and the ”offset” field
represents the c component.

Example JSON

1 "data_format": {

2 "Linear": {

3 "multiplier": 0.125,

4 "offset": -40.0

5 }

6 },

Example parsing

1 INPUT: [0x00]

2 OUTPUT: " -40.0"

3

4 INPUT: [0x10]

5 OUTPUT: " -38.0"

6

7 INPUT: [0xFF]

8 OUTPUT: " -8.125"

ScaleLinear

This does not function in OpenVehicleDiag 1.0!

Description: The output value is calculated using a table of linear functions.

RatFunc

This does not function in OpenVehicleDiag 1.0!

Description: The output value is calculated using a rational function.

ScaleRatFunc

This does not function in OpenVehicleDiag 1.0!

Description: The output value is calculated using a table of rational functions.

APPENDIX E. OPENVEHICLEDIAG JSON SCHEMA 101

TableInterpretation

This does not function in OpenVehicleDiag 1.0!

Description: The output value is calculated using defined interpolation.

Compucode

This does not function in OpenVehicleDiag 1.0!

Description: The output value is calculated using a Java virtual machine that runs bytecode
of a class that implements the I CompuCode() interface.

Connection

Example

1 {

2 "baud": 500000 ,

3 "send_id": 2016,

4 "global_send_id": 2016,

5 "connection_type": {

6 "ISOTP": {

7 "blocksize": 8,

8 "st_min": 20

9 }

10 },

11 "server_type": "KWP2000",

12 "recv_id": 2024

13 }

properties

Type Description Required

baud Integer The baud speed (bus speed) of the connection Yes

send id Integer The diagnostic tester ID Yes

recv id Integer The diagnostic receiver ID Yes

global send id Integer The global tester present diagnostic ID No

connection type Enum The physical connection method to talk to the ECU. See below
for a list of allowed data structures.

Yes

server type String Denotes the diagnositc server type to use when talking to
the ECU. Allowed values are ”KWP2000” (Keyword protocol
2000), or ”UDS” (Unified diagnostic services)

Yes

Connection type

Example (LIN)

1 "connection_type": {

2 "LIN": {

3 "max_segment_size": 254,

4 "wake_up_method": "FiveBaudInit"

5 }

6 }

Properties

APPENDIX E. OPENVEHICLEDIAG JSON SCHEMA 102

Type Description Required

max segment size Integer The maximum frame size allowed to be transmitted over K-
Line

Yes

wake up method String Specifies the wake up method for K-Line. Allowed values are
”FastInit” (Fast initialization wake up method) or ”FiveBau-
dInit” (Five baud initialization wake up method)

Yes

Example (ISO-TP)

1 "connection_type": {

2 "ISOTP": {

3 "blocksize": 8,

4 "st_min": 20,

5 "ext_can_addr": false ,

6 "ext_isotp_addr": false ,

7 }

8 }

Properties

Type Description Required

blocksize Integer The maximum number of CAN Frames allowed to be trans-
mitted over ISO-TP before the ECU Must send another flow
control message back to the tester. A value of 0 means Infinite
block size (No flow control).

Yes

st min Integer The minimum delay in milliseconds before sending consecutive
CAN Frames to the ECU (Values between 0xF1-0xF9 represent
100-900 microseconds)

Yes

ext can addr Boolean Indicates if the CAN Frame’s IDs are extended (29 bits - True),
or standard (11 bits - False)

Yes

ext isotp addr Boolean indicates if the ISO-TP transport layer shall use extended ECU
addressing or not.

Yes

	Introduction
	Background
	Problem statement
	Lack of continuity or standards between OEMs diagnostic tools
	Proprietary diagnostic hardware

	Aims and objectives
	Solution approach
	JSON schema designing and converting
	Passthru driver creation
	Application creation

	Summary of contributions and achievements
	Passthru driver
	JSON Schema
	Diagnostic Application (OpenVehicleDiag)

	Organization of the report

	Literature Review
	Communication protocols found in vehicles
	CAN
	ISO-TP
	LIN

	Diagnostic adapter hardware and APIs
	Hardware APIs
	Hardware adapters

	ECU Diagnostic protocols
	OBD-II
	KWP2000 and UDS

	Existing diagnostic software
	Torque for Android (Generic OBD)
	Carly (Third party software)
	Xentry (Dealer software)

	Open Diagnostics eXchange (ODX)
	The OBD-II port
	Comparisons to the proposed project
	Hardware adapters
	Diagnostic software

	Methodology
	Test setup
	Rust
	JSON schema creation and CBF parsing
	JSON structure
	Code implementation of the JSON Schema
	Parsing Daimler CBF Files to JSON

	Cross platform Passthru adapter
	Architecture
	Creating the driver in Rust
	Communication between the adapter and driver
	Reading battery voltage
	ISO-TP Communication
	Porting the Passthru API to Linux and OSX
	Logging activity
	Performance optimizations with CAN Interrupts

	Diagnostic GUI
	Diagnostic server architecture
	Communication server architecture
	Implementation of the Passthru API
	User Interface
	KWP2000 and UDS implementations
	Automated ECU Scanner
	JSON Diagnostic session

	Summary

	Results, Discussion and Analysis
	Passthru driver
	Diagnostic application
	Automated ISO-TP Scanner
	Diagnostic session mode (JSON)
	Generic diagnostic session

	Summary

	Conclusions and Future Work
	Conclusions
	Future work

	Reflection
	Appendices
	Screenshots and diagrams
	Daimler Xentry software
	OpenVehicleDiag

	Issues and resolutions
	A full list of issues encountered during development of the M2 driver
	Windows Serial API
	CAN Due library

	Code snippets and tables
	List of SAE J2534 API functions
	A full list of driver message types
	List of KWP2000 and UDS Services
	Extract of OVD's JSON (EGS52) from CBFParser

	A list of project repositories
	OpenVehicleDiag JSON Schema

