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Abstract
This goal of this thesis was to evaluate machine learning model’s ability for their use as
an automatic decision feature for compression algorithms. Their task would be to predict
which compression algorithms perform best on what kind of data. For this, artificially
generated data, itself, and its compression was analyzed, producing a benchmark of
different features, upon which machine learning models could be trained. The models’ goal
was to predict the compression and decompression throughput of algorithms Additionally,
models had to correctly attribute data to the algorithm producing the best compression
ratios. Machine learning approaches under consideration were Linear Models, Decision
Trees and the trivial Mean Value Model as a comparison baseline. It was found, that
Decision Trees performed significantly better than Linear Models which in turn were
slightly better than the Mean Value approach. Nevertheless, even Decision Trees did not
produce a satisfying result which could be reliably used for practical applications.
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1. Introduction

1.1. Motivation
Encoding digital information, using fewer bits than the original data, is known as data
compression and can be used to minimize storage and bandwidth use of computer and
network architectures. Compression methods can be divided into lossless and lossy
ones, where members of the former are reconstructing the original data perfectly and
members of the latter only approximate it. M. Hilbert and P. Lopez (2011) have shown
that data compression still has unused potential. They estimate, that all the data in
the world could be further compressed losslessly by a factor of 4.5 [HL11]. Therefore,
it is obvious that reasonable lossy compression would result in even larger factors of
compression. Nevertheless, legitimate concerns about non-acceptable data degradation
and compression speeds, lead to a suboptimal use of available compression schemes,
especially in scientific contexts, [HWK+13]. For this reason, SCIL — the Scientific
Compression Interface Library — for the programming language C is being developed at
the Universität Hamburg and the German Climate Computing Center. As part of the
AIMES-project, SCIL aims to increase data storage efficiency by providing an interface
to many of the most common and modern compression algorithms focusing on lossy ones
[Kun16]. Users of SCIL will be able to specify absolute and relative error tolerances
as well as compression- and decompression throughputs, which are guaranteed to be
enforced. SCIL then automatically decides which algorithm is best suited for the given
arguments and data to compress [SK16]. The decision process is the main subject of this
thesis.

As there is a whole spectrum of different compression algorithms, choosing the optimal
one for the given data is quite involved. The user has to consider the overall structure
of the data such as its minimum and maximum value, standard deviation, mean value,
etc. Furthermore, an in depth knowledge of each compression method with its — data
depended — strengths and weaknesses, is required. Therefore, users tend to have only a
few lossless and lossy compression methods in their repertoire, sticking to one of them
for every compression. This leads to cases where the compression with a completely
different method — unbeknown to the user — would be beneficial regarding compression
throughput, ratio or both. SCIL aims to completely abstract the decision process from
the user, by applying machine learning to map relevant criteria to the best suitable
method [SK16]. With this feature, users are allowed to benefit from novel compression
methods without modifying code.
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1.2. Goals of the Thesis
The main goal of this thesis is the evaluation of different machine learning models for
the task of SCIL’s automatic compression decider. Machine learning approaches under
evaluation are Linear Models as well as Decision Trees and should be carefully assessed
by comparing them to useful baselines. Further goals of this thesis are the following ones:

• Further development of SCIL’s framework containing the algorithm decider
• Implementation of a training data generator for machine learning purposes
• Improvement of overall compression rates

The purpose of the training data generator is to create diverse, realistic compressible
data (patterns), extract relevant features such as standard deviation, mean value, etc., as
well as conducting compression benchmarks for each available algorithm. The resulting
data is then summarized into sets, upon which machine learning models will be trained.

After the conclusion of this paper, it should be clear, which machine learning approach
under evaluation will be suitable to model SCIL’s automatic decision process for com-
pression purposes. The last point is directly dependent on the implementation of the
best machine learning approach. Since this paper only covers the evaluation of different
machine learning models, the accomplishment of this goal cannot be tested and should
be the topic for another thesis in the future.

1.3. Structure of the Thesis
Chapter 2 provides a detailed background of compression, machine learning and SCIL,
while focusing, how the automatic compression decider depends on these topics. An
explanation of SCIL’s inner functioning follows, explaining its structure and possible
difficulties which could arise with the inclusion of the compression decider.

Chapter 3 portrays the design of the experiment and the training process for machine
learning. It is explained, how compressible as well as training data for the machine
learning task is generated Furthermore, the visualization of training data and the method
of extracting useful feature information is described.

The evaluation of the considered machine learning models are presented in Chapter 4.
Chapter 5 contains the summary and conclusion, presenting the analysis of the

evaluation’s outcome. Here, the leading question, which machine learning approach is
best suited for the task at hand, is answered. Finally, the thesis finishes with future
outlooks of machine learning in conjunction to data compression.
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2. Background
In this chapter, the background and theory of each relevant subject for SCIL’s automatic
compression decider is addressed.

Section 2.1 shortly summarizes the historical development of compression, focusing on
the scientific community’s stance towards it regarding the application upon measurement
data. Furthermore, the community’s concerns are illustrated as well as potential ways to
mitigate them and using compression reasonably.

An introduction to machine learning is provided in Section 2.2. It presents the general
theory of Machine Learning with a strong focus on pitfalls and their mitigation regarding
its application. Additionally, each considered machine learning model is explained in
detail.

Section 2.3 introduces SCIL’s general work-flow. Here, SCIL’s context creation and
each component of its compression chain is explained thoroughly. Furthermore, all
algorithms, currently available under SCIL, are explained.

2.1. Compression
Compression is the procedure of encoding data, in our case represented as an array
of bytes, using less space than its uncoded equivalent. It can be classified into two
categories: lossy and lossless compression. While lossless compression retains every bit
of information, lossy compression represents a trade-off between data degradation and
size by approximating the original data. For this reason, lossy algorithms generally
produce higher compression ratios1 than lossless ones. The main applications of data
compression are minimizing storage and bandwidth use. Therefore it is widely used
in digital audio, video and text as well as commercial and scientific data processing.
Nevertheless estimates exist that worldwide data could be further compressed by a factor
of 4.5 [HL11].

1The Compression ratio is defined by the quotient of uncompressed buffer size and compressed buffer
size.
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2.1.1. History
This section is prominently made up of excerpts from Stephen Wolframs (2002) book
"A New Kind of Science". In its compression history section, Wolfram manages to
purposefully convey key facts regarding lossless compression [Wol02].

First applications of data compression were present as early as 1838 with the invention
of Morse code. For this, common letters of the English alphabet were encoded by shorter
signals in comparison to uncommon letters. Without further use cases for compression
at that time, notable advances where delayed to the 1940s and the rise of information
theory. Claude Shannon and Robert M. Fano (1949) devised first methods of compression
by using statistical approaches. David A. Huffman — at that time a Ph.D. student
under Fano — perfected the scheme two years later, which is now known as the famous
and widely used Huffman coding [Huf52]. In the following years, Huffman coding was
implemented directly on hardware before being enhanced by dynamically coding actual
encountered data instead of maintaining a static map. The dynamic mapping, developed
in the 1970s, was widely used due to the rise of the on-line storing of text files. Shortly
after, a fundamentally different algorithm emerged through the work of Abraham Lempel
and Jacob Ziv, firstly realized by Terry A. Welch in 1984 [Wel84]. The Lempel-Ziv-Welch
algorithm (LZW) quickly became the de facto standard due to unprecedented compression
ratios and is still widely used today [KA10]. With personal computers capability of
storing ever increasing amounts of data, digital images and audio became more popular
[Wol02]. First lossy compression methods were developed for commercial and private
use, most notably JPEG [Wal91] for digital images and MP3 [JJS93] for audio files.
Since a reduction of picture or sound quality does not devalue the data in a way, errors
would impact text files or scientific data, it can be reasonably traded-off for smaller file
sizes. Both file formats were released in the early 1990s and are still widely in use today,
even if there are many alternatives performing objectively better, i.e, JPEG’s successor
JPEG-2000 [Agu12].

There are also formats, specifically designed for scientific data, which provide lossy
compression, such as GRIB, standardized by the World Meteorological Organization.
GRIB is able to lossy encode data by quantization and bit-packing or by applying the
JPEG-2000 algorithm, for its first and second edition, respectively [Wor03]. Yet, lossy
compression is often disregarded in scientific contexts, since it degrades information.
Even though institutions like NASA encouraged use of lossy compression for research
data, a wide adoption was nowhere to be seen [Nat88]. Science, in most cases, kept
relying on lossless methods as of now.
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2.1.2. Concerns for Scientific Data
The degradation of scientific data is not the only concern of researches when applying
compression. Another major factor is the resulting usage of computing power and
memory. For example the Large Hadron Collider at CERN generates filtered data with
a rate of 1 Gigabyte per second [fNR12]. There are many lossless algorithms which
produce acceptable compression ratios with a reasonable throughput [Nem11]. Such
algorithms are widely used with standardized formats such as GRIB. Nevertheless, lossy
compression can achieve much higher compression ratios with still acceptable throughputs.
Degradation of information can be adjusted to fit the purposes of the data at hand,
by constraining the error of lossy compression to reasonable values. For example, by
keeping the information loss to values within one standard deviation of measurement
errors, justifiable data preservation can be attained. Thus, training personnel in using
lossy compression sensibly could be well worth the effort.
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2.2. Machine Learning
This section is based on the book "From Curve Fitting to Machine Learning" by Achim
Zielesny (2013). Zielensy’s book focuses on the responsible training of different machine
learning models, taking into account common mistakes, users are tempted to make.
Furthermore, he proposes ways to mitigate those mistakes, which this section presents in
detail [Zie13].

Machine Learning covers the procedures for model approximation with the help of
computers. These approximations are based on empirical data in contrast to analytical
models. In general, machine learning addresses the problem of finding functions which
sufficiently approximate dependencies of the real world. Data driven finding of a adequate
model is done with an aspect of machine learning which is called supervised learning.
Models under evaluation in this thesis are all trained by supervised learning.

Every machine learning model is represented by a mathematical function. This function
consists of input arguments and parameters, whereas parameters describe the shape
of the function. Changing the functions parameters leads to different outputs for the
same input arguments. Supervised learning makes use of this fact to change a functions
parameters such that the model begins to approximates a mapping between predefined
input and output data (see A.1). This iterative process comes to a halt when a desirable
model is found.

While supervised learning is used to change parameters of the model function, they
are not the only variable arguments which determine the suitability of the model for the
task at hand. There are also so-called structural hyperparameters or metaparameters,
which are not present in the model function itself as values, but which, i.e., determine
the amount of actual model parameters. In the case of Linear Models, they describe for
example the grade of polynomials used for curve fitting (see 2.2.1). Hyperparameters are
not optimized in supervised learning algorithms themselves, but are up for the user to
decide, before the actual training commences. It is crucial to use reasonable values for
hyperparameters, since the model’s fitness after training directly depends on them. The
problems which can arise in the case of non-optimal values for the hyperparameters are
known as underfitting and overfitting.

An underfitted model is not able to comprehend the complexity of a given task. Smaller
than optimal values for hyperparameters lead to models being underfitted. In such a case,
models can be trained infinitely with arbitrary training algorithms and never produce
satisfying results.

Overfitting can happen to models which have an exceedingly complex structure, in
terms of its hyperparameters, given their context of application. As a result, the model
will be able to almost exactly map the inputs of the training set to their corresponding
outputs, while not being able to generalize reasonably. Inputs which were not in the
training data lead to imprecise or, in extreme cases, utterly wrong outputs.

There are many more problems than under- and overfitting as well as methods of
optimizing the training process. Additional topics regarding optimization of machine
learning can be found in Appendix A.
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The following subsections present the theory behind every considered model for the
task of SCILs automated compression decider, providing a foundation for their analysis
afterwards. The exact task for the compressor decider is to map compression relevant
parameters to the best suitable method available. Due to their inherently different
structure and mechanics, the models under evaluation are bound to have different results.

2.2.1. Linear Regression Models
The most simple case for a Linear Regression Model is a function of the form

yi = β0 + β1xi + εi (2.1)

where yi is the scalar output of the i-th data tuple, xi is its scalar input, β0 and β1 are
model parameters and εi is the error of the model function regarding the i-th data point.
Such a model function is often called Simple Linear Regression, since it is only two
dimensional, representing the most basic Linear Regression Model. SCIL’s automatic
compressor decider has to be able to map multiple input values to the output. For that
reason, a more general approach has to be considered, which is called Multiple Linear
Regression (MLR).

Y = Xβ + ε (2.2)

With
Y T =

(
y0 . . . yn

)
(2.3)

βT =
(
β0 . . . βn

)
(2.4)

εT =
(
e1 . . . em

)
(2.5)

X =


1 x11 . . . x1n
... ... . . . ...
1 xm1 . . . xmn

 (2.6)

Here, Y denotes a vector containing all output values of the data set, X is the input
matrix, consisting of one multi-dimensional input per row. βT is the transposed vector,
containing all model parameters and εT is a vector containing the error of every data
point. Note that the first column of X is solely made up of ones to produce the β0
summand in Equation (2.1). Optimizing such a model can barely be considered training,
since the process is not iterative and can be completed by analytical means (Ordinary
Least Squares) via matrix calculus. Figure 2.1 shows a linear curve fit, predicting the
height of a human depending on his or her age and weight.
A special case of MLR is Multiple Polynomial Regression or MPR. Such a model is able to
learn factorial compositions of input values based on the provided maximum polynomial
degree. For this, the input matrix is adapted to not only contain all single input values
in each of its rows, but also all multiplicative combinations of those depending on the
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Three Dimensional Linear Curve Fit

1 2 3 4 5 6

10
15

20
25

30
35

  0

100

200

300

400

500

wt

di
spm

pg

●●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.1.: Three dimensional linear curve fit.

polynomial degree of the model. For example a MPR-model of polynomial degree 2 with
3 input variables would have an input matrix consisting of rows of the form:

xi =
(
1 xi1 xi2 xi3 x2

i1 xi1xi2 xi1xi3 x2
i2 xi2xi3 x2

i3

)
(2.7)

Since each product of the basic inputs xi1, xi2, xi3 can be seen as a separate input
variable, the optimization procedure stays the same. Nevertheless, with a polynomial
degree of 2 the model would now be able to learn parabolic dependencies between input
and output.
While raising a models polynomial degree gives it the ability to model arbitrarily complex
dependencies, the models proneness to overfitting increases drastically. Models of a high
enough polynomial degree can produce bumps at every data point in the training set.
An example for a polynomial curve fit can be seen in Figure 2.2.

2.2.2. Decision Trees
Decision trees are a commonly used model to perform classification tasks in data analysis
and machine learning. Their structure is intuitive, often plotted as a simple to understand
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Figure 2.2.: Three dimensional polynomial curve fit [Kit12].

flowchart. Even after just being introduced to decision trees, people are able to grasp
the core concepts and can quickly deduce important dependencies of the data at hand.

Decision Trees can be represented as tree graphs growing from top to bottom. They
start at the root node, were the first split is conducted based on a single input variable.
Each edge after the split of a node contains a mutually exclusive boolean query. A split
can either be binary or non-binary, whereas binary trees are preferred due to their more
simplistic nature. In fact, every tree containing non-binary splits can be translated into
an equivalent binary one, simply by introducing more layers and nodes which depend
on another boolean clause of the same input. With this, the decision tree propagates
though every node and every corresponding boolean clause until it reaches its leaf nodes
which determine the class, the input maps to. Figure 2.3 shows a plot of a decision tree
constructed by observing casualties of the famous titanic incident, where sibsp denotes
the number of siblings.
In contrast to other machine learning approaches, decision trees do not depend on
conventional numeric cost functions which are to be minimized. Instead, the training
is represented by a greedy search of all possible trees, generating a node and its split
at each iteration. The optimal node at each iteration is determined by using the most
influential input and a boolean query, separating the further path by two possibilities
of value occupancy. For numerical inputs this generally translates to a simple less-than
or greater-than relationship. Even though there are many approaches to conduct the
training of decision trees, they all share the similarity of using a greedy heuristic search

14



Figure 2.3.: Typical decision tree [Mil11]

trying find the best possible tree. The reason for that is the infinite search space of
possible trees, with a complexity of O(2N ) for binary ones of N depth. The difference of
the training methods are simply in the heuristic used. There are evolutionary, information
entropy maximization and simple comparison approaches to name a few.

Decision trees major advantages are their intuitive nature, their expressiveness, the
ability to model non-linear data and their coping with less prepared data [Des11].
Expressiveness denotes the before-mentioned nature of trained trees to include a hierarchy
from most to less dependent inputs. This can be especially useful to optimize other
machine learning approaches under consideration, by incrementally leaving out the least
significant inputs. Nevertheless, decision trees also have their drawbacks. One potentially
significant drawback could be their inability to interpolate between data points used for
training. This results from rectangular shapes of classification regions in the input data
space [Kan11]. Interestingly even with their fundamental difference to other machine
learning models, decision trees are prone to overfitting. In most extreme cases, the tree
generates one leaf for each training input. With this, the decision tree will be able to
perfectly classify each training sample used to generate the tree, while non-sample inputs
will produce unpredictable behavior. To overcome this issue, so called pruning of the
tree can is being carried out, essentially reducing it complexity an thus decreasing the
overfitting.
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2.3. The Scientific Compression Interface Library (SCIL)
SCIL is a library for the programming language C, which provides an interface for
compression purposes focused on scientific data. It encapsulates many of the most
modern and popular compression algorithms and offers them in a single includable
module. The main goal of SCIL is to enable scientists to further harness the potential
of compression regarding effective data size. To pursue this goal, SCIL is able to chain
different algorithms and data conditioners together to provide optimal compression. In
addition to the automatic decision process for the best available algorithm, it is hoped
that SCIL will be able to improve overall compression rates significantly. SCIL’s workflow
consists of the creation of a context and the following execution of the compression.
Providing a compression context, the buffer to compress, its dimensionality as well as
the data type of the buffer’s values, SCIL’s compression procedure can be invoked. SCIL
will then generate an algorithm chain to compress the buffer optimally. An automatic
selection feature does not exist as of now and will be implemented after considering
the results of this thesis. After a compression chain has been created, the compression
commences, returning the compressed data to the user [SK16].

2.3.1. Context Creation
For the context creation, the user provides parameters and the data type of the buffer to
compress. The parameters are internally called user-hints as they describe the intentions
of the user. They consist of the following quantities:

• Absolute error tolerance
• Relative error tolerance
• Significant digits
• Significant bits
• Compression speed
• Decompression speed

The absolute error tolerance describes a parameter for lossy compression methods. With
this, SCIL will only consider available algorithms which guarantee that values will differ
after a compression decompression cycle by no more than the provided value. The
relative error tolerance has a similar function to the absolute error tolerance. Algorithms
considered will make sure, that values will not exceed or fall below the given percentage
after a compression. Significant digits and bits are different flavors of providing a relative
error tolerance, whereas these three metrics are interchangeable. Providing every relative
parameter, the most constraining will be applied. Compression and decompression speed
will limit the compression to algorithms which are known to yield the desired throughput.
If none of the above parameters are used, SCIL will default to ignore them which results
in maximum error tolerances and disregarding throughputs. Therefore a compression
with default parameters would lead to a discarding of the data.
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2.3.2. Algorithm Chain
After obtaining a context, the compression procedure generates the chain of data condi-
tioners and algorithms. A compression chain consists of a pipeline of five distinct steps
in the following order:

• General preconditioner (any type to any type)
• Data converter (any type to integer)
• Integer preconditioner (integer to integer)
• Data type specific compressor (any type into byte)
• Byte-wise compressor (byte to byte)

Such a pipelining of tasks allows for a dynamic and customizable approach for com-
pression. Standard algorithms, included in SCIL, solely reside in either the Value- or
Byte-wise compressor. With the help of preconditioners, data buffers can be adapted to
further increase compression performances of these methods. To illustrate the role of the
listed steps, an explanation and example of each one follows.

First Preconditioner. This step modifies the uncompressed data provides a buffer
which can be translated back to the original data. Its goal is to increase compression rates
of standard algorithms, making use of the specific data properties. First preconditioners
of the same or different kind can be used in row at this step to obtain highly adapted
data buffers. For example, the data could be translated to each values difference to its
previous one. Thus, for smooth data, the obtained buffer will consist of values with a
smaller standard deviation. The Abstol algorithm for example will perform better on
such an optimized buffer.

Data Converter. The data converter translates data of arbitrary type to an integer
representation. An example for this would be scalar quantization, which maps intervals
of values into distinct ones [You10]. The Abstol algorithm for example makes use of the
quantization data converter (see 2.3.3).

Integer Preconditioner. After the data converter, the option of applying one or more
integer preconditioners exists. Integer preconditioners have the same purpose as the first
ones, but are applied after the data converter. It is thinkable, that conditioners, applied
after converting the data to an integer representation, could increase performances of
compression methods. Though, as of now, SCIL does not provide specific methods which
fall into the role of integer preconditioners.

Data Type Specific Compressor. Value-wise compressors are the first one to actually
reduce the buffer size. They take in a buffer of distinct values and produce a byte buffer.
Many lossy and lossless standard algorithms, included by SCIL, fall into this group. A
custom value-wise compressor is the Swage algorithm as part of the Abstol method. It
truncates a specified number of bits in each value and packs them tightly together in the
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target buffer. As a result, the bit representation of values in the target buffer generally
do not start and finish at whole bytes.

Byte-wise Compressor. Similar to the value-wise compressors, byte-wise ones effec-
tively reduce the sizes of buffers. In contrast, they can accept input buffers of every
data type, since they operate per byte and are generally lossless. The standard lossless
algorithms GZIP and lz4 fall into this category.

2.3.3. Compression Algorithms
SCIL’s goal of providing optimal compression requires a broad spectrum of algorithms
with distinct properties. For this reason, SCIL aims to include many of modern and
popular methods. Compression algorithms, currently available in SCIL are shortly
explained in the following paragraphs.

Memcpy. The standard library’s memcpy function is implemented as the trivial lossless
compression procedure. Even though memcpy does not produce smaller buffers, it has
a much higher throughput of data. For this reason it is used as a fallback method in
case of strict performance parameters, provided by the user, which cannot be attained
by other compression algorithms. Furthermore, it serves as a baseline for benchmarking
SCIL’s non-trivial compression methods.

Abstol. The abstol algorithm was developed alongside SCIL at the University of Ham-
burg. In the respective paper it is stated, that Abstol has a uniform scalar quantization
method at its core [You10]. It is further described, that by separating the interval
between the minimum and maximum value of the data into uniform regions, specified by
the provided absolute error tolerance, a number of distinct bins is obtained in which each
value resides. Each bin is then encoded by its index and used to recreate the original
value in a lossy manner [SK16].

Sigbits. Like Abstol, the Sigbits method was also devised with the implementation of
SCIL. In the original paper, it is explained, that Sigbits makes use of properties of the
data values float representation and the provided relative error tolerance to generalize
over all values. For example, if all values are positive, the sign bit of each value can
be dropped and instead only be stored once, in the header of the compressed buffer.
Furthermore, Sigbits quantizes the values’ exponents and drops non-significant bits in
the mantissa as specified by the provided relative error tolerance [SK16].

FPZIP. FPZIP is a lossless and lossy hybrid compression algorithm, devised and de-
veloped by Peter Lindstrom (2006) at the Lawrence Livermore National Laboratory.
Lindstrom says its designed for high-throughput floating point compression. According
to their paper, it functions by structurally iterating over all values, predicting newly
encountered ones with the help of the Lorenz predictor [ILRS03], based on subset of
already encoded data points. The actual value and the prediction is represented as

18



integers after dropping the least significant bits in case of lossy compression, storing
their residuals separately. Afterwards, the residuals are entropy encoded by a specifically
devised method [LI06].

ZFP. The ZFP compression method is the successor of FPZIP, also developed by Peter
Lindstrom (2014). They state that ZFP is inspired by 2D image compression, separating
data into blocks and applying different steps to process each block. According to the
paper, these steps are the following ones, in order:

1. Alignment of values with common exponents
2. Conversation to fixed-point value representation
3. Application of an orthogonal block transformation
4. Ordering transform coefficients by magnitude
5. Encoding the coefficients

Lindstrom asserts, that the application of an orthogonal block transform makes use of
a specifically devised method, outperforming the resembling DCT-II [YL95] approach
regarding 3D data. The ZFP algorithm can be used for both, lossy and lossless compres-
sion, while its focus lays on the former of the two [Lin14].

GZIP. The famous an widely used GZIP program is a lossless method, which implements
the DEFLATE algorithm [Deu96a] described by P. Deutsch (1996). Deutsch states, that
the DEFLATE algorithm is a concatenation of the Lempel-Ziv [LZ77] and Huffman
coding [Huf52] approaches [Deu96b].

LZ4fast. As an adaption to the Lempel-Ziv algorithm, LZ4, developed by Yann Collet
(2011), focuses on compression and decompression speed while forfeiting compression
ratios [Col11].
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3. Design
This chapter illustrates the design concept of the whole experiment.

Section 3.1 gives and overview of how the experiment was conducted. For certain steps,
references to following sections with more detailed explanations are provided.

All involved features for the machine learning task are presented in Section 3.2. The
origin and meaning of each feature under consideration are explained.

Section 3.3 covers the generation of data buffers and subsequent gathering of training
data for machine learning. It provides a subsection, explaining the concept and functioning
of patterns.

A short description on feature selection is provided in Section 3.4. Here, the recognition
of useful input features for the model training is depicted.

In Section 3.5, the strategy of training regression and classification models is presented.
A detailed explanation on the conducted model evaluation can be found in Section 3.6.

Thereby, different kinds of errors for the models’ fitness evaluation are introduced.

3.1. Methodology
The following list describes the rough procedure of the experiment.

1. Generating diverse set of multidimensional data patterns. A pattern defines how
values are distributed in the n-dimensional data space; data can be created using a
(potentially smooth) function. For more information on data patterns, see Section
3.3.1.

2. Analyzing the generated data for certain features using descriptive statistics. For
this, data relevant characteristics are extracted and explored, i.e, the mean value
and standard deviation. See Section 3.2 for a detailed view of all extracted features.

3. Creating training data by compressing the data and benchmarking this process.
For this, a specifically developed tool is used, which creates the features and labels
for the training data, allowing for an examination of possible dependencies of input
and output features. Section 3.3 provides a more in-depth explanation.

4. Selection of relevant features. Here, the actual examination of dependencies is
conducted by visually inspecting scatterplots of input versus output features. This
suggests, which input parameters should be used to successfully apply machine
learning approaches. A more detailed explanation can be found in Section 3.4 .

5. Training machine learning models with this data. After gathering the relevant
information, the machine learning can commence. Common procedures like the
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splitting of data into a training and validation set are used. Section 3.5 provides a
more detailed view of the model training.

6. Evaluating the performances of the trained models. After the models are trained,
their performances must be carefully evaluated and compared to each other. For
this, well-defined metrics on the validation set are used to quantify the error (see
3.6).

3.2. Definition of Features
A feature, in the context of machine learning, is a variable, either provided to, or predicted
by the model. Features, provided to a model are called input features and are used to
predict values which represent an assignment for output features. Input features, in SCIL’s
context, can be further divided into data characteristics, which are inherent, quantitative
descriptions of data buffers, and user provided parameters. User provided parameters
on the other hand are arguments, users of SCIL can assign values to, influencing the
compression in certain ways. The following paragraphs explain all features, measured
and stored in the process of data generation. The suffixes IF and OF distinguishes input
and output features.

Algorithm OF
The name or identifier of the used compression algorithm on the buffer, described by
its data characteristics in this row. It is used in the classification task, answering which
algorithm produces the best compression ratio for the current input features.

Byte Size IF
The number of bytes, the data buffer occupies, representing a possible input feature.

Total Number of Values IF
The total number of values in the data buffer, described by the current row of data
characteristics. It is always one eighth of the byte size, since every buffer consists of
double-precision-floating-point numbers in this experiment.

Dimensionality IF
The dimensional layout of the data, either 1-, 2-, 3-, or 4-D and could be used as an input
feature. For multidimensional data, each dimension has the same amount of entries, such
that the data represents a square, cube or hypercube.

Minimum Value IF
The minimum value, found in the compressible data buffer.

Maximum Value IF
The maximum value, found in the compressible data buffer.
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Mean Value IF
The arithmetic mean of all values in the compressible data buffer.

Standard Deviation IF
The standard deviation of all values in the compressible data buffer.

Maximum Step Size IF
The maximum step between all values and their neighbors in each dimension. Calculated
by iterating over all values, taking the absolute difference to their neighbors in each
direction and storing the maximum encountered.

Absolute Error Tolerance IF
The maximum allowed absolute error tolerance for the compression task. It is determined
for each buffer by a logarithmic random distribution in the interval [2−13, 22]. Does not
apply to lossless algorithms or algorithms based on relative error tolerance.

Relative Error Tolerance IF
The maximum allowed relative error tolerance for the compression task, in percent. It is
determined for each buffer by a logarithmic random distribution in the interval [2−10, 24].
Does not apply to lossless algorithms or algorithms based on absolute error tolerance.

Compression Throughput OF
The speed of the compression in megabytes per second. Measured by dividing the size of
the uncompressed data by the time, the compression took.

Decompression Throughput OF
The speed of the compression in megabytes per second. Measured by dividing the size of
the uncompressed data by the time, the decompression took.

Compression Ratio OF
The ratio of the uncompressed buffer’s byte size versus the compressed buffer’s byte size.
Larger values represent a higher compression.

At this point, it is notable that some features which are used as parameters for the pattern
generation (see 3.3) are also contained in the data for model training. Nevertheless,
features that share the name of pattern parameters, are not necessarily occupied by the
same value, due to the behavior of the compressible data generation. For example, the
total number of values is directly dependent on the dimensionality of the data. The
number of values on each axis is determined by the formula N = b d

√
nc. Here, n is the

total number of values in the buffer as determined before the pattern generation and d is
the dimensionality of the data. Since the result is rounded down, the actual number of
values in the buffer is generally less than the predetermined amount.

The same holds true for the minimum and maximum value in the buffer. If the
compressible data was generated with the random pattern, it is very likely that no value
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will be that of the provided maximum. This is due to the reason, that the random
pattern uses the rand()-function of C’s standard library, scaling its output into the
interval of the provided minimum and maximum arguments. The rand-function produces
integer values in the interval between 0 and RAND_MAX, where the latter is simply
a value dependent on the systems architecture. On the hardware, the data generation
commenced on, RAND_MAX equals to 231 − 1 = 2147483647. Therefore, buffers are
unlikely to contain the provided minimum or maximum argument as a concrete value.

3.3. Generation of Data
Samples of compressible data need to be present before the generation of training data
can commence. For this reason, the specifically developed tool generates 10000 data
buffers with varying size, containing double-precision-floating-point-numbers, by applying
a random pattern of the ones presented in Section 3.3.1. The random number, defining
the pattern to use is uniformly distributed, so that afterwards, every pattern was created
approximately the same amount of times. Since patterns receive arguments for their
creation, the concrete values have to be determined beforehand. These arguments include
the minimum and maximum value of the data as well as up to two pattern specific
parameters and are randomly determined for each data buffer. Table 3.1 shows the
intervals and random distribution of all parameters for pattern generation.

Metric Minimum Maximum Distribution
Pattern — — uniform
No. of Data Points 28 222 logarithmic
Dimensionality 1 4 uniform
Minimum Arg. −214 214 logarithmic
Maximum Arg. −214 214 logarithmic
Argument 1 1 16 uniform
Argument 2 1 16 uniform

Table 3.1.: Arguments for Compressible Data Generation

The entry for the minimum and maximum argument represent their absolute value. It
is equally possible for them to be negative or positive, while still being logarithmically
distributed in the whole interval of [−16384, 16384). From two determined values in this
interval, the smaller one will be treated as the current minimum argument and the larger
one as the maximum. For the constant pattern, where the maximum argument does not
apply, only one value is determined and used as the minimum argument. Therefore, even
for the constant pattern, a symmetric distribution is attained. Both other parameters
are chosen from a uniformly distributed, random floating point variable in the interval
[1, 16]. Their meaning is patten-specific, as described in Section 3.3.1. Values lower or
higher than specified by the interval of possible assignments, in general, do not result in
data which exhibits further, distinct characteristics for the machine learning task.
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While generating the data buffers, the tool simultaneously gathers their characteristics
and benchmarks the compression. In cases of lossy compression, the user provided
inputs of absolute and relative error tolerances are required, which also represent input
features. These are also randomly generated with a logarithmic distribution in the interval
[2−13, 21] and [2−10, 22], respectively. Having provided these parameters, the compression
commences producing benchmarks in terms of compression and decompression throughput
as well as compression ratio for all algorithms. Therefore, each data buffer produces 8
lines, containing the specific input and output features. Finally, the resulting data for
every buffer and every algorithm is stored as a comma-separated-values-file, ready for
analysis.

3.3.1. Patterns
Generating data to compress, for the purpose of benchmarking each algorithm, has the
goal of providing diverse data. Diversity of the data — in this context — is defined by
the uniform filling of the training sets input space, regarding data characteristics. With
more diverse data, machine learning has better spaced points of reference for training,
thus producing superior models. For this reason, the compressible data generation makes
use of diverse patterns to create data. The patterns used for data generation include:

• Constant
• Steps
• Random
• Sinusoidal
• Perlin-Noise

Each pattern constructs structurally different data as can be seen in Figure 3.1.
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(a) Constant, value 35.3 (b) Steps, Argument 100

(c) Random, 0 to 1 (d) Sinusoidal, Scale 1, values 0 to 100

(e) Perlin Noise, Scale 3 and 6 passes

Figure 3.1.: 3-Dimensional data generated with different patterns
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Pattern generators can be further controlled by providing different parameters. In the
following paragraphs, each pattern’s properties and parameters are explained.

Constant. The Constant pattern is the most simple one. Providing a data buffer of
arbitrary length and dimension, it sets all values to the provided minimum parameter.

Steps. The Steps pattern makes use of a provided "stepsize"-parameter to construct
linear, repeated data. The "stepsize"-parameter denotes the size of repeated sections.
For two dimensional data, this results in a straight line which raises from the provided
minimum to the maximum in the given step size. Afterwards, it repeats by resetting the
line back to the minimum. For multidimensional data, and analog plane is generated,
which repeats after step size on each axis.

Random. This pattern creates uniformly distributed random data. Every generated
value will be placed in the interval of the minimum and maximum parameter.

Sinusoidal. Sinusoidal patterns generates by applying one or more sinus curves on each
input dimension. Available parameters are the base frequency and the count of additive
smaller sinus curves. The base frequency is measured per buffer size in each dimension.
A base frequency of one would result in one full period of the first or most significant
sinus curve over each axis. Each further sinus curve will have a two fold frequency and
half the amplitude of the previous one. Finally, the data buffer is normalized to fit
between the provided minimum and maximum.

Perlin Noise. The Perlin Noise pattern generates smooth but random data from a
seed. Parameters for perlin noise are similar to the ones of the sinusoidal pattern in
their functioning. The provided base scale determines the size of the patterns first pass.
The other parameter is the number of passes, where the intensity is halved and the scale
doubled in comparison to the previous pass.

3.4. Selection of Features
By providing plots, showing the dependencies of input and output features, an assessment
of the input features is obtained. With this, an estimate is made for the inputs relevance,
considering the machine learning task at hand. For this reason, every combination of
output and input features is illustrated with the help of scatterplots and boxplots (for the
dimensionality input feature). These plots can be inspected in Appendix B. A measure
of relevance for the input data are patterns of dots in the graphics. Dots uniformly
distributed along the x-axis suggest no correlation of the input and output feature and
are therefor of no interest to model training. If dots are, i.e., culminating at a linear or
exponential curve, a strong correlation is observed. In these cases, the output at the
y-axis is highly correlated with the input feature, enabling machine learning to interpret
the data correctly.
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3.5. Model Training
For the evaluation, a multitude of models are trained per algorithm and output feature.
Since users of SCIL can provide a minimum compression and decompression throughput,
which are dependent on input features and generally unknown beforehand, a regression
of these values is needed. Thus, two models will be trained for each algorithm to predict
its throughputs based on the provided input features.

For the classification task, each machine learning approach under consideration is
trained upon all algorithms, since the output should be a preference of each algorithm.
Theses preference values are in the interval of (0, 1), where the highest value denotes the
best corresponding algorithm, as estimated by the model.

All in all, 27 models were fitted, evaluated and compared to one another, producing
a detailed portrait of their performances. Models under consideration are the Linear,
Decision Tree, and the Mean Value approach. The former two where introduced in detail
in Section 2.2.1 and 2.2.2 respectively. They represent serious contenders for the role of
SCIL’s automatic compression decider. In contrast, the Mean Value Model functions
as a baseline for comparison purposes of the other models. As the name suggests, the
Mean Value approach will average the compression and decompression throughputs for
the regression task. For the classification, its prediction simply defaults to the algorithm
which produced the best compression ratio most of the time. Therefore, when comparing
other, serious models with this one, an assessment is obtained whether the model is
slightly or significantly better than the trivial approach.

The Linear models depend on a structural hyperparameter, denoting the polynomial
degree used for the fitted curve. To provide a more in-depth analysis of model suitability,
possible assignments of the hyperparameter were iterated over, producing a different
model in each step. Comparing the different fitness measurements of training and
evaluation set predictions (see Section 3.6), the best model of its kind is determined and
used for the cross-model comparison. Linear models of degree 1 to 3 were evaluated.

Having obtained the best linear model, the the different errors of all predictions
on the evaluation set will be used as a metric to compare their regression results.
For classification, the percentage of correct predictions of the best suitable algorithms
represents a reasonable measurement.
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3.6. Model Evaluation
Trained regression models are measured by using the following error metrics:

• Root-Mean-Squared-Error (RMSE)
• Mean-Absolute-Error (MAE)
• Relative-Squared-Error (RSE)
• Relative-Absolute-Error (RAE)

The definition of all error metrics can be found in Appendix A.2. All presented error
metrics follow the rule: the smaller the value, the better the fit. While RMSE and MAE
represent absolute errors in terms of the output feature analyzed, the RSE and RAE can
be used to assess a models fitness relative to the mean value. This results in normalized
values, where zero means a perfect fit and one a fit similar in usefulness as the Mean
Value Model. Values larger than one suggest a fitness worse than that of the Mean Value
Model, suggesting an utterly worthless fit. Even though the RSE and RAE suffice for the
task of examining a models fitness, the RMSE and MAE values can be used for context
driven comparison of models. The difference between RSME and MAE (or RSE and
RAE) is, that the former — by squaring the residuals — gives more weight for rough
errors in the calculation, while the latter weights all errors the same. Therefore, large
values for RMSE and smaller ones for MAE indicate few strong errors, while the opposite
suggest many small ones.

For classification, simply the percentage of correct predictions of the best suitable
algorithms represents a reasonable measurement.
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4. Evaluation
This chapter provides results of the experiment which are interpreted in Chapter 5.

Section 4.1 presents and interprets the results of the data visualization. Each metric
is analyzed, extracting important information for the machine learning process.

The result of the machine learning process are illustrated in Section 4.2. Different
kind of error metrics of the Mean Value, Linear Model and Decision Tree approaches are
presented and analyzed.

4.1. Data Inspection
In Appendix B, graphs are shown, comparing each training data input to every output
for all algorithms. The graphs are all logarithmically on the x-axis to cope with the
exponential nature of the data generation used. An exception for this is the discrete
dimensionality input. The y-axis for all graphs showing the Compression Ratio is also
logarithmically scaled to better visualize strong outliers.

• Output feature in comparison to the total number of values in the buffer can
be inspected in Figures B.1, B.2 and B.3. These plots are especially remarkable
because of the complex patterns they show. Such complex distributions in the
graphs are a strong indicator for dependency and therefore, the total number of
values should be included in the machine learning process as an input feature.
• Figures B.4, B.5 and B.6 show the outputs in dependency on the dimensional
layout of the data. Here, most Algorithms do not display significant patterns
with the exception of ZFP when using relative error tolerance parameters. The
throughput of ZFP-reltol for compression as well as decompression interestingly
peeks at 2-dimensional data even though the algorithm is designed for 3D-data.
Regarding the compression ratio of 3D-data, ZFP-reltol reliably reaches factors
of 200, outperforming other algorithms immensely, except for a few outliers. In
addition, GZIP and LZ4fast show minor dependencies. The throughput of GZIP
in both — compression and decompression — rises with higher dimensional data.
Its compression ratio is significantly higher for multidimensional (2D,3D and 4D)
data, with no obvious differences between those layouts. LZ4fast dos not display an
obvious change in throughput with differing dimensional layout, but shows a very
similar structure to GZIP, regarding its compression ratio. Since there are a few
algorithms, which performance in respect to speed and quality of compression is
dependent on the dimensionality of the data, this metric should also be considered
for the machine learning task.
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• Plots of the mean value metric are shown in Figure B.7, B.8 and B.9. It should
be noted that the x-axis of the plot is logarithmically scaled. There are about
the same number of points in the negative spectrum with an almost symmetric
distribution. Therefore, the plots should be considered as the absolute value of
averages. Most algorithms show no dependency between their performance and
the average of the data with the exception of algorithms based on absolute error
tolerance. The throughput of Abstol and ZFP-Abstol decline for large averages of
the data. Considering the compression ratio, a very similar behavior is observed.
• The algorithm performances regarding standard deviation of the data buffers

can be inspected in Figure B.10, B.11 and B.12. All plots of the standard deviation
are almost identically to their counterparts of the average metric regarding their
structure.
• Figure B.13, B.14 and B.15 illustrate the compression performances, subject to
the maximum step metric. This metric is also structurally identical to the
average and standard deviation metrics. A further illustration of those metrics’
inter-dependencies can be seen in Figure B.22. As expected, the plot shows a strong
linear relationship of the metrics. Nevertheless, many outliers of this linearity can
be observed, which suggests that a simultaneous inclusion of these metrics could
benefit the training process.
• The performances of algorithms considering the absolute error tolerance metric
can be seen in Figure B.16, B.17 and B.18. Unsurprisingly, algorithms which do
not depend on a clients assignment of an absolute error tolerance do not experience
changes in their performances. Abstol and ZFP-Abstol on the other hand are
slightly faster in compression as well as decompression for higher provided tolerances.
Though, ZFP-Abstol increase in throughput seemingly only applies for some outliers
and is rather constant in the normal case. Regarding compression ratio, Abstol
and ZFP-Abstol behave as expected, showing a rise for higher tolerances.
• The last potentially influential metric to analyze is the relative error tolerance

as show in Figure B.19, B.20 and B.21. Surprisingly, no algorithm shows correlated
behavior for different metric values. Not even the compression ratios of the Sigbits
or ZFP-reltol algorithm seem to depend on the value of the relative error tolerance
parameter. In this case, it is very unlikely, that there are in fact no observable
dependencies. The reason for this behavior is unknown but could be due to a bug
in either the data generation, the SCIL compression API or in the data evaluation
software. Using this metric for machine learning will most likely not contribute to
better models.
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4.2. Model Fitness
The following subsections include tables, illustrating the results of the models’ fitness
assessments. For this, the RMSE, MAE, RSE and RME values for each model and
algorithm are presented. Section 4.2.1 contains the measurements for the regression
task on the compression throughput of algorithms. Equivalently, Section 4.2.2 presents
the fitnesses of models predicting all algorithms’ decompression throughputs. Finally,
the percentages of correct classifications of algorithms, producing the best compression
ratios, are shown in Section 4.2.3.

4.2.1. Fitness on Compression Throughput
Tables 4.1, 4.2, 4.3 and 4.4 show a clear favorite for estimating the compression throughput.
In almost all cases, Decision Trees perform significantly better than the Mean Value and
even the Linear Model. Exceptions include GZIP and FPZIP in which cases Decision
Trees are about equally fit in comparison to Linear Models. Though in these case both
non-trivial models do not show significantly better errors, than the Mean Value approach.
The performance of Decision Trees is especially superior to Linear Models regarding
the Compression Throughputs of both ZFP-algorithms. Nevertheless, the clearly better
fitness of decision trees in comparison to the other models is still unsuitable for SCIL’s
compression decider feature. A RAE value of 0.5 indicates a 50% better prediction, than
the Mean Value approach. To be truly reasonable as a candidate for SCIL’s feature,
values as low as 0.1 as desired, in which case Models start to be considered "reliable".
Since the Decision Trees best RAM value is merely 0.5 and a lot more for other algorithms
than ZFP, their performance is still insufficient.
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Memcpy Abstol GZIP Sigbits
Mean Value 3381.75 43.99 50.65 27.87
Linear Model 3069.71 38.01 49.16 27.32
Decision Tree 2322.48 29.68 49.86 24.78

FPZIP ZFP-Abstol ZFP-reltol LZ4fast
Mean Value 28.88 404.16 211.61 2326.64
Linear Model 27.92 380.19 147.26 2072.87
Decision Tree 27.05 202.50 120.67 1891.52

Table 4.1.: RMSEs for Compression Throughput

Memcpy Abstol GZIP Sigbits
Mean Value 2694.77 33.94 42.16 20.36
Linear Model 2286.29 27.69 39.74 19.91
Decision Tree 1586.80 21.89 41.18 17.55

FPZIP ZFP-Abstol ZFP-reltol LZ4fast
Mean Value 20.44 170.89 168.37 1919.32
Linear Model 19.13 158.33 111.76 1700.62
Decision Tree 18.66 87.87 85.56 1420.34

Table 4.2.: MAEs for Compression Throughput
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Memcpy Abstol GZIP Sigbits
Mean Value 1.0000 1.0000 1.0000 1.0000
Linear Model 0.8305 0.7472 0.9417 0.9642
Decision Tree 0.4754 0.4555 0.9686 0.7929

FPZIP ZFP-Abstol ZFP-reltol LZ4fast
Mean Value 1.0000 1.0000 1.0000 1.0000
Linear Model 0.9343 0.8850 0.4845 0.7946
Decision Tree 0.8769 0.2511 0.3253 0.6616

Table 4.3.: RSEs for Compression Throughput

Memcpy Abstol GZIP Sigbits
Mean Value 1.0000 1.0000 1.0000 1.0000
Linear Model 0.8561 0.8152 0.9447 0.9994
Decision Tree 0.5942 0.6446 0.9788 0.8809

FPZIP ZFP-Abstol ZFP-reltol LZ4fast
Mean Value 1.0000 1.0000 1.0000 1.0000
Linear Model 0.9346 0.9434 0.6601 0.8864
Decision Tree 0.9115 0.5236 0.5054 0.7403

Table 4.4.: RAEs for Compression Throughput
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4.2.2. Fitness on Decompression Throughput
Tables 4.5, 4.6, 4.7 and 4.8 show results, very similar to the ones in Section 4.2.1. Again,
Decision Trees vastly outperform the other models regarding their fitness for predicting
decompression throughputs. A minor difference is that Linear Models’ performances
are not even for GZIP and FPZIP similar to those of Decision Trees. Interestingly, the
superior model is slightly better performing while predicting decompression in comparison
to compression throughputs, as measured by the mean of the RAE values. Though this
slightly better fitness does not suffice by far to convince of the practical use of this model.

34



Memcpy Abstol GZIP Sigbits
Mean Value 2175.44 78.01 296.76 23.06
Linear Model 1930.33 67.14 283.21 21.97
Decision Tree 1355.09 47.92 276.33 17.79

FPZIP ZFP-Abstol ZFP-reltol LZ4fast
Mean Value 24.18 466.56 325.53 2923.56
Linear Model 22.87 431.50 235.16 2687.63
Decision Tree 21.13 269.10 170.49 2058.85

Table 4.5.: RMSEs for Decompression Throughput

Memcpy Abstol GZIP Sigbits
Mean Value 1794.73 62.84 233.78 17.29
Linear Model 1535.28 50.47 219.22 16.19
Decision Tree 1011.40 36.87 213.55 12.60

FPZIP ZFP-Abstol ZFP-reltol LZ4fast
Mean Value 18.04 237.46 257.73 2544.42
Linear Model 16.65 207.41 186.95 2215.19
Decision Tree 15.60 142.24 126.49 1621.52

Table 4.6.: MAEs for Decompression Throughput
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Memcpy Abstol GZIP Sigbits
Mean Value 1.0000 1.0000 1.0000 1.0000
Linear Model 0.7916 0.7420 0.9108 0.9105
Decision Tree 0.3901 0.3779 0.8671 0.5972

FPZIP ZFP-Abstol ZFP-reltol LZ4fast
Mean Value 1.0000 1.0000 1.0000 1.0000
Linear Model 0.8947 0.8554 0.5224 0.8472
Decision Tree 0.7633 0.3327 0.2746 0.4972

Table 4.7.: RSEs for Decompression Throughput

Memcpy Abstol GZIP Sigbits
Mean Value 1.0000 1.0000 1.0000 1.0000
Linear Model 0.8680 0.8023 0.9393 0.9572
Decision Tree 0.5718 0.5862 0.9150 0.7445

FPZIP ZFP-Abstol ZFP-reltol LZ4fast
Mean Value 1.0000 1.0000 1.0000 1.0000
Linear Model 0.9241 0.8816 0.7247 0.8763
Decision Tree 0.8657 0.6046 0.4903 0.6415

Table 4.8.: RAEs for Decompression Throughput
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4.2.3. Classification Fitness
The evaluation of classification problems also show that in this case, Decision Trees
are superior to the Mean Value and Linear Models. Nevertheless, the rise of correct
predictions from the least to most performing model is only 3.9%. Such a small increase
is not enough to promote the use of Decision Trees in SCIL’s compression decider feature.
The decision tree producing these results can be seen in Figure 4.1.

Model Correct Classifications (%)
Mean Value 65.23
Linear Model 67.50
Decision Tree 69.13

Table 4.9.: Correct Classifications Percentage

Standard < 0.0065

Absolute < 0.17

Standard >= 94e−6

Dimensio < 1.5

Dimensio >= 3.5

Dimensio < 1.5

Standard < 1.1

Absolute >= 0.017

abstol

abstol zfp_prec

sigbits

zfp_abst

abstol zfp_prec

zfp_prec

zfp_prec

yes no

Figure 4.1.: Decision Tree for Classification
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5. Summary and Conclusion
The purpose of this thesis was to evaluate machine learning approaches for their suitability
in predicting throughputs of compression algorithms and resulting compression ratios.
The reason for this research was to find a suitable machine learning model adequately
executing the task of choosing the best possible algorithm for data compression. This
model — if it performs satisfyingly — would be integrated in the Scientific Compression
Interface Library (SCIL) to abstract the users choice of the best compression algorithm.
It was shown, that if a successful model was found, users of SCIL would benefit from the
trained model by further exploiting the unused potential of data compression.

Chapter 1 provided and introduction to this theses, explaining its motivation and goals.
It provided the reader with an understanding of the fundamental problem of the manual
decision for compression algorithms. Furthermore, the reader was oriented through
this thesis by a short presentation of upcoming chapters. Afterwards, a background
of compression and machine learning in general was provided in Chapter 2, preparing
the concepts used in the design and evaluation. The fundamental work on compression
algorithms and compression in general were shown as well as a short summary of the
history of compression. Additionally, machine learning was introduced in general and
more specifically in scope of Linear Models and Decision Trees. Following, Chapter 3
illustrated the design and methodology of this work, explaining key concepts and the
experiments realization in detail. Finally the evaluation of the results was provided in
Chapter 4, visualizing and analyzing potentially relevant features for machine learning
and presenting the experiment’s outcome.

The results of this work, as depicted in Section 4.2, strongly suggest that Decision Trees
are better suited than Linear Models for the task at hand. Decision Trees performed better
in almost all instances of throughput prediction regarding compression and decompression.
The only exceptions, was the prediction of the GZIP algorithm’s compression throughput
in which case the Linear Model’s fitness was marginally better than the Decision Tree’s.
For the classification task — which algorithm will result in the best compression ratio
— Decision Trees also had a higher percentage of correct predictions. However, the
performances of Decision Tree may be better than those of Linear Models in this context
but their absolute fitness is not nearly sufficient. To reasonably consider a machine
learning model for this task, it should have no higher RAE values than 0.1. The correct
classification percentage of Decision Trees was shown to be at 69.13% — only 3.9%
higher than that of the Mean Value Model. Therefore the answer of this work is, that
none of the trained methods should be used for SCIL’s automatic compression decider,
as they are.
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5.1. Future Work
To further pursue the goal of finding an adequate model for the task of SCIL’s decider
feature, additional research with prospect of success can be done. The evaluations results
suggest two problems with the training of Decision Trees or Linear Models:

1. The feature space is too complex, regarding the dependencies of inputs and outputs.
2. There are unknown input features which would result in a large performance boost,

when included in the training process.

For point one, the solution is to evaluate more powerful models such as neural networks,
support vector machines or random forests. The drawback of this is the computational
intensiveness of these models training and should be met with more powerful hardware.

If the second point turns out to be true, the solution is to measure additional input
features, until they are able to predict the output satisfyingly. Though, finding out, what
those unknown input features are and how they are defined/measured could be a hard
problem.

All in all, further research on this topic is encouraged and could provide a model with
sufficient prediction accuracy for the task of automating the decision for the best possible
compression algorithm.
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A. Additional Machine Learning
Information

A.1. Training Data
Each data point di, is defined in the way

di = (xi,yi,σi)

where i ∈ N is the index of the data point, xi ∈ Rn is the argument value, yi ∈ Rm is
the dependent value and σi ∈ Rm is the statical error of yi in the form of its standard
deviation. Often, statistical errors are not available in the data or disregarded in used
machine learning approaches, in which case they are simply omitted. Such a reduced
data point is called an input/output- or simply I/O pair, where many of them form a
data set upon which machine learning models can be trained. For a model function f
being able to be trained on a data set, it needs the same dimensionality for its input- as
well as output values.

f : Rn → Rm

Feeding all inputs xi from the data set into the model, produces outputs which can be
compared to the actual outputs of the data set. This allows for a fitness evaluation of
the trained machine learning model.
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A.2. Qualitative Machine Learning Evaluation
Qualitative measurement, regrading residuals, to illustrate the fitness of models are the
metrics in Section 3.6. They are defined in the following way:

RMSE =

√√√√1
k

k∑
i=1

(yi − f(xi))2

MAE = 1
k

k∑
i=1
|yi − f(xi)|

RSE =
∑k

i=1 (yi − f(xi))2∑k
i=1 (yi − ȳ)2

RAE =
∑k

i=1 |yi − f(xi)|∑k
i=1 |yi − ȳ|

Where f is the model function, yi is the output, xi the input of the i-th data point, k is
the number of data points and ȳ is the mean value of the all outputs.

A.3. Over- and Underfitting
To determine, whether a model is over- or underfitted, two different approaches can be
pursued, depending whether statistical errors are present in the data set for training (see
A.1).

If statistical errors are present in the training sample, they can be compared to the
models residuals when processing the samples inputs. Residuals are simply the differences
between each given output in the training set and the models prediction, based on the
corresponding input. If the residuals are higher than the statistical errors of the training
set, underfitting most likely occurred. In addition, residuals in the case of an underfitted
model are often forming distinct shapes along one or multiple dimensions of the input.
Such shapes of the residuals can be indicators for features, the models function misses.
For example, if residuals form a parabolic shape along one of its input-axis, a ax2 term
in the models function could be missing.

In the case of an overfitted model, residuals would simply decline to levels way below
the data’s statistical errors, through the course of training.

If statistical errors are not present in the training data, underfitting as well as overfitting
can still be diagnosed. For this, the available data is split into a training and an evaluation
set. Afterwards, the model will only be trained by feeding the data of the training set
into the learning algorithm. Then, residuals are computed for both, the training and
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evaluation set. Underfitted models in this case will result in unacceptably high residuals
of the training set, since the models structure itself forbids a good fit. For overfitted
models, the residuals for the training set would be almost zero, while the ones of the
evaluation set will be unreasonably high. This is because overfitted models do not
generalize data well. The specific inputs of the training data are learned almost perfectly,
but input values differing slightly, as contained in the data of the evaluation set, produce
strongly deviating results.

A.4. Complexity and Resources
In addition to the problem of overfitting, complex models consume much more resources
while training, in terms of time and memory space. Generally the trainings time and space
complexity rises polynomial, i.e., O(n2) or O(n3)) with its number of hyperparameters.
Thus, too complex models can be very costly for scientific or commercial endeavors.
For this reason, it is encouraged to use the most simplistic model, regarding number of
hyperparameters, which provides a satisfying result. As a rule of thumb, the simplest
model, which performs adequately, is considered the best one.

46



B. Data Visualization

B.1. Total Number of Values

5e+02 5e+03 5e+04 5e+05 5e+06

0
50

00
15

00
0

25
00

0

memcpy

Total Number of Values

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

5e+02 5e+03 5e+04 5e+05 5e+06

50
10

0
20

0
30

0
abstol

Total Number of Values

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

5e+02 5e+03 5e+04 5e+05 5e+06

0
50

10
0

15
0

20
0

gzip

Total Number of Values
C

om
pr

es
si

on
 T

hr
ou

gh
pu

t

5e+02 5e+03 5e+04 5e+05 5e+06

50
10

0
15

0
20

0
25

0

sigbits

Total Number of Values

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

5e+02 5e+03 5e+04 5e+05 5e+06

0
50

15
0

25
0

35
0

fpzip

Total Number of Values

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

5e+02 5e+03 5e+04 5e+05 5e+06

0
10

00
20

00
30

00
40

00
zfpabs

Total Number of Values

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

5e+02 5e+03 5e+04 5e+05 5e+06

0
20

0
40

0
60

0
80

0
12

00

zfprel

Total Number of Values

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

5e+02 5e+03 5e+04 5e+05 5e+06

0
20

00
60

00
10

00
0

lz4fast

Total Number of Values

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

Figure B.1.: Dependencies of Compression Throughput and Number of Values
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Figure B.2.: Dependencies of Decompression Throughput and Number of Values
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Figure B.3.: Dependencies of Compression Ratio and Number of Values
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B.2. Data Dimensionality
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Figure B.4.: Dependencies of Compression Throughput and Data Dimensionality
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Figure B.5.: Dependencies of Decompression Throughput and Data Dimensionality
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Figure B.6.: Dependencies of Compression Ratio and Data Dimensionality
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B.3. Mean Value

1e−05 1e−01 1e+03

0
50

00
15

00
0

25
00

0

memcpy

Mean Value

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

1e−05 1e−01 1e+03

50
10

0
20

0
30

0

abstol

Mean Value

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

1e−05 1e−01 1e+03

0
50

10
0

15
0

20
0

gzip

Mean Value

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

1e−05 1e−01 1e+03

50
10

0
15

0
20

0
25

0

sigbits

Mean Value

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

1e−05 1e−01 1e+03

0
50

15
0

25
0

35
0

fpzip

Mean Value

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

1e−05 1e−01 1e+03

0
10

00
20

00
30

00
40

00

zfpabs

Mean Value

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

1e−05 1e−01 1e+03

0
20

0
40

0
60

0
80

0
12

00

zfprel

Mean Value

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

1e−05 1e−01 1e+03

0
20

00
60

00
10

00
0

lz4fast

Mean Value

C
om

pr
es

si
on

 T
hr

ou
gh

pu
t

Figure B.7.: Dependencies of Compression Throughput and Mean Value
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Figure B.8.: Dependencies of Decompression Throughput and Mean Value

54



1e−05 1e−01 1e+030.
99

88
0.

99
92

0.
99

96
1.

00
00

memcpy

Mean Value

C
om

pr
es

si
on

 R
at

io

1e−05 1e−01 1e+03

5
10

20
50

abstol

Mean Value

C
om

pr
es

si
on

 R
at

io

1e−05 1e−01 1e+03

1
2

5
20

50
20

0

gzip

Mean Value

C
om

pr
es

si
on

 R
at

io

1e−05 1e−01 1e+03

1e
+

01
1e

+
03

1e
+

05

sigbits

Mean Value

C
om

pr
es

si
on

 R
at

io

1e−05 1e−01 1e+03

1
2

5
10

20
50

fpzip

Mean Value

C
om

pr
es

si
on

 R
at

io

1e−05 1e−01 1e+03

1
5

50
50

0
50

00

zfpabs

Mean Value

C
om

pr
es

si
on

 R
at

io

1e−05 1e−01 1e+03

20
50

10
0

20
0

zfprel

Mean Value

C
om

pr
es

si
on

 R
at

io

1e−05 1e−01 1e+03

1
2

5
10

50
20

0

lz4fast

Mean Value

C
om

pr
es

si
on

 R
at

io

Figure B.9.: Dependencies of Compression Ratio and Mean Value
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B.4. Standard Deviation
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Figure B.10.: Dependencies of Compression Throughput and Standard Deviation
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Figure B.11.: Dependencies of Decompression Throughput and Standard Deviation
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Figure B.12.: Dependencies of Compression Ratio and Standard Deviation
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B.5. Maximum Step Size
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Figure B.13.: Dependencies of Compression Throughput and Maximum Step Size
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Figure B.14.: Dependencies of Decompression Throughput and Maximum Step Size
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Figure B.15.: Dependencies of Compression Ratio and Maximum Step Size
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B.6. Absolute Error Tolerance
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Figure B.16.: Dependencies of Compression Throughput and Absolute Error Tolerance
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Figure B.17.: Dependencies of Decompression Throughput and Absolute Error Tolerance
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Figure B.18.: Dependencies of Compression Ratio and Absolute Error Tolerance
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B.7. Relative Error Tolerance
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Figure B.19.: Dependencies of Compression Throughput and Relative Error Tolerance
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Figure B.20.: Dependencies of Decompression Throughput and Relative Error Tolerance
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Figure B.21.: Dependencies of Compression Ratio and Relative Error Tolerance

67



B.8. Mean Value, Standard Deviation and Maximum
Step Matrix

Mean Value

1e−05 1e−01 1e+03

1e
−

05
1e

−
01

1e
+

03

1e
−

05
1e

−
01

1e
+

03

Standard Deviation

1e−05 1e−01 1e+03 1e−06 1e−03 1e+00 1e+03

1e
−

06
1e

−
03

1e
+

00
1e

+
03

Maximum Step
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C. RMSEs by Model Complexity

C.1. Linear Model Errors by Polynomial Degree
C.1.1. Compression Throughput
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Figure C.1.: RMSEs of Compression Throughput
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Figure C.2.: MAEs of Compression Throughput
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Figure C.3.: RSEs of Compression Throughput
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Figure C.4.: RSEs of Compression Throughput

72



C.1.2. Decompression Throughput
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Figure C.5.: RMSEs of Decompression Throughput
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Figure C.6.: MAEs of Decompression Throughput
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Figure C.7.: RSEs of Decompression Throughput
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Figure C.8.: RSEs of Decompression Throughput
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