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Abstract

Being informed about current business events is essential for decision makers in a company.
The aim of this thesis is to develop a strategy for recognizing company mergers in news articles
by applying common and experimental Machine Learning methods. For this text classification
problem, an interactive human-computer labeling technique is explored in order to manually
label an unclassified data set in a more efficient way. Using class probabilities based on
the Naive Bayes algorithm, the iterative approach accelerates the data labeling process by
propagating labels through the data set. Through experimental research on this practical
application problem, it is found that the proposed labeling technique is eight times faster
than conventional labeling, because the number of articles to be labeled can be reduced. On
the resulting data set, a common Support Vector Machines model achieves a Recall score of
86.9% and a Precision score of 86.1%. The presented incremental method that is simple to
implement is not only suitable for text classification problems, but universal for all kinds of
large unclassified data sets, as, e.g., in image classification and speech recognition.
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1. Introduction

This chapter illustrates the motivation for this thesis in Section 1.1 by explaining its context
and giving practical examples in order to emphasize the utility of this work. The goals of
this study are presented in Section 1.2 structuring the overall problem into several subtasks.
Finally, Section 1.3 gives an outline of this work by describing the contents of the individual
chapters.

1.1. Motivation

Mergers and acquisitions are amongst the most extensive transformations a business company
can go through. When it comes to a merger, new constellations of corporations may lead to
changing business processes. As this can create new opportunities for other service providers,
it is of high interest for organizations to be kept informed of these transactions.
Reading the latest business news daily may be an option for managers to keep track, but

it may happen that a merger is missed. Since this approach is furthermore time-consuming
and potentially error-prone, it is a candidate for automatization. Current Machine Learning
techniques can be used to solve this Natural Language Processing problem. As with all text
classification problems, a labeled data set is required to make predictions for future news
articles. A data set of classified business news articles can help the computer decide whether
a text is about a company merger or not.
For a variety of Machine Learning problems, a labeled data set is needed at the beginning

to train a prediction model. In general, the larger the training data, i.e., the labeled data set
is, the better the prediction.
However, labeled instances are often difficult to obtain. It may also be time-consuming to

produce them and, thus, expensive, since they require the efforts of an experienced person,
e.g., if long texts have to be screened. There are service providers, such as Amazon Mechanical
Turk1, where requesters can have done simple tasks for a fee. But when it comes to more
demanding tasks or sensitive data, the user probably wants to keep control of it. Therefore, it
is a fundamental interest to accelerate the process of data labeling. A more effective method
that labels a large amount of data in a short time can help to better classify future news
articles and is of interest for general tasks in the field of supervised Machine Learning.
The idea is to develop a concept for interactive labeling that is able to adapt to changing

requirements (in our case to adjust to the errors discovered) during the process in a similar
way to online algorithms and thereby continuously improve itself.

1https://www.mturk.com
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1. Introduction

1.2. Goals

The goal of this thesis is to develop a Machine Learning model that recognizes company
mergers in business news articles and to develop and investigate the suitability of an interactive
human-computer data labeling strategy for this task.

This task consists of the following subtasks:

1. Providing and preparing an unlabeled data set

2. Pre-processing the text

3. Investigating the suitability of different labeling techniques

4. Developing a classification model

These subtasks are described as follows: First, an unlabeled data set of business news
articles has to be obtained. The data should be as representative and complete as possible,
which is why general business news over a time period of twelve months2 are considered.
With the help of Natural Language Processing methods, the texts then have to be pre-

processed for further proceedings.
On the basis of this practical example, the concept of interactive data labeling will be

investigated using several experiments. By applying principles of human-computer interaction
and Semi-Supervised Machine Learning, the aim is to optimize this process compared to
strictly manual labeling. Our goal is to create a relatively large data set in order to improve
the predictions.
To finally recognize company mergers, a classification model is developed that can distin-

guish news articles according to whether an article is about a merger or not. As the Accuracy
of the model is essential, a comprehensive set of alternative models is explored and compared.
The follow-up question about the two merger partners and the exact date of completion of

a merger ("Which two companies merge and when?") can be solved by examining positively
classified articles with Named Entity Recognition algorithms. The automatization of the
identification of the details of a merger is not addressed in this thesis.

1.3. Outline

Chapter 2 provides background information about company mergers, Natural Language Pro-
cessing and Machine Learning, that is essential for this work. We also explain the principles
of interdisciplinary concepts that underlie our idea of interactive labeling. Chapter 3 presents
the state of the art and related work to the topic. In Chapter 4, the design of the entire
process and the corresponding evaluation is described. The underlying data set is explored
more closely in Chapter 5 using visualizations. Chapter 6 shows some examples of the prac-
tical implementation, especially how the interactive part was implemented. In Chapter 7,

2The time period of the data set for the conventional labeling study is only one month.
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1.3. Outline

the labeling techniques are evaluated in detail and a comprehensive evaluation of alternative
Machine Learning models is conducted. This thesis concludes with a discussion summarizing
all findings and commenting on future perspectives in Chapter 8.
In the next chapter, the background to the domain and the used tools and algorithms is

provided.
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2. Background

In this chapter, the related scientific fundamentals to the main topics of this work are intro-
duced. In Section 2.1, background information on the topic of mergers and acquisitions and
on the prerequisites for classifying news articles are given. Section 2.2 introduces interdisci-
plinary approaches that are related to the interactive labeling method. Section 2.3 provides
an overview of the most important text analysis methods which are used for the data pre-
processing. Important Machine Learning basics are described in Section 2.4. In Section 2.5,
the Machine Learning algorithms used for classification are briefly explained. The last section
also gives information about possible tuning options for algorithms and about the metrics
used to evaluate the results.

2.1. Company Mergers

This section briefly introduces the basic terms from the field of company mergers and acqui-
sitions.

Mergers and Acquisitions (M&A) is a generic term used to describe a range of possible
corporate transactions. According to [BA07, 11], these include:

• Mergers, i.e., corporate mergers under the Transformation of Companies Act and asset
transfers.

• Acquisitions and Divestitures, both as purchase or sale of shares in companies (this is
called Share Deal) and individual assets (Asset Deal).

• From strategic alliances and Joint Ventures to outsourcing agreements for strategically
relevant functions.

The following definitions in this section are taken from [Eng17, 4]:

In M&A transactions, the vendor is often referred to as the seller and the acquirer as the
buyer. Other parties involved may be the object of purchase itself (in the Share Deal) and,
under certain circumstances, the management or any guarantors.

A Share Deal is the acquisition of all or part of the shares in a company that operates a
business. Through the share deal, all rights and obligations and thus all assets and liabilities
of the acquired company are indirectly transferred to the buyer.

A Joint Venture is when two or more companies merge to form a joint venture company.
This is usually done by way of a share deal by acquiring shares in an existing company or by
founding a new company for this purpose.

5



2. Background

Acquisition of control means the acquisition of more than 50 % of the shares of a
company in the share deal outside listed companies. The term also includes the acquisition of
less than 50 % of the shares of a company in the share deal in conjunction with contractually
guaranteed reservations of consent or veto rights for the buyer (e.g., in a joint venture).

In the Due Diligence examination, the prospective buyer wants to examine the company
to be acquired (the company in the share deal or the assets in the asset deal) as closely as
possible.

Signing is the signing or notarization of the purchase contract. Whether or not a notarial
certification is required depends on the object of purchase.

Closing refers to the stage at which the transaction is completed. Signing and closing
often fall apart because a series of steps can only take place after signing: Payment of the
sale price, transfer of the books of account and the actual control, etc. (the so-called closing
conditions).

2.2. Interdisciplinary Concepts

The concept of the labeling process is based on several interdisciplinary approaches that are
briefly explained in this section.

2.2.1. Human-Computer Interaction

A human-computer dialog consists of interactions between the user and the computer to
achieve a specific goal. An interaction step consists of a single input for the dialog. The input
and output interface includes all information representations and inputs. It thus determines
the possible interaction steps [Hei04, 18-19].

2.2.2. Visual Analytics

Visual Analytics is an interdisciplinary approach that combines the advantages of human
and automated analysis. It is used to examine large, complex data sets.
When it comes to the recognition of known patterns, the computer can make relatively

clear decisions in shorter time and human working time is not absolutely necessary. But when
we consider unexpected correlations, more diverse perception is needed as well as creativity
or general knowledge in order to decide - as in our case - whether a merger is actually taking
place or not. In that case, the human can make the better and more informed decision.
One goal of Visual Analytics is to combine these different skills as best as possible and find

a better division of tasks. It helps the analyst to evaluate and correctly intermediate results
faster and to improve methods and models [KPW14, 171-176].

6



2.3. Text Analysis

2.3. Text Analysis

This section explains the basics of common text processing concepts that are used in this
project.

2.3.1. Natural Language Processing (NLP)

NLP is a field of computer science that focuses on computers being able to understand
language in a natural way, just like humans do. Typically this refers to tasks such as under-
standing the sentiment of text, speech recognition or text classification [Bey18, 1].

2.3.2. Pre-processing

In this part, the pre-processing steps Tokenization, the concept of ignoring Stop Words, and
Stemming are explained. All these steps are necessary to prepare text for a valid input for
Machine Learning algorithms.

Tokenization

Tokenization means segmenting a sentence into units of the word level [MM16], for example,
the sentence

On Monday , Gi thub and M i c r o s o f t announced t h e i r merger .

is fragmented into the tokens:

[ 'On ' , 'Monday ' , ' Github ' , ' and ' , ' Mic ro so f t ' , ' announced ' ,
' t h e i r ' , 'merger ' ] .

Ignoring Stop Words

Each language contains a variety of linking words, such as one, like, the, these, etc.. Although
these words are important for humans, they are often not useful or even disturbing for text
analysis. These often short words are called Stop Words and should be filtered out, so that
only the important words are left [MM16]. For example, the sentence

Sw i t z e r l a nd ' s S u n r i s e Communicat ions Group has con f i rmed i t i s
i n t a l k s ove r a p o t e n t i a l a c q u i s i t i o n o f broadband p r o v i d e r
L i b e r t y G loba l ' s Sw i s s b u s i n e s s UPC Schweiz .

contains the stop words

[ ' has ' , ' i t ' , ' i s ' , ' i n ' , ' over ' , ' a ' , ' of ' ] .

The choice of Stop Words depends on the specific application and is implemented variously
in practice.

7



2. Background

Stemming

The process of reducing a word to its stem, also called root, is called Stemming [MM16]. It
is about grouping similar words to be able to use them as synonyms for the same features in
algorithms. It also helps to analyze sentences by tokenization, which we use for NER explained
in Section 2.3.5.
Example:

German Economy M i n i s t e r Pe te r A l tma i e r s a i d on Tuesday tha t he
d i d not f a v o r g e t t i n g m i n i s t e r i a l a pp r o v a l f o r d e a l s such as
the p r o p o s a l to merge Siemens and Alstom ' s r a i l b u s i n e s s e s to
b e t t e r compete i n Europe and abroad .

After applying Stemming the result is:

[ ' german ' , ' economi ' , ' min i s t ' , ' pe te r ' , ' a l tma i e r ' , ' s a i d ' , ' on
' , ' tuesday ' , ' that ' , ' he ' , ' did ' , ' not ' , ' f a vo r ' , ' get ' , '
m i n i s t e r i ' , ' approv ' , ' f o r ' , ' dea l ' , ' such ' , ' as ' , ' the ' , '
propos ' , ' to ' , 'merg ' , ' s iemen ' , ' and ' , ' alstom ' , ' s ' , ' r a i l
' , ' bus i ' , ' to ' , ' be t t e r ' , ' compet ' , ' i n ' , ' europ ' , ' and ' , '
abroad ' ]

2.3.3. Bag-of-Words Model (BOW)

Categorical data such as text or words must first be converted to numerical data before we
can pass them to learning algorithms for further processing. The BOW model [Mur12] is
a simple approach to describe text documents. Each document is represented by a binary
feature vector, which records the number of occurrences of each word. The length of all
vectors corresponds to the number of different terms in all documents. Every entry xij
describes the number of occurrences of terms j in document i.

Absolute and Relative Word Frequency

Depending on the task, either the absolute word frequency (the absolute number of oc-
currences of one specific term in a document) or the relative word frequency (the absolute
number of occurrences of one specific term in a document divided by the total number of
occurrences of all terms in all documents) is being used. The absolute number of occurrences
may thus range from 0 to infinity, while the relative frequency represents a probability and
can only take values between 0 and 1.

Document Term Matrix

When applying the BOW model to a text corpus, the summary of all feature vectors is called
the document term matrix or also feature matrix.

The following example uses three text documents; doc1, doc2, and doc3.

8



2.3. Text Analysis

doc1 : "The sun i s s h i n i n g . "
doc2 : "The weather i s sweet . "
doc3 : "The sun i s s h i n i n g and the weather i s sweet . "

Using absolute term frequencies, the corresponding document term matrix is shown in
Table 2.1. To calculate the relative term frequencies, the number of occurrences of each word
is divided by the number of words in all documents (17 words in total). The corresponding
document term matrix is shown in Table 2.2.

the sun is shining weather sweet and
doc1 1 1 1 1 0 0 0
doc2 1 0 1 0 1 1 0
doc3 2 1 2 1 1 1 1

Table 2.1.: Document Term Matrix, Absolute term frequencies

the sun is shining weather sweet and
doc1 0.059 0.059 0.059 0.059 0 0 0
doc2 0.059 0 0.059 0 0.059 0.059 0
doc3 0.118 0.059 0.118 0.059 0.059 0.059 0.059

Table 2.2.: Document Term Matrix, Relative term frequencies

2.3.4. N-Gram

Related text fragments or words are called N-grams [Ras17, 241]. The text fragments created
in the BOW model by decomposing the text are called unigrams (n=1), because each token
of the vocabulary represents a single word. The bigram (n=2) representation of a text always
considers two sequential words. In this work, the unigram model is mainly used.

2.3.5. Named Entity Recognition (NER)

NER [FGM05] labels sequences of words in a text which are terms, such as person and
company names, or dates and locations.
Each word (and punctuation mark) is assigned a label, for example

On Monday , Gi thub and M i c r o s o f t announced t h e i r merger .

is mapped as follows:

[ ( 'On ' , 'O ' ) , ( 'Monday ' , 'O ' ) , ( ' , ' , 'O ' ) ,
( ' Github ' , 'ORGANIZATION ' ) , ( ' and ' , 'O ' ) ,
( ' Mic ro so f t ' , 'ORGANIZATION ' ) , ( ' announced ' , 'O ' ) ,
( ' t h e i r ' , 'O ' ) , ( ' merger ' , 'O ' ) , ( ' . ' , 'O ' ) ]

9



2. Background

It is possible to use a pre-trained model or your own name training set, depending on
how specific the search is. For this project, we use a pre-trained model and perform the
customizations necessary for our problem only afterwards.

2.4. Machine Learning

In the following, we introduce the Machine Learning basics that are essential to understand
the proceeding of the next chapters.

2.4.1. Supervised, Semi-Supervised Learning

If a data set shows the mapping of instances to a certain class using labels, Supervised
Learning [Mar09, 7-9] can be applied. The algorithm learns based on a training set and
generalizes to respond correctly to all possible future inputs.

Semi-Supervised Learning [Zhu05] is a special form of classification. Traditional clas-
sifiers only use labeled data (feature / label pairs) for training. Meanwhile unlabeled data
may be relatively easy to collect, but there have been few approaches to use them. Semi-
Supervised Learning addresses this problem by using large amount of unlabeled data, together
with the labeled data, to build better classifiers. More precisely, already labeled data can be
used to label more of the unlabeled data. This is repeated until all data is labeled and only a
supervised learning problem remains. The advantage of this approach is, that it requires less
human effort than strictly Supervised Learning.

2.4.2. Binary, Multi-Class Classification

An algorithm learns a mapping from each input to a specific class. If there are exactly two
possible classes, this is called binary classification. If there are more than two classes, this
is called multi-class classification [Mur12, 3]. In this work, we are using both concepts.

2.4.3. Balanced, Imbalanced Data Sets

If there is an equal number of instances of each class in a data set, it is called a balanced
data set. Otherwise, the data set is called imbalanced. Dealing with imbalanced data sets
leads to several challenges in building and evaluating the prediction model. By using stratified
sampling (see Section 2.4.4) the imbalance of the individual classes can be corrected though.
However, this may lead to the situation that only a small subset of the available data can be
used. As only a very small proportion of the examined business news items consists of articles
on the subject of mergers, the data set used in this work is imbalanced.

2.4.4. Training, Testing, Validation Set

In order to build a Machine Learning model for supervised learning, a labeled data set is
needed first. The initial data set is then divided into a training, testing and (optionally) a
validation set as illustrated in Figure 2.1.
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Figure 2.1.: Training, validation and testing set

With the help of the training data, the model is fitted. The testing data must not
be used in training or for manual optimization of the Hyper-Parameters. They are used to
test the finished model against unknown data with which it was not trained. This allows an
unbiased evaluation of a final model that fits the training data set.
To be able to check whether the quality of the results is improving during the training and

optimization process, another part of the data can be reserved as validation data [Mar09,
66-67]. This allows an unbiased valuation of a model that fits the training data set while
manually tuning the Hyper-Parameters of the model. However, the evaluation becomes more
biased as the knowledge about the validation data set influences the model configuration.
Using a validation dataset also reduces the amount of data available for training and may

make the training process vulnerable to random selection of validation data.
After evaluation, all data can finally be used to learn the final classifier.

There are several ways to divide a data set into training, test and (optionally) validation
set. Below we briefly present some common practical techniques.

Test-Train-Split

This is the simplest division variant. The data is divided into a training and a testing set.
The proportion of training to testing data is not specified, but the convention is to split the
data set into 75:25 for a very large amount of data and to split it into 60:40 for a smaller
one [Mar09, 67].

Shuffle Split

This random permutation Cross-Validation generates indices to split data into training and
testing sets. In contrast to other Cross-Validation strategies, random splits do not guarantee
that all folds will be different, although this is still very likely for sizable data sets [Sci18b].

Stratified Split

This split method uses stratified folds, which is especially important for unbalanced data sets
[Sci18c]. The folds are derived by preserving the percentage of samples for each class.

To validate a model, there are different validation methods we briefly explain below.
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(K-fold) Cross-Validation

This popular method for estimating the generalization error can be divided into Two-Fold
(k = 2) and K-Fold Cross-Validation. The Two-Fold approach is also referred to as
the Holdout Method, where the data set is divided once into training and test data. As
mentioned before, the former is used to train the model, the latter is used to evaluate the
model performance.
To improve generalization, the K-Fold Cross-Validation divides the training data set into

k subsets (without replacement). Then k − 1 subsets are used to train the model and the
last subset is used for testing. This procedure is repeated k times so that we can obtain k
models and k estimates of performance and calculate the average from them. In practice,
it is common to use five to ten folds [Mar09, 178-181]. In my implementation, I mainly use
Ten-Fold Cross-Validation.

2.5. Classification Algorithms

This section briefly introduces the Machine Learning algorithms that are applied to the clas-
sification problem.

2.5.1. Naive Bayes

The Naive Bayes classifier [Zha04] is a simple classifier, that is popular in NLP. It is one of
the most efficient and effective inductive learning algorithms for Machine Learning and Data
Mining.
The simplest approach is to assume that every pair of features is conditionally independent

given the class label. That is why the classifier is called naive.
Given the class variable y and dependent feature vector x = (x1, . . . , xn) with the number

of features n, Bayes’ theorem states the following relationship:

P (y|x1, . . . , xn) =
P (y)P (x1, . . . , xn|y)

P (x1, . . . , xn)

Using the naive conditional independence assumption that for all i

P (x1|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y)

this relationship can be simplified to

P (y|x1, . . . , xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, . . . , xn)

Since P (x1, . . . , xn) is constant given the input, the following classification rule can be
used:

ŷ = argmax
y

P (y)

n∏
i=1

P (xi|y)
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and Maximum A Posteriori (MAP) can be used to estimate P (y) and P (xi|y); where P (y)
is then the relative frequency of class y in the training set.

Multinomial Naive Bayes

This variant of Naive Bayes algorithm for multinomially distributed data that is also often
used in text classification. The distribution is parametrized by vectors Θy = (Θy1, . . . ,Θyn)
for each class y, where n is the number of features (in text classification, the size of the
vocabulary) and Θyi is the probability P (xi|y) of feature i appearing in a sample belonging
to class y. The parameter Θy is estimated by a smoothed version of maximum likelihood, i.e.
relative frequency counting:

Θ̂yi =
Nyi + α

Ny + αn

where Nyi =
∑

x∈T xi is the number of times feature i appears in a sample of class y in the
training set T , and Ny =

∑n
i=1Nyi is the total count of all features for class y.

The smoothing prior α ≥ 0 accounts for features not present in the learning samples and
prevents zero probabilities in further computations [Sci18a].

2.5.2. Support Vector Machine (SVM)

The SVM [Mar09, 119] algorithm is one of the most popular algorithms in Machine Learning.
It can be used for classification and regression and performs well on reasonably sized data
sets. The main idea is to modify the data by changing its representation.
Using binary classified training data, a model is created that assigns new samples to one

category or another, making them a non-probabilistic binary linear classifier. An SVM model
is a representation of the samples as points in space that are mapped in such a way that
the examples of the individual classes are separated by as large a distance as possible, called
margin. New samples are then mapped into the same space and are predicted to belong to
a class based on which side of the gap they fall on. SVMs can efficiently perform non-linear
classification using a kernel trick by implicitly mapping their inputs into high-dimensional
feature spaces.

2.5.3. Tuning Options

The parameters of the algorithms presented above and also the model fitting process can
partly be adapted in order to achieve better results. In this subsection, we introduce some
methods to improve the algorithms’ performance.

Hyper-Parameters

Parameters of a learning algorithm that can be modified and optimized to improve perfor-
mance are called Hyper-Parameters. The process of selecting appropriate values for the
adjustable parameters of a given classification task is known as Model Selection [Ras17, 33,
81].
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Feature Selection

Assuming that each instance of a training set is represented by a vector of d features, Feature
Selection means to learn a predictor that only relies on k with k << d features. Predictors
that use only a small subset of features require a smaller memory footprint and can be applied
faster. Finally, constraining the hypothesis class to use a small subset of features can reduce
its Error Rate and thus prevent Overfitting. Ideally, all subsets of k out of d features must be
tried in order to choose the subset, which leads to the best performing predictor. In practice,
as such a search is too exhaustive, the established methods cannot guarantee finding the best
subset, but they often work reasonably well [SSBD14, 310].

2.5.4. Evaluation Metrics

Metrics are used to measure the quality of a classification and help us to select the best
possible classification algorithm, taking into account our individual criteria. They are built
from a Confusion Matrix which records correctly and incorrectly recognized examples for each
class. Table 2.3 presents a Confusion Matrix for binary classification, where tp are true
positive, fp false positive, fn false negative, and tn true negative [SJS06].

Class / Recognized as positive negative
positive true positive (tp) false negative (fn)
negative false positive (fp) true negative (tn)

Table 2.3.: Confusion Matrix for Binary Classification

Accuracy

The most used empirical measure is Accuracy [SJS06] which is calculated as follows:

Accuracy =
tp+ tn

tp+ fp+ fn+ tn

One should keep in mind, however, that Accuracy can be very misleading with imbalanced
data sets. Therefore we focus on the metrics Recall and Precision in this work.

Precision, Recall, F1-score

Within a set of classes, there is a class of special interest, usually the positive labeled objects.
Other classes either remain unchanged (multi-class classification) or are combined into one
(binary classification). The measures of choice calculated on the positive class are:

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn
= Sensitivity
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and

F1 score = 2 · Precision ·Recall
Precision+Recall

also known as f-measure. All three measures distinguish the correct classification of labels
within different classes.
Recall is a function of true positives and false negatives ("How many relevant items are

selected?"), while Precision is a function of true positives and false positives ("How many
selected items are relevant?"). The F1-score combines the two metrics Recall and Precision.

Error Rate

The Error Rate [Ras17, 195] or also called estimation error is the number of incorrectly
classified examples per total number of classified examples and takes a value between 0 and
1, where 0 denotes absence of Error and 1 denotes the maximum Error Rate.

Error Rate =
fp+ fn

fp+ fn+ tp+ tn

Resubstitution Error

When training and testing using the same data set, the number of incorrectly classified exam-
ples is called Resubstitution Error. It is used to show whether the data used is ambivalent
or incorrect, or whether an inappropriate method was used.

Variance, Bias, Overfit, Underfit

Variance is a measure of the consistency (or variability) of the model prediction for a particular
object when we train the model more than once, for example with different subsets of the
training data set. This allows us to see whether the model is sensitive to the randomness of
the training data.
The Bias, on the other hand, indicates how much the predictions deviate from the correct

values if we apply the model several times to different training data sets. It is a measure of
the Systematic Error that is not due to randomness.

Sometimes, the model works well as long as training data is used because it memorizes the
features of the training data. Unknown data (testing data), on the other hand, can hardly be
handled because generalization is not successful.
If a model suffers from such a problem called Overfit, one also speaks of a large Variance,

which is often caused by the fact that there are too many parameters that lead to a model
that is too complex for the underlying data.
Similarly, a model may suffer from Underfit (large Bias, high tendency to make certain

decisions) if it is not complex enough to recognize the patterns in the training data and
therefore also fails to work properly when applied to unknown data [Ras17, 81-82].
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Summary:
In this chapter, the difference between company mergers and other transactions was explained.
The reader is now familiar with the interdisciplinary approaches that are referred to in this
work, Human Computer Interaction and Visual Analytics. There was also a short introduction
to text processing and Machine Learning, which helps to get deeper into the topic. In
Chapter 3, the State of the Art in the field of Semi-Supervised Machine Learning and other
related work is presented.
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This chapter presents the State of the Art in Semi-Supervised Machine Learning and similar
approaches that are related to this work. As an overview of current research, algorithms that
are able to improve themselves are discussed in Section 3.1, then the functionality of weakly
supervised algorithms is explained in Section 3.2 and lastly, the concept of algorithms that
use decision boundaries is introduced in Section 3.3.

A number of scientists are researching optimized usage of class labels in Machine Learning
which illustrates the relevance of this subject. All studies presented are dealing with the
problem that large data sets are difficult to completely be labeled manually and they all aim
at improving the classifier. However, these works differ in focus and execution and can be
categorized into:

a) Self-improving Algorithms

b) Weakly Supervised Algorithms

c) Active Learning Algorithms

The basics of these approaches and how they differ from our work is explained below.

3.1. Self-Improving Algorithms

These types of algorithms improve their performance with the help of internal calculations and
perform iteratively until an optimal result has been achieved. There is no human intervention
intended during the process.

3.1.1. Expectation-Maximization

Nigam, McCallum, Thrun and Mitchell propose a text classification from labeled and unlabeled
documents using Expectation-Maximization and a Naive Bayes classifier [NMTM00]. It shows,
that the Accuracy of learned text classifiers can be improved by augmenting a small number
of labeled training documents with a large pool of unlabeled documents. The algorithm
first trains a classifier using the available labeled documents, and probabilistically labels the
unlabeled documents. It then trains a new classifier using the labels for all documents, and
iterates to convergence.
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Differentiation from our work: The idea of reducing the effort for manual labeling by
using the class probabilities of the Naive Bayes algorithm is similar to our motivation. The
procedure differs from ours by the fact that no further instances are labeled by the user after
the first step. The algorithm operates independently during the following iterations instead.

3.2. Weakly Supervised Algorithms

Weakly Supervised Learning algorithms automatically use the unlabeled data in addition to
the labeled data to improve the classifier. No human intervention is intended during the
process.

3.2.1. Label Propagation

Zhu and Ghahrarami [ZG02] investigate the use of unlabeled data to better classify labeled
data. They propose a simple iterative algorithm, called Label Propagation, to propagate labels
through the data set along high density areas defined by unlabeled data. A constructed graph,
where each document is represented by a node, represents similarities among documents with
its edge weights.

Pawar, Ramrakhiyani, Hingmire and Palshikar [PRHP16] also propose an algorithm for
weakly supervised text classification based on Zhu’s and Ghahrarami’s Label Propagation al-
gorithm. Additionally, they discover underlying topics using Latent Dirichlet Allocation (LDA)
and enrich the document graph by including the topics in the form of additional nodes. The
edge weights between a topic and a text document represent the level of affinity between
them. Their approach does not require document level labeling, instead it expects manual
labels only for topic nodes. This minimizes the level of supervision needed as only a few
topics are observed to be enough for achieving sufficiently high Accuracy. The Label Prop-
agation algorithm is employed on this enriched graph to propagate labels among the nodes.
The approach combines the advantages of Label Propagation (through document-document
similarities) and Topic Modeling (for minimal but smart supervision). They demonstrate the
effectiveness of this approach on various data sets and compare it with other weakly supervised
text classification approaches.

3.2.2. Cluster Assumption

In their paper, Zhou, Bousquet, Lal, Weston and Schölkopf [ZBL+04] present a solution, that
is similar to the basic Label Propagation algorithm. Also they consider the general problem
of learning from labeled and unlabeled data. The principle is based on the assumption of
consistency, which means that similar feature vectors are highly likely to have the same label.
Their method provides experimental results on a number of classification problems and shows
the effective use of unlabeled data.

Differentiation from our work: Their concept focuses on the usefulness of unlabeled data
in model building. The goal is not to label the unlabeled instances, but only to improve the
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classifier.

3.3. Active Learning Algorithms

Active Machine Learning algorithms are a special supervised Machine Learning technique.
They are used when large numbers of unlabeled samples are available and getting labels for
them is costly (e.g., requiring consulting a human expert).
The Active Learning process takes as input a set of labeled examples, as well as a larger

set of unlabeled examples, and produces a classifier and a relatively small set of newly labeled
data. The overall goal is to create a classifier as good as possible, without having to supply
the learner with more data than necessary. The learning process aims at keeping the human
labeling effort to a minimum, only asking for advice where the training utility of the result of
such a query is high. Some Active Learning algorithms focus on refining the decision boundary
through exploring new regions which the current hypothesis classifies incorrectly.

3.3.1. Pre-Selection for Manual Labeling using Decision Boundaries

Osugi, Kun and Scott [OKS05] propose an Active Learning algorithm that balances such
exploration with refining of the decision boundary by dynamically adjusting the probability to
explore at each step. Their experimental results demonstrate improved performance on data
sets that require extensive exploration while remaining competitive on data sets that do not.

Fredrik Olsson’s report [Ols09] is a literature survey of Active Learning from the perspective
of NLP. He describes Active Learning as a supervised Machine Learning technique where the
algorithm controls the data used for learning. A human with extensive knowledge of the
respective domain is then asked about the classes of instances for which the model makes
unreliable predictions so far. The Active Learning process takes a series of labeled samples
and a larger number of unlabeled samples as input and generates a classifier and a relatively
small amount of newly labeled data. The overall goal is to create a classifier as good as
possible without providing more data than necessary. The learning process aims to reduce
the human annotation effort to a minimum and only asks for human advice if the training
benefit of the result of such a query is high.

Tong and Koller [TK01] concentrate on the Machine Learning algorithm for support vector
machines. Instead of using a randomly selected training set of labeled data, the learner has
access to a pool of unlabeled instances and can request the labels for a number of them.
They introduce a new algorithm for performing active learning with support vector machines,
i.e., an algorithm for choosing which instances to request next.

Differentiation from our work: These concepts use decision boundaries to pre-select in-
stances to be labeled by the user, which is a similar approach we use in this work. However,
they do not involve human-computer interaction, which distinguishes these projects from our
work.
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Summary:
The research presented in this chapter is concerned with how to improve a classifier using
unlabeled data. However, unlabeled instances are not actually labeled during the process.
Instead, they are used for internal calculations to improve the classifier. The aspect of
human-computer interaction also plays an important role in our work, in which the user is
involved during the entire process. This concept distinguishes our research from the others.
In the next chapter the design of this project is explained in detail.
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In this chapter, the design of this project is presented by describing the individual processing
steps to recognize mergers in news articles. In Section 4.1, a generic strategy is presented
which contains the most important steps to solve the problem. Then two different concepts
are distinguished. We present a conventional concept in Section 4.2 and an interactive concept
in Section 4.3 and explain these in detail. The two examined variants of data labeling and
processing are compared to each other discussing strengths and weaknesses.

4.1. Overview

At this point, an overview is given of how the entire project is structured. To detect company
mergers in news articles, a number of steps are necessary, as shown in Figure 4.1.

Figure 4.1.: Data processing steps

The individual steps consist of:

• Data Download: After identifying an accessible source for business news articles, an
appropriate data set must be downloaded.

• Data Cleaning: The downloaded data must be cleaned in order to remove disruptive
information.

• Data Selection: An appropriate subset of all cleaned data must be selected.

• Data Labeling: Each instance of the data record needs to be assigned to a class.
First, an experiment with the conventional labeling approach is performed evaluating
its advantages and disadvantages. Secondly, the ideas of Visual Analytics and Human
Computer Interaction are transferred to the topic of data labeling and an innovative
strategy will be developed. We perform an experiment with the interactive labeling ap-
proach in order to compare both methods regarding time effort and number of instances
that have to be labeled manually.

• Data Pre-Processing: In order to make the texts of the individual articles usable for
machine learning algorithms, they must be prepared appropriately.
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• Model Selection: A Machine Learning Model is trained on the labeled data set to make
class predictions for future news articles.

• Recognition of Mergers: The goal of this work is to recognize articles that deal with
the merger of two companies.

The description of the data processing is divided into two separate sections; Section 4.2
for the conventional and Section 4.3 for the interactive labeling method.

4.2. Conventional Method

This section describes how the conventional data processing method is applied to the data
set downloaded in Section 4.2.2. After an overview in the following section, the individual
steps are described in more detail.

4.2.1. Data Processing Pipeline

Figure 4.21 shows all individual steps of data processing when applying conventional manual
labeling to the data set. This processing method may already be known to the reader as the
typical procedure when it comes to classification problems. It can be described as top-down
or waterfall method, since the individual steps are executed one after another.
After data downloading and data cleaning, a comprehensive data set for model building is

assembled by selecting specific instances. Then, all of these instances are labeled at once in
a single step, which is the most significant characteristic of the conventional data processing
variant. Having pre-processed the textual part of the data, a Machine Learning model can be
fitted. Optionally, at this point, the wrongly predicted instances are examined and revised.
Next, the model can be improved using new hypotheses from the newly obtained knowledge
during model selection. This last step of testing and tuning is repeated until the best possible
result is achieved. In the final step, the identified articles about company mergers are presented
to the reader.
In the following sections, the individual processing steps of conventional data processing

are described in detail.

4.2.2. Data Download

To start the process, appropriate data must be identified and downloaded. As a source for news
articles, RSS feeds from established business news agencies such as Reuters or Bloomberg
are considered. However, when crawling RSS feeds, it is only possible to retrieve the current
news and not the news from the past. Since we want to analyze news retrospectively, the
data set is obtained from the provider webhose.io2. It offers access to English news articles

1For a better understanding, processing steps which are identical or similar in both methods are colored blue
in the diagram. The steps that are different in each method are colored red. Optional steps are indicated
by a dashed line.

2https://webhose.io
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Figure 4.2.: Data processing pipeline for conventional labeling

23



4. Design

from sections like Financial News, Finance and Business at affordable fees compared to news
agencies’ offers. As only reliable sources are of interest, the request is limited to the websites
of the news agencies Reuters, Bloomberg, Financial Times, CNN, The Economist and The
Guardian. With this provider, news of a time period of the last 30 days can be downloaded
for free as a stream of JSON files via an API, which is sufficient to execute the conventional
labeling strategy. In order to make a pre-selection and increase the ratio of news about
mergers, the request includes only articles that contain at least one of the keywords merger,
acquisition, take over, deal, transaction or buy in the header. Furthermore, the
request is restricted to original contributions in order to exclude user comments and the like3.
For further processing, the JSON files’ relevant information is stored as a CSV file.

4.2.3. Data Cleaning

At this point, it must be ensured that all news articles are standardized, data errors are
removed or corrected, and no duplicates or incomplete data are contained.

4.2.4. Data Selection

Since the query is already restricted by filtering settings (see Section 4.2.2), the complete
downloaded data set is selected for further proceedings.
The resulting CSV file consists of the five columns:

Timestamp Title Text SiteSection Label

• Timestamp: The thread’s publishing date and time in the format
YYYY-MM-DDThh:mm (GMT+3).

• Title: The news article’s headline.

• Text: The news article’s plain text.

• SiteSection: The link to the section of the site where the thread was created.

• Label: The article’s class label is entered here later.

The columns Title and Text contain the main data, whereas the remaining attributes
contain the meta data.

4.2.5. Conventional Data Labeling

As the focus of this thesis is on corporate mergers (see Section 2.1), binary classification is
used as follows: An article is defined as positive (also called hit article, assigned to Class 1),
if it deals with a corporate merger of two companies and if it will definitely take place or has
recently taken place. We are not interested in mergers in the past, nor in negotiations, planning
or speculation about corporate mergers. For these special cases and all other unrelated news
we mark them as Class 0, what corresponds negative. The two classes are:

3See https://docs.webhose.io/docs/filters-reference for more filter settings.
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Class 0: other/unrelated news

Class 1 (merger): merger of companies A and B

The CSV file is then exported to Microsoft Excel so that the relevant text columns are
clearly displayed next to the label column. Now the procedure is as follows: If it is already
clear from the title of an article that it is an irrelevant article, the article is labeled directly
with 0 without reading the full text. If we assume a hit article, the entire article text is read
and afterwards the correct label inserted. During the labeling procedure, the time needed is
measured for the evaluation.

4.2.6. Data Pre-Processing

In order to use the news articles for Machine Learning algorithms, we must first prepare the
cleaned data appropriately. The aim is to transform the texts as document term matrices so
that classification algorithms can be applied.
For pre-processing, there’s not just one right solution. It rather depends on the individual

case how it should be implemented. We are guided by the implementation of scikit learn’s
CountVectorizer, as it marks an unofficial standard in the field of NLP and is widely used.
According to our problem, we commit to the following sub-steps:

• Removing punctuation marks: Punctuation marks are replaced with white spaces.

• Tokenization: Each news article is split into a list of single words.

• Ignoring numbers: All numbers in the news article are left out, as they are irrelevant
to our classification problem.

• Ignoring company names: We leave all company names in the news articles (see
Section 7.3), as they can lead to wrong decisions during training.

• Transforming words to lower case: Every word is transformed to lower case.

• Word Stemming: Every word is reduced to its word stem.

• Ignoring Stop Words: We filter out common words, so that they do not interfere with
our calculations.

4.2.7. Model Fitting

Once the entire data set has been labeled, a Machine Learning model is built using K-Fold
Cross-Validation. With stratified sampling, the stratified folds are selected by preserving the
percentage of samples for each class.
Now, a suitable algorithm is searched for and Hyper-Parameters are optimized in several

steps. As classification algorithms, scikit learn’s Gaussian Naive Bayes and SVM are appropri-
ate for this kind of NLP problems. When using Naive Bayes, we assume that the probability of
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a word is independent of its position within the document; thus, for example, the probability
of seeing the word merger in the first sentence of an article is the same as seeing it in any
other position. Since a headline is actually more important than the last sentence, for exam-
ple, one could include this observation in our model. As a human, we do this unconsciously
by assigning greater importance to the headline, but our calculation model currently does not
take this into account.
As soon as the best model is identified, the process is completed.

4.2.8. Creating New Hypotheses

New hypotheses in this model are limited to the step of model fitting. The different parameters
and variants of the algorithms are tested as described above in order to find the best algorithm
and parameter combination.

4.2.9. Analysis of Wrongly Predicted Instances

To investigate the incorrectly predicted articles, the Resubstitution Error is calculated. All
manually labeled data is used as training data set and the resulting model is applied to exactly
the same data set (as testing data set). This method allows to identify ambivalent data and
see if the user mistakenly labeled an instance with the wrong class. Then, if necessary, these
examined labels are corrected. The Resubstitution Error is also an indication of how well the
model already works (but it is subject to Overfitting).
In general, however, this only affects a very small part of the overall data. Besides, this

step is often neglected in practice.

4.2.10. Recognition of Company Mergers

The articles predicted by the classification algorithm as Class 1 (merger) are those in which a
merger of two companies is reported. This is the last step in our pipeline. In future work, the
merger partners and the time of contract conclusion could be extracted from these articles
with the help of NER.

4.3. Interactive Method

In the following, the interactive labeling method is presented in the context of data processing.
We explain to what extent this method differs from the conventional one and discuss its
strengths and weaknesses.

4.3.1. Data Processing Pipeline

In data processing with interactive labeling, the first three steps of the pipeline are similar to
those described in Figure 4.2.
However, after downloading, cleaning and selecting the data, this variant differs significantly

from the previously described concept. In contrary to labeling all articles at once, the labeling
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process is done incrementally in separate iterations. As shown in Figure 4.3, the steps of
each iteration are: Labeling of a determined number of instances, pre-processing of the data,
model fitting, analysis of wrongly predicted instances and/or creating new hypotheses.
The last step is identical to the previous pipeline: As soon as the best model has been

found, it can be used to identify the searched articles about company mergers. All individual
processing steps are described in more detail below.

Figure 4.3.: Data processing pipeline for interactive labeling

4.3.2. Data Download

To investigate the interactive labeling strategy, a larger data set than before is needed to
perform a number of iterations, why a period of twelve months of the year 2017 is considered.
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This time, the requested sources are extended to Reuters, Bloomberg, Financial Times, CNN
and The Economist to get a more diverse result. The request is sent to the webhose.io
historical archive.4 The data is then downloaded via a link; each news article as a single
JSON file. The exact query can be found in Section 6.3.1.

4.3.3. Data Cleaning

Data Filtering: As webhose.io is a secondary source for news articles and only crawls the
news feeds itself, it may occur that some RSS feeds are not parsed correctly or an article is
tagged with a wrong topic as site categories. Downloaded files may also contain blog entries,
user comments, videos, graphical content and other spam, or even news in other languages
than English, which all should be filtered out.

Removing Duplicates: Articles that are only quoting or copying an original article, as well
as duplicate articles with exactly the same headline should be removed from the data set.

4.3.4. Data Selection

After filtering out all the irrelevant data as described in the last section, the data is stored
in multiple CSV files, one for each month, with a different number of articles in each case.
Because the initial working data set’s articles should be evenly distributed throughout the year,
the same number of articles from each month is selected. The resulting CSV file consists of
the following eight columns:

Uuid Title Text Site SiteSection Url Timestamp Label

• Uuid: Universally unique identifier, representing the article’s thread.

• Title: The news article’s headline.

• Text: The article’s plain text.

• Site: The top level domain of the article’s site.

• SiteSection: The link to the section of the site where the thread was created.

• Url: The link to the top of the article’s thread.

• Timestamp: The thread’s publishing date and time in the format
YYYY-MM-DDThh:mm (GMT+3).

• Label: The article’s class label is entered here later.

The columns Title and Text contain the main data, whereas the remaining attributes
denote the meta data.

4The requested data was downloaded in September 2018 with JSON as file format. Access to the historical
archive is obtainable for a fee.
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Figure 4.4.: Labeling iterations

4.3.5. Interactive Data Labeling

Data labeling is the core of the process and makes the difference between the two presented
methods. This time, the ideas of Visual Analytics and Human Computer Interaction, de-
scribed in Section 2.2, are used as a hybrid approach to the labeling problem. The computer
should automatically label those news articles which correspond to already known patterns
and therefore can be clearly categorized. The human only should examine those news articles
whose patterns are not known yet and which therefore require human evaluation.
The time saved can be used to label a larger data set than with conventional labeling.

A larger labeled data set, in turn, can improve the classification model and produce better
predictions.
To annotate important information during the labeling process, the file’s structure is ex-

tended by the four additional columns:

Index Round Probability Estimated

• Index: This column makes it easier to address the individual instances of news articles.

• Round: Here the iteration number in which the label was entered manually is specified.

• Probability: After applying the classification algorithm, the estimated probability of
the most likely class of each article is saved in this column.

• Estimated: The class estimated by the algorithm in the current round is annotated
here.

The distinguished iteration part of the interactive labeling pipeline is shown in Figure 4.4.
Each iteration proceeds as follows: The loop starts by human labeling of a certain number

of instances.
This time, we use a multi-class model since it is able to distinguish more detailed information

about different types of news texts. This allows us to differentiate between irrelevant articles,
e.g., about staff turnover, and those related to mergers, e.g., dealing with merger negotiations.
In order to apply multi-class classification, at least the following three classes are necessary:
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Class 0: other/unrelated news

Class 1 (merger): merger of companies A and B

Class 2: news about deals/mergers/etc.

More classes are possible.

The advantages of using fewer classes are that the user has to remember less information,
the assignment to a class is faster, and that in the case of an unbalanced data set, fewer
classes have to be taken into account for stratified sampling. Whereas the use of many
classes could possibly improve the quality of the prediction, because the individual articles
can be assigned more precisely. Which exact number of classes is most useful in this context
is evaluated in Section 7.4.2.

After the step of manual labeling, the data is pre-processed in order to build a classification
model. As classifier, we use the Multinomial Naive Bayes algorithm by default. This algorithm
is itself based on probabilities, so these are considered as useful. The manually labeled articles
are used as training data, the remaining unlabeled articles are used as testing data. Regarding
the testing data, the estimated class for each article and the estimated class probability are
stored in columns Estimated and Probability. Now, the model investigated so that the findings
can be included in the next round and the process improved. At this point, the Resubstitution
Error should also be calculated in order to detect any incorrectly labeled instances.
From the second iteration on, the model’s label estimations are checked by the user. Which

instances should be examined exactly, is evaluated experimentally with different concepts:

a) The articles that could not be clearly assigned should be checked first, i.e., those articles
which have a relatively low estimated probability for their class.

b) Articles with a high estimated class probability are checked first.

c) Separate binary models - one per class - estimate the unlabeled articles. Where incon-
sistencies can be observed, the proposed labels are checked.

After manually validating a suitable number of instances, a new model with all so far labeled
instances is built and so forth. This is repeated until a sufficient number of labels is obtained
and the model gives a reasonable estimate for the unlabeled instances.

4.3.6. Data Pre-Processing

Pre-processing is implemented in the same way as with the conventional method described
in Section 4.2.6.
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4.3.7. Model Fitting

In contrary to the conventional approach, a model is fitted after each iteration which is
intended to estimate the unlabeled articles. Since we are in the state of labeling and therefore
only have limited time available for the model fitting step, we will limit ourselves to the
algorithms Multinomial Naive Bayes and SVM.
In order to find the best possible model based on the classified data after completing the

labeling process, more variants are applied and evaluated for Recall and Precision. Regarding
the final model, the best possible Recall score is identified, as it is important not to miss any
news about mergers. For this purpose, the algorithms Multinomial Naive Bayes and SVM are
investigated more closely.

Naive Bayes

As parameters, we use the default settings: Prior probabilities of the classes are adjusted
according to the data (priors = None) and the portion of the largest variance of all features
that is added to variances for calculation stability is set to the minimum (var_smoothing =
1e-9).

SVM

A grid search is executed to find the best parameters. We use the default parameters for
the SVC implementation but use the settings C=[1.0, 0.1], kernel=[’linear’] and
gamma=[0.00001, 0.0001].

Furthermore, the intention is to find out if CountVectorizer, my own BOW implementation
(which is implemented similar to CountVectorizer) or Word2Vec is best suited as numeric
representation of the texts. In addition, it will be evaluated whether the classification model
using bigrams produces better results than using unigrams.

4.3.8. Creating New Hypotheses

In contrast to the conventional pipeline, the step of creating new hypotheses is placed in a
wider cycle as Figure 4.4 demonstrates. It is not only during model fitting that new hypotheses
can be formulated and verified. New knowledge can already be incorporated during labeling
and thus have a greater influence on the overall process.

4.3.9. Analysis of Wrongly Predicted Instances

The recognition of wrongly predicted instances is also essential in this design and therefore
firmly embedded in the cycle. It allows errors to be detected earlier and thus the continuous
improvement of the model.
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4.3.10. Recognition of Company Mergers

The step of recognizing articles about company mergers is done in the same way as the
conventional method described in Section 4.2.10.

Summary:
This chapter explained the two approaches in theory and highlights the differences. The in-
fluence of the wider loop within the pipeline on the overall process was shown and that the
classification model can improve continuously through the incremental technique. In Chap-
ter 5 we explore the data set and illustrate important aspects with the help of visualizations.
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This chapter explores the textual corpus of news articles and illustrates the findings using vi-
sualizations. Understanding the composition of the corpus is relevant to chose the appropriate
data processing steps and to understand the obtained results of the evaluation. Section 5.1
examines the text regarding the news sources of the data set, the news articles’ length, the
most common words and other attributes of the corpus. In Section 5.2, NER is applied to the
textual corpus to extract information about the mentioning of company names in the news
articles.

5.1. General Exploration of Textual Corpus

After data selection (see Section 4.3.4), a data set of 10,000 news articles with a total size of
27 MB remains, containing 8331 articles of each month in 2017. The textual corpus consists
of the news articles’ headlines and plain texts, if not specified otherwise. For the analysis, the
unigram model is used.
As highlighted in Table 5.1, the main source for news articles in the data set is reuters.com.

The two reasons for this are that webhose.io does not have equal access to the requested
sources for legal purposes and, the news from other sources than reuters.com have been parsed
with lower quality. How this imbalance affects our work will be discussed in Section 7.2.

News Agency Domain Percentage
Reuters reuters.com 94%

The Guardian theguardian.com 3%
The Economist economist.com 2%

Bloomberg bloomberg.com < 1%
CNN cnn.com < 1%

Financial Times ft.com < 1%

Table 5.1.: News sources of the articles in the data set

Before pre-processing, the total number of words in the textual corpus is 4,098,730. Af-
ter pre-processing, when word duplicates are removed and Stop Words are filtered out, the
document term matrix of the entire data set has 41,403 features.
Excluding headlines, the average length of the news articles examined is 2,462 characters.

The distribution of the article length in the data set is shown in Figure 5.1.

1We select 834 from every third month: (8 * 833) + (4 * 834) = 10,000.
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Figure 5.1.: Article length (Histogram)

Figure 5.2.: Ten most frequent words in the data set (Bar Chart)

The ten most common words in the data set are said, percent, year, billion, new,
company, million, bank, market, business, as shown in Figure 5.2.

Considering the text of articles about mergers, the ten most common words are said,
percent, year, billion, company, new, million, market, last, business as shown

34



5.2. Exploration using NER

said percent year billion company new million market last business
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Re
la
tiv

e 
fre

qu
en

cy

Figure 5.3.: Ten most frequent words in the articles about mergers (Bar Chart)

in Figure 5.3. Regarding the most common words, it can be seen, that this subset differs only
marginally from the total amount of articles.
As the word said is not a specific term to business news or even news about mergers,

it is not particularly relevant for classification. This leads to the question whether or not
the unigram model is suitable for our problem at all. Therefore, the bigram model is also
considered during evaluation in Chapter 7.
The Word Cloud in Figure 5.3 visualizes the number of occurrences of the 200 most common

words in the data set. The calculation is based on the BOW model without Stemming with
a total number of features of 57,339.

5.2. Exploration using NER

In the textual corpus, 17,312 different company names are mentioned in total. The average
number of different company names mentioned per news article is five. This is due to the fact
that an article deals not only with, e.g., the two merger partners, but also with competitors
or inspecting state organizations. The importance of the individual mentions does not come
out here, although this question is not addressed in this thesis.
Figure 5.5 presents the number of different company names per article as a histogram.
Figure 5.62 illustrates that the majority of company names are only included once in the

data set. But there are also 478 companies that occur more frequently, which shows that big
companies seem to dominate the reporting.
The most frequent company names in the textual corpus are Apple (272 articles), Volkswagen

(224 articles), Facebook (218 articles), Google (209 articles) and Boeing (194 articles).

2Since no special aspects are visible from x > 14 anymore, the diagram’s x-axis is cut off at x = 14.
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Figure 5.4.: Most frequent words in the data set (Word Cloud)
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Figure 5.5.: Number of company names per news article (Histogram)
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Figure 5.6.: Company Names Distribution (Histogram)

Summary:
This chapter provides important characteristics and features of our textual corpus in order to
better interpret results of the evaluation later on. We have seen that the main source in the
data set is Reuters, that the most common word is ’said’, and that big companies dominate
the reporting. The next chapter gives an overview of the practical implementation of this
project.
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6. Implementation

This chapter provides background knowledge about the used modules in Section 6.1 and
used applications in Section 6.2. In Section 6.3, extracts of the most relevant parts of my
implementation are shown and briefly explained.

6.1. Python Modules

The project is implemented in Python 3. The used modules are presented in the following.

gensim

Gensim [ŘS10] is a collection of Python scripts by Radim Řehůřek that were originally used
to create a short list of the most similar articles to a particular article (gensim = "generate
similar"). It utilizes Latent Semantic Methods to realize unsupervised semantic modeling from
plain text. The gensim’s Doc2Vec implementation was used, which is based on Word2Vec, to
inspect an alternative to the BOW model for the numerical representation of a news article’s
text.

matplotlib

Matplotlib [Hun07] is a 2D graphics package used in Python for application development,
interactive scripting, and publication-quality image generation across user interfaces and op-
erating systems. The package matplotlib was used for visualizations such as histograms and
bar charts.

nltk

NLTK (Natural Language Toolkit) [BLK09] is a platform for creating Python programs to
work with natural language data. It provides user-friendly interfaces to over 50 corporate and
lexical resources, as well as a range of word processing libraries. The package nltk was used
in this project for Stop Words, Tokenization, Stemming and Tagging.

numpy

NumPy [Num05] is a basic package for scientific computing with Python. Among others,
it contains an n-dimensional array object, broadcast functions, linear algebra and random
number functions. The package numpy was used for array objects.
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pandas

Pandas (Python Data Analysis Library) [Pan08] is an open source library that provides data
structures and data analysis tools for Python. Of this module, the set of labeled array data
structures (Series and DataFrame) was used as well as the Input/Output tools for loading
tabular data from files (CSV).

sklearn

Scikit-learn [PVG+11] are tools for data mining and data analysis that are built on NumPy,
SciPy, and matplotlib. The sklearn implementation for classification algorithms, split meth-
ods, pre-processing and the document term matrix (CountVectorizer) was used, as it allows
a faster calculation than my own BOW implementation.

webhoseio

webhose.io [Web99] offers on-demand access to web data feeds. Each web data feed is opti-
mized to provide coverage of a specific content domain such as news, blogs, online discussions.
Filters can be used to specify the search. The historical data archive dates back to 2008 and
is available for a fee. The webhoseio module was used in this work in order to download the
data set.

wordcloud

A Word Cloud is a visual representation of text data that displays a list of words and is
useful for quickly perceiving the most common terms of a textual corpus. The importance
of each is shown with font size or color. The wordcloud project [A. 18] is a simple Python
implementation that can be easily modified. It has the advantage of filling all available areas,
and enabling the use of masks.

6.2. Jupyter Notebook

Project Jupyter [Pro14] is a open source project designed to support interactive data science
and scientific computing in numerous programming languages. The Jupyter Notebook extends
the approach of interactive computing and provides a web-based application that is capable
of capturing the entire computing process: code development, documentation and execution,
as well as communication of results. The Jupyter Notebook was used for interactive coding,
labeling, visualization and documentation.

6.3. Own Implementation

Here are briefly introduced the relevant parts of this project’s included implementation. The
complete implementation can be found on https://github.com/AnneLorenz/IntLab.
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6.3.1. Downloading the Data

Data Set for Conventional Labeling

Through webhose.io, news of the last 30 days can be downloaded for free. The desired news
data can be received as a stream of JSON files via an API.
We only use articles that contain at least one of the keywords merger, acquisition,

take over, deal, transaction or buy in the header. Furthermore, we restrict the request
to original contributions (is_first: true) in order to exclude user comments and the like.1

Since 30 days seem sufficient to test the conventional strategy, we download the data
through our Python script Requester.py, that contains the following query:

1 thread.title:(merger OR merges OR merge OR merged OR acquisition
OR "take over" OR "take-over" OR takeover OR deal OR
transaction OR buy)

↪→

↪→

2

3 is_first: true
4

5 site_type: news
6

7 site: reuters.com
8

9 language: english

This request leads to a data set of 1,497 news articles from different Reuters RSS feeds
dating from the period of one month in 20182.
Among others, all JSON files contain the following information:

1 {
2 "thread": {
3 "uuid": "a931e8221a6a55fac4badd5c6992d0a525ca3e83",
4 "url": "https://www.reuters.com/article/us-github-m-a-mic c

rosoft-eu/eu-antitrust-ruling-on-microsoft-buy-of-git c

hub-due-by-october-19-idUSKCN1LX114",
↪→

↪→

5 "site": "reuters.com",
6 "site_section":

"http://feeds.reuters.com/reuters/financialsNews",↪→

7 "section_title": "Reuters | Financial News"
8 "published": "2018-09-17T20:00:00.000+03:00"

1More filter settings can be found on https://docs.webhose.io/docs/filters-reference.
2The time period is May 25 - June 25 2018, retrieved on June 25 2018.
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9 "site_type": "news",
10 "spam_score": 0.0,
11 },
12 "title": "EU antitrust ruling on Microsoft buy of GitHub

due by October 19",↪→

13 "text": "BRUSSELS (Reuters)-EU antitrust regulators will
decide by Oct. 19 whether to clear U.S. software giant
Microsoft's $7.5 billion dollar acquisition of
privately held coding website GitHub. Microsoft, which
wants to acquire the firm to reinforce its cloud
computing business against rival Amazon, requested
European Union approval for the deal last Friday, a
filing on the European Commission website showed on
Monday. The EU competition enforcer can either give the
green light with or without demanding concessions, or
it can open a full-scale investigation if it has
serious concerns. GitHub, the world's largest code host
with more than 28 million developers using its
platform, is Microsoft's largest takeover since the
company bought LinkedIn for $26 billion in 2016.
Microsoft Chief Executive Satya Nadella has tried to
assuage users' worries that GitHub might favor
Microsoft products over competitors after the deal,
saying GitHub would continue to be an open platform
that works with all the public clouds. Reporting by Foo
Yun Chee; Editing by Edmund Blair",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 "language": "english",
15 "crawled": "2018-09-18T01:52:42.035+03:00"
16 }

Data Set for Interactive Labeling

This time, news articles of the twelve months in 2017 are requested. The query is expanded
to reliable sources such as Reuters, Bloomberg, Financial Times, CNN and The Economist
to get a more diverse result. The request is sent to the webhose.io historical archive.3

3The requested data was downloaded in September 2018 with JSON as file format. Access to the historical
archive is obtainable for a fee.
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1 site: (reuters.com OR ft.com OR cnn.com OR economist.com OR
bloomberg.com OR theguardian.com)↪→

2

3 site_category: (financial_news OR finance OR business)
4

5 timeframe: january 2017 - december 2017

Every news article is saved in a single file. In total 1,478,508 files (4.69 GiB) are downloaded.

6.3.2. Jupyter Notebook for Interactive Labeling

The interactive labeling part is realized with the help of a Jupyter Notebook, as it comfortably
supports interaction with the user combining a manual with an automated labeling technique.
An important requirement regarding the implementation is that, at any time, it must be

possible to interrupt the process without data loss, as no user is able to label hundreds or
even thousands of instances at once. To improve the Notebook’s usability, user instructions
are written in upper-case.

The Notebook is divided into three parts:

Part I (Data preparation): The data set of 10,000 business news articles is imported from
the CSV file as DataFrame object and prepared for the further process.
Then the iteration part starts.

Part II (Manual checking of estimated labels): A specified number of article labels
is checked manually, in our case 100 articles. In order to avoid imbalance, the number of
occurrences of a particular company name in all checked articles is limited to three, using a
created dictionary of all article indices (keys) with a list of mentioned organizations (values).
The algorithm’s label estimation of the last iteration is displayed and can be revised by the
user using an Ipywidget slider if the estimate was wrong. Finally, all entered labels as well as
the current iteration number are saved.

Part III (Model building and automated labeling): The classification algorithm is ap-
plied to estimate the unclassified news articles’ labels. It returns a vector ’class_probs’
(K1,K2, ...,Kn) per sample with the probabilities Ki per class i. Estimated class labels are
stored for the next iteration.
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The following code section implements the user-computer interaction in Part II. Figure 6.1
shows the resulting Output at run time.

1 def show_next(index):
2 ''' displays an article's title and text and creates an
3 interactive slider to modify the label manually
4 '''
5 print('News article no. {}:'.format(index))
6 print()
7 print('HEADLINE:')
8 print(df.loc[df['Index'] == index, 'Title'])
9 print()

10 print('TEXT:')
11 print(df.loc[df['Index'] == index, 'Text'])
12

13 def f(x):
14 # save user input
15 df.loc[df['Index'] == index, 'Label'] = x
16 df.loc[df['Index'] == index, 'Round'] = m
17

18 # create slider widget for labels
19 interact(f, x = widgets.IntSlider(min=-1, max=2, step=1,
20 value=df.loc[df['Index'] == index, 'Estimated']))
21

22 print('0: Unrelated news, 1: Merger,')
23 print('2: Other news related to deals etc.')
24 print('_____________________________________________________')
25 print()
26

27 # list of article indices that will be presented next
28 label_next = []
29

30 # generate new list of article indices for labeling
31 batchsize = 100
32 label_next = pick_random_articles(batchsize)
33

34 for index in label_next:
35 show_next(index)

44



6.3. Own Implementation

Figure 6.1.: Demo of the Jupyter Notebook labeling part

Summary:
This chapter briefly outlined the practical implementation of the interactive labeling method.
It was shown how the user-computer interaction was implemented and which requirements
were to be considered. In the next chapter, the methods used in this thesis are evaluated.
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In this chapter, the suitability of the proposed methodology and implementation is evaluated.
Section 7.1 provides an overview of the evaluation methodology. In Section 7.2 the used
data set is evaluated, before discussing the use of NER to recognize company names in
Section 7.3. Presenting several experimental studies in Section 7.4, the theoretical concepts on
conventional and interactive labeling explained in Chapter 4 will be put into practice. Several
approaches are executed and evaluated regarding achieved results, usability and time effort.
Then, various options for the interactive labeling strategy are implemented and evaluated. In
Section 7.5, we examine which instances are suitable to be presented to the user. Furthermore,
we investigate different classification algorithms in Section 7.6 and select the most suitable
one for our task. After all preliminary studies, Section 7.7 applies the developed concept of
the optimized labeling strategy in practice. With the help of the gained knowledge, a forecast
is made for the so far unlabeled data in Section 7.8.

7.1. Overview

First the data used and the application of NER are analyzed.
Then we evaluate the developed labeling strategy using several practical studies. These

are proceeded as follows: To begin, the conventional labeling as described in Section 4.2 is
realized and then evaluated.
Next, the interactive process is executed iteratively. This means that the news articles are

not all labeled manually at once, but step by step in several iterations. When evaluating
different labeling strategies for an unlabeled data set, the focus is on the various aspects of
possible improvements to a manual labeling process. To explore the possibilities, we apply
concepts step by step in an experimental way and investigate their impact. The specific
data processing steps are performed as described in Section 4.3. Regardless of the success
of the different methods, all experiments are documented and discussed, since they might be
successfully applied to other tasks. Unless otherwise indicated, we apply Multinomial Naive
Bayes1 classification during the interactive process using the unigram model and removing
Stop Words, numbers, and company names. For the analysis of the results, we concentrate on
the reporting of the metrics Recall and Precision and the presentation of Confusion Matrices,
especially for Class 1 (mergers). For each experiment, we record the observations and draw
conclusions.
Three different variants of model building are used for the analysis:

1The Multinomial Naive Bayes implementation of scikit learn with the Hyper-Parameters alpha=1.0e-10,
fit_prior=False, class_prior=None is used here.
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a) Evaluation using the Resubstitution Error (referred to as ’RE’): Training and testing
data set are identical. The RE is calculated to evaluate whether the model is consistent
or ambivalent.

b) Evaluation using the Hold-Out method (referred to as ’HO’): Only a subset of labeled
data is used for training, a different subset or all remaining data is used for testing and
computing the validation metrics.

c) Evaluation using the K-Fold Cross-Validation (referred to as ’KF’): The data set is
randomly divided into k groups. In each of the k runs, one of the groups is used for
testing, the other groups for training, until all parts are used exactly once for testing.

We further consider how many classes should be used for multi-class labeling, for which we
examine the content of the texts in more detail. To distinguish relevant news articles about
mergers from irrelevant ones, at least two classes are required. How many additional classes
are useful in differentiating the content of the texts will be covered during the discussion.
Furthermore, the question which instances should be shown to the user for verification is

discussed. Working with class probabilities or model generation per class are considered here.
Then, the best possible classification algorithm is to be identified to be used during the

interactive process. In the calculation, however, the context of interactive labeling is not
taken into account. The algorithms Naive Bayes and SVM, also combined with Word2Vec,
are tested by applying regular model fitting.
To verify the gained knowledge, a last iteration is performed with the optimized strategy.

Finally, a prediction of the entire data set’s structure is made to estimate the total duration
of labeling.

7.2. Data used

For the study on conventional labeling, the data set of 1,497 instances described in Sec-
tion 4.2.4 is used. For all studies concerning interactive labeling, the data set of 10,000
instances described in Section 4.3.4 is used, since it offers more possibilities due to its larger
scope. As described in Section 5.1, news articles from the source Reuters are mainly used,
because these are parsed by webhose.io with the best quality. Articles from other sources
mainly had to be filtered out due to incorrect parsing and resulting low quality.

Conclusions: The quality of the downloaded data set can be described as rather low. As
many news texts were parsed incorrectly and could only be used with a lot of time-consuming
extra filtering, we were forced to remove them from the data set. Retrospectively, we should
have used a more suitable source than webhose.io.

For a better generalization, we might want to include other data sources. Particularly, as
it may be problematic to apply a model trained with our data in practice to news articles
from other sources. Our model may then not be able to generalize, but the strategy can be
kept for alternative sources. However, the selection of the data source does not affect the
individual steps of our pipeline.
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7.3. Recognition of Company Names

For data exploration and pre-processing, we examine the news texts for company names using
Stanford NER. The knowledge gained as well as occurring problems are described below.

7.3.1. Quality of Company Recognition

When examining the texts for company names, several issues are noticed.

Observations:

• The algorithm does not differentiate by type of organization. For example, ministries,
universities, or commissions are also tagged as ’ORGANIZATION’. It is not possible to
distinguish them from the business companies in which we are interested.

• Company names also appear in an abbreviated version and are recognized as different
companies. For example, Volkswagen and VW, Amazon and Amazon.com, Ford, Ford
Motor, and Ford Motor Company are recognized as different organizations.

• Company names are sometimes used with and without their legal form (e.g., Corp.,
Inc., LLC, GmbH or AG ) and are thereby recognized as different organizations.

• Some unusual company names are not recognized as ’ORGANIZATION’ at all, e.g.,
Moneysupermarket.com.

• If a location is placed before a company name, this is recognized as part of the name,
e.g., Germanys Commerzbank. Also, if two companies follow directly one after the
other, they are put together incorrectly, like in Facebook and Alphabet.

• Missing white spaces between two sentences, which are due to incorrect parsing by
webhose.io, lead to the fact that a nonexistent company name is put together, like
United States.General Motors. Unfortunately, all articles were parsed without spaces
after each sentence (see Section 7.2), why this problem occurs frequently.

Conclusions: Compared to other implementations, e.g., to the Natural Language Toolkit
(nltk)[NLT17] Tokenization, the Stanford NER is a quite reasonable method for recognizing
organizations. Despite its weaknesses and limitations, it still provides a workable starting
point for our analyses. It is also possible to train and adapt the Stanford NER for special
individual tasks.
In order to separate corporate legal forms from the actual company names, we restrict

ourselves to the most frequently used abbreviations, even if not all could be taken into
account due to the high number of different international abbreviations.
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7.3.2. Restricting the Number of Articles per Company Name

In Chapter 5, it was shown that large companies are particularly frequently reported on. During
the interactive labeling, the number of articles in which a particular company is mentioned is
limited, in order not to distort the analysis. When filtering out the entity ’ORGANIZATION’
with the help of NER, we make a number of observations that raise further questions.

Observations and potential issues for the analysis

• In some cases, country names are incorrectly tagged as ’ORGANIZATION’.

Questions: What happens when a country name like France is limited to three men-
tions? Could we miss a French merger?

• Bank names are correctly tagged as ’ORGANIZATION’. Especially when it comes to
financing deals of all kinds, banks are often involved as lenders. Even if an article mainly
deals with the merger of two companies and the bank is only mentioned as a sideline,
all mentions are treated equally.

Questions: What effects does it have if the number of bank names is also limited? Do
we always get the crucial article about the conclusion of the contract? Could we miss
a merger of two banks?

• A similar problem applies to state organizations such as government offices or commis-
sions that are indirectly involved in the merger process, e.g., Department of Justice,
Antitrust Division or Federal Trade Commision.

Question: Does it have a disadvantage if government organizations occur very fre-
quently?

• News agency names are also tagged as ’ORGANIZATION’.

Questions: What effects does it have if the mentions of Reuters, e.g., are also limited?
What if we filter out them? Couldn’t a news agency ever merge?

• Before a merger actually takes place, there are reports on intentions, discussions, ne-
gotiations, approvals, etc. in the forefield. So all in all, there are a lot of articles in the
news reporting about the complete development of a merger, but maybe only one of
them about the completion of the merger.

Question: Will we get any hit articles at all if we limit the occurences of company
names?

• It is conceivable that a large company, such as, e.g., Amazon, is involved in several
mergers at the same time.

Question: Should these different reportings also be limited to three in total?
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Conclusions: In order to use a fairly distributed data set for model selection, we limit the
number of articles used to three per organization during the studies described in the following
sections. The names of news agencies, banks, countries and state organizations are filtered
out, keeping in mind possible side effects. Also, the filtering for keywords like bank, banca,
banque, ministry, commission, department, commitee, etc. does not ensure completeness.

With regard to the follow-up problem – the recognition of the two merger partners – the
question arises as to how the two merger partners should be distinguished from other actors
in the text. If there are identified more than two different ’ORGANIZATION’ objects in a
Class 1 (merger) article, it is not obvious which two are the merger partners.

7.4. Labeling Studies

In the following, the concepts developed for data labeling are realized and evaluated. On the
basis of intermediate results, conclusions for an optimal labeling strategy will be drawn.

7.4.1. Practical Study on Conventional Labeling

The CSV file containing the data set is first imported into the application Microsoft Excel.
The procedure with conventional labeling is as follows: The headline is read first. If the
headline already indicates the class of the article, the label is entered immediately in the
column Label. In case the user is in doubt, sentence by sentence is read until the class can
be assigned.

Observations:

• Time Effort: About 50 to 100 articles were labeled per hour, depending on the choice
of words and length of the articles. In total, it takes about 15 to 30 hours to label 1,497
articles, which corresponds to four days in the worst case. Assuming the user wants to
manually label a data set of 10,000 articles, it would take up to four weeks.

• As no special tools are required with conventional labeling, the user can start immedi-
ately without major preparations.

• The fact that a label was assigned based on the headline in some cases may be a
problem, if something important is mentioned in the last sentence, which would affect
the class label.2

• Depending on the readers domain expertise, some articles are still difficult to classify.
Here are some unclear patterns that could be observed in various articles leading to
follow up questions:

2There is a journalistic convention regarding writing news articles, to mention important things first and
details and marginal remarks last. This also applies to the articles examined for this work.
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– ’Company A acquires more than 50% of the shares of company B.’

Question: How should share sales be handled? Even if it is not a real merger, it
actually means a change of ownership.

– ’Company X will buy/intends to buy company Y.’

Question: Will the merger definitely take place? On which circumstances does
it depend?

– ’Last year company X and company Y merged. Now company A wants to invest
more in renewable energies.’

Question: Only an incidental remark deals with a merger in the past. The main
topic of the article is about something else.

Conclusions: These arising questions led to the idea of using multi-class labeling, which
was finally implemented in the interactive labeling method.3

For a data set sized as the one considered in this work, the conventional method was
acceptable. Labeling more data in this manner, however, would not be reasonable for the
user.

7.4.2. Practical Study on Naive Interactive Labeling

This part of the study is a first attempt to approach the best possible interactive labeling
strategy. As it will turn out later, it is not optimal yet and is therefore called ’naive’.
We structure the process into multiple iterations. In each iteration, a small subset of new

articles is labeled as described in Section 4.3.5. Then the classification algorithm is applied to
the already labeled data as training data in order to make an estimation for the still unknown
labels.
As classification algorithm, Scikit learn’s Multinomial Naive Bayes is used. Since many

words will have zero counts at the beginning, we will perform a Laplace Smoothing with
low alpha=1.0e-10. We set the parameters fit_prior=False and class_prior=None in
order to avoid that the number of labels which have already occurred has an influence on the
estimate. Only the structure of the feature vectors should be decisive for the assignment of
a class.
Scikit learn’s interface provides access to the probabilities for the individual classes via

the method predict_proba(X), which returns probability estimates for the test vector X. The
influence of the class probabilities on the quality of the prediction will be examined later in
Section 7.5. The more labeled data there already is, the better the prediction can be for the
unknown labels. For this reason, the estimation should improve during the process, which will
be examined later. In each iteration, a (random) selection of articles with already proposed
labels is presented to the user, in order to be checked and revised by the user. Once the labels
have been confirmed or changed, the process continues.

3Some of these questions still apply to interactive labeling, even when using multi-class classification. They
are therefore not repeated in the following.
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Regarding the labeling study, a first pre-study was performed, where the articles were
classified into six different classes. A second pre-study follows, in which the number of classes
was reduced to three. Then, findings from the pre-studies were used to conduct the main
study using three classes.

Pre-Study I

Multi-class classification was started with six different classes. 800 articles are labeled using:

Class 0: other/unrelated news

Class 1 (merger): merger of companies A and B

Class 2: merger pending or in talks or to be approved

Class 3: merger rejected or aborted or denied

Class 4: share deal or asset deal or acquisition

Class 5: merger as incidental remark (not main topic or not current)

Observations:

• Time Effort: On average, 11
2 working hours were needed for 100 articles.

• Although the predictions were surprisingly good4, the process of deciding which label
was the most appropriate takes a long time if there is a difficult decision between two
similar classes.

Conclusions: Fewer classes should be used to speed up the user’s decision making process.

Pre-Study II

Now the classes 2 to 5 are merged into one. Thus, the remaining classes are:

Class 0: other/unrelated news

Class 1 (merger): merger of companies A and B

Class 2: news about deals/mergers/etc.

In this way, the next 300 articles are labeled to study the procedure.

4In some iterations there were only 4% of wrongly predicted labels.
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Observations:

• The manual assignment is now much faster.

• In case of doubt, unambiguous articles were always sorted into the less valuable class5.
Since a high Recall value is desirable, as no merger articles should be lost, this might
not be a clever strategy.

• Reportings about a merger that is to be completed, but not yet official often contain
the subjunctives would or should.

• If a merger has been canceled again, the words not and no have an impact on the class.

Conclusions: It is important, that these articles above can be distinguished from the articles
about confirmed mergers, that we want to detect. These important keywords observed priorly
will be removed from our list of stop words.
In order to avoid false negatives, articles should be assigned to the more valuable class.

Main Study

After identifying occurring problems, we perform ten iterations with an improved strategy.
The used classes are:

Class 0: other/unrelated news

Class 1 (merger): merger of companies A and B

Class 2: news about deals/mergers/etc.

During the first iteration, the algorithm is not yet able to make an estimate (as there is
no data to learn from), so there is no proposed class yet why the user has to consider all the
labels himself. In each subsequent iteration, 100 new articles are presented, which the user
has to check for correctness.

Iteration 0: 100 randomly6 selected articles are labeled manually. In the end, 84 articles are
labeled as Class 0, three articles are labeled as Class 1 and 13 articles are labeled as Class 2.
A model is then built: The 100 manually labeled articles are the training set, the remaining
9,900 articles are the ”testing” set7.

5The ranking is Class 0 < Class 2 < Class 1 (merger).
6With the help of NER, we make sure that no company name is mentioned more than three times in our
labeled data set.

7We have no ground truth for the class labels, yet.
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Predicted \Actual 0 1 2 Sum(Predicted)
0 79 4 17 100
1 0 0 0 0
2 0 0 0 0

Sum(Actual) 79 4 17 100

Table 7.1.: Iteration 1, Naive Interactive Labeling, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 79 0 21 0 79.0 % 100.0 % 79.0 %
1 0 96 0 4 0.0 % 0.0 % 96.0 %
2 0 83 0 17 0.0 % 0.0 % 83.0 %

Average 26.3 % 33.3 % 86.0 %

Table 7.2.: Iteration 1, Naive Interactive Labeling, Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 82 4 12 98
1 0 0 0 0
2 0 1 1 2

Sum(Actual) 82 5 13 100

Table 7.3.: Iteration 2, Naive Interactive Labeling, Confusion Matrix

Iteration 1: In order to check the selection of articles, we let the algorithm calculate the
probabilities for the individual class affiliations. Each article in the testing data is then assigned
a class by the algorithm along with a certain probability. We store this class and its probability
per article. This procedure is also described in Section 7.5.3. Of those articles which were
estimated by the algorithm with a probability of greater than 0.99 for their class, 100 articles
are randomly presented to and checked by the user and revised if necessary. With the help
of NER, we make sure that no company name is mentioned more than three times in our
labeled data set. This is to make the data set more balanced. The metrics of this iteration
are presented in Table 7.1 and Table 7.2. It describes the correctness of the proposed labels
and can be described as HO. The column ’Predicted’ contains the label proposed by the
algorithm, the row ’Actual’ contains the manually checked/revised label by the user.

Iteration 2: The procedure for the next iterations is always the same as in iteration 1. Only
those articles are considered which were estimated by the algorithm with a probability higher
than 0.99 for a class. Again, 100 articles are randomly checked and revised if necessary. The
metrics of this iteration are presented in Table 7.3 and Table 7.4.
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Class \Metric TP TN FP FN Precision Recall Accuracy
0 82 2 16 0 83.7 % 100.0 % 84.0 %
1 0 95 0 5 0.0 % 0.0 % 95.0 %
2 1 86 1 12 50.0 % 7.7 % 87.0 %

Average 44.6 % 35.9 % 88.7 %

Table 7.4.: Iteration 2, Naive Interactive Labeling, Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 82 4 12 98
1 0 0 0 0
2 0 0 2 2

Sum(Actual) 82 4 14 100

Table 7.5.: Iteration 3, Naive Interactive Labeling, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 82 2 16 0 83.7 % 100.0 % 84.0 %
1 0 96 0 4 0.0 % 0.0 % 96.0 %
2 2 86 0 12 100.0 % 14.3 % 88.0 %

Average 61.2 % 38.1 % 89.3 %

Table 7.6.: Iteration 3, Naive Interactive Labeling, Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 80 4 13 97
1 0 0 0 0
2 1 0 2 3

Sum(Actual) 81 4 15 100

Table 7.7.: Iteration 4, Naive Interactive Labeling, Confusion Matrix

Iteration 3 - 9: The procedure of the previous iterations is repeated. The related metrics
are presented in Table 7.5 to Table 7.18. For each individual iteration, we first display a
Confusion Matrix showing which labels were suggested by the algorithm and how articles
were manually labeled by the user. Then we present the corresponding metric table, which
contains Precision, Recall and Accuracy for each class. An overview of iterations 0 to 9 can
be found in Figure 7.1.

Detecting incorrect labels through RE : After iteration 9, RE is applied to all 1,000
labeled articles. Two articles that have been incorrectly labeled by the user are detected.
After manual correction of the two labels, the RE is zero.

56



7.4. Labeling Studies

Class \Metric TP TN FP FN Precision Recall Accuracy
0 80 2 17 1 82.5 % 98.8 % 82.0 %
1 0 96 0 4 0.0 % 0.0 % 96.0 %
2 2 84 1 13 66.7 % 13.3 % 86.0 %

Average 49.7 % 37.4 % 88.0 %

Table 7.8.: Iteration 4, Naive Interactive Labeling, Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 88 2 10 100
1 0 0 0 0
2 0 0 0 0

Sum(Actual) 88 2 10 100

Table 7.9.: Iteration 5, Naive Interactive Labeling, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 88 0 12 0 88.0 % 100.0 % 88.0 %
1 0 98 0 2 0.0 % 0.0 % 98.0 %
2 0 90 0 10 0.0 % 0.0 % 90.0 %

Average 29.3 % 33.3 % 92.0 %

Table 7.10.: Iteration 5, Naive Interactive Labeling, Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 88 1 9 98
1 0 0 0 0
2 0 0 2 2

Sum(Actual) 88 1 11 100

Table 7.11.: Iteration 6, Naive Interactive Labeling, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 88 2 10 0 89.8 % 100.0 % 90.0 %
1 0 99 0 1 0.0 % 0.0 % 99.0 %
2 2 89 0 9 100.0 % 18.2 % 91.0 %

Average 63.3 % 39.4 % 93.3 %

Table 7.12.: Iteration 6, Naive Interactive Labeling, Metrics
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Predicted \Actual 0 1 2 Sum(Predicted)
0 76 6 14 96
1 0 0 0 0
2 0 0 4 4

Sum(Actual) 76 6 18 100

Table 7.13.: Iteration 7, Naive Interactive Labeling, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 76 4 20 0 79.2 % 100.0 % 80.0 %
1 0 94 0 6 0.0 % 0.0 % 94.0 %
2 4 82 0 14 100.0 % 22.2 % 86.0 %

Average 59.7 % 40.7 % 86.7 %

Table 7.14.: Iteration 7, Naive Interactive Labeling, Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 79 6 12 97
1 0 1 0 1
2 0 1 1 2

Sum(Actual) 79 8 13 100

Table 7.15.: Iteration 8, Naive Interactive Labeling, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 79 3 18 0 81.4 % 100.0 % 82.0 %
1 1 92 0 7 100.0 % 12.5 % 93.0 %
2 1 86 1 12 50.0 % 7.7 % 87.0 %

Average 77.2 % 40.1 % 87.3 %

Table 7.16.: Iteration 8, Naive Interactive Labeling, Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 80 2 14 96
1 0 0 1 1
2 0 0 3 3

Sum(Actual) 80 2 18 100

Table 7.17.: Iteration 9, Naive Interactive Labeling, Confusion Matrix
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Class \Metric TP TN FP FN Precision Recall Accuracy
0 80 4 16 0 83.3 % 100.0 % 84.0 %
1 0 97 1 2 0.0 % 0.0 % 97.0 %
2 3 82 0 15 100.0 % 16.7 % 85.0 %

Average 61.1 % 38.9 % 88.7 %

Table 7.18.: Iteration 9, Naive Interactive Labeling, Metrics
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Figure 7.1.: Metrics during iterations 0 to 9 (Naive Interactive Labeling)
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Figure 7.2.: Number of labels per class after iteration 9 (Pie Chart)

Observations:

• Model improvement over iterations 0 to 9: We fit a model after each iteration
from all the so far labeled data to measure possible improvement of the overall naive
model. The number of used instances thus increases from 100 to 200, . . . , 1,000
instances during iteration 0 to 9. Table 7.19 shows that the model’s Recall value
slightly decreases, whereas the model’s Precision value increases slightly from iteration
to iteration. Generally, there is a minor improvement from iteration 0 to 9.

• The data set is imbalanced, because most articles are non-mergers. Figure 7.2 illustrates
the total number of labels per class after iteration 0 - 9.

• During iterations 0 to 9, the entire quantity of previously labeled instances was always
used as training data for our estimation model, although we are dealing with a strongly
imbalanced data set. It is found that the predictor focuses on Class 0. Class 1 (merger)
is almost ignored. The model does not predict an instance of Class 1 before iteration 8.

Conclusions: Using the entire quantity of previously labeled instances is actually inappro-
priate. It should be investigated whether the predictions would have been better, if we had
applied stratified sampling to the training set.
It is also recommended to select the instances presented to the user for review more carefully.

The first idea is to label about the same number of articles per iteration of all three classes.
The second idea is that the user should concentrate on the articles that are difficult to classify
and leave the articles out that are easy to classify for the algorithm. Which these are exactly,
is examined in Section 7.5.

60



7.4. Labeling Studies

Iteration Recall (Average) Precision (Average) F1-Score (Average)
0 85.3 % 73.7 % 79.0 %
1 81.5 % 66.5 % 73.3 %
2 82.4 % 70.0 % 75.7 %
3 83.1 % 74.7 % 78.4 %
4 83.5 % 76.7 % 79.9 %
5 84.4 % 80.1 % 82.1 %
6 85.5 % 80.0 % 82.5 %
7 84.3 % 80.2 % 82.1 %
8 84.1 % 80.7 % 82.2 %
9 84.0 % 78.7 % 81.2 %

Table 7.19.: Improvement of naive model over iterations 0 to 9 (KF )

7.4.3. Reinvestigating Model Improvement

When building a model during the iterations, the number of elements per class was unbalanced
since most samples were of Class 0. As a result, most of the testing data is also predicted as
unrelated news. Since most articles actually belong to Class 0, this in turn leads to artificially
good results.
To achieve objective results, a stratified sampled model is rebuild after each iteration from

all the so far labeled data. Then it is checked whether the next iteration’s 100 labels could
have been better predicted with this strategy.

In the following, the first and last iteration are examined in detail by calculating RE and
HO for various training and testing data set combinations. The analyses of iterations 2 to 8
are presented in the appendix (see Appendix A.1). We refer to the individual analyses j of
an iteration i with No. i.j in order to be able to differentiate them better.

Iteration 0: After iteration 0, 84 instances are labeled as Class 0, three as Class 1 (merger),
and 13 instances as Class 2. As a stratified sampled training data set, three instances of each
class (nine in total) are selected to train the model.

• RE (No. 0.0): The nine selected samples of iteration 0 are used as training and also
testing data. The corresponding RE is zero.

Iteration 1: After iteration 1, the next 100 articles are labeled. 79 instances of Class 0, four
instances of Class 1 (merger), and 17 instances of Class 2 are added to the classified data set.
The stratified sampled training data set is extended by four instances of each class (12 in

addition) to a total sum of 21 instances.

• RE (No. 1.0): Selecting the 12 samples after iteration 1 as training and testing data
set, the RE is zero.
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Predicted \Actual 0 1 2 Sum(Predicted)
0 104 0 7 111
1 34 5 3 42
2 25 2 20 47

Sum(Actual) 163 7 30 200

Table 7.20.: HO (No. 1.1), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 104 30 7 59 93.7 % 63.8 % 67.0 %
1 5 156 37 2 11.9 % 71.4 % 80.5 %
2 20 143 27 10 42.6 % 66.7 % 81.5 %

Average 49.4 % 67.3 % 76.3 %

Table 7.21.: HO (No. 1.1), Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 125 0 11 136
1 29 7 6 42
2 9 0 13 22

Sum(Actual) 163 7 30 200

Table 7.22.: HO (No. 1.3), Confusion Matrix

• HO (No. 1.1): Using the 12 samples that are selected after iteration 1 as training data
set and all 200 checked elements of iteration 0 to 1 as testing data set, the result is as
shown in Table 7.20.

• RE (No. 1.2): Using the 21 selected samples of iterations 0 to 1 as training and testing
data set, there is no RE.

• HO (No. 1.3): Taking the 21 selected samples of iterations 0 to 1 as training data set
and all 200 checked elements of iteration 0 to 1 as testing data set, the resulting tables
are Table 7.22 and Table 7.23.

• HO (No. 1.4): Using 9 selected samples of iteration 0 as training data set and all 200
checked elements of iteration 0 to 1 as testing data set, the results are displayed in
Table 7.24 and Table 7.25.

• HO (No. 1.5): Using nine selected samples of iterations 0 as training data set and all
100 checked elements of iteration 1 as testing data set, the results are displayed in
Table 7.26 and Table 7.27.
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Class \Metric TP TN FP FN Precision Recall Accuracy
0 125 26 11 38 91.9 % 76.7 % 75.5 %
1 7 158 35 0 16.7 % 100.0 % 82.5 %
2 13 161 9 17 59.1 % 43.3 % 87.0 %

Average 55.9 % 73.3 % 81.7 %

Table 7.23.: HO (No. 1.3), Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 82 1 12 95
1 68 6 10 84
2 13 0 8 21

Sum(Actual) 163 7 30 200

Table 7.24.: HO (No. 1.4), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 82 24 13 81 86.3 % 50.3 % 53.0 %
1 6 115 78 1 7.1 % 85.7 % 60.5 %
2 8 157 13 22 38.1 % 26.7 % 82.5 %

Average 43.9 % 54.2 % 65.3 %

Table 7.25.: HO (No. 1.4), Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 37 1 9 47
1 36 3 6 45
2 6 0 2 8

Sum(Actual) 79 4 17 100

Table 7.26.: HO (No. 1.5), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 37 11 10 42 78.7 % 46.8 % 48.0 %
1 3 54 42 1 6.7 % 75.0 % 57.0 %
2 2 77 6 15 25.0 % 11.8 % 79.0 %

Average 36.8 % 44.5 % 61.3 %

Table 7.27.: HO (No. 1.5), Metrics
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Predicted \Actual 0 1 2 Sum(Predicted)
0 0 1 2 3
1 4 3 2 9
2 0 0 0 0

Sum(Actual) 4 4 4 12

Table 7.28.: HO (No. 1.6), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 0 5 3 4 0.0 % 0.0 % 41.7 %
1 3 2 6 1 33.3 % 75.0 % 41.7 %
2 0 8 0 4 0.0 % 0.0 % 66.7 %

Average 11.1 % 25.0 % 50.0 %

Table 7.29.: HO (No. 1.6), Metrics

• HO (No. 1.6): Next, the nine selected samples of iteration 0 are used as training data
set and the 12 selected samples of iteration 1 are used as testing data set. The resulting
metrics are Table 7.28 and Table 7.29.

Iteration 2 - 8: The details of iterations 2 to 8 can be found in the appendix (see Ap-
pendix A.1).

Iteration 9: The procedure here is the same as in the previous iterations. The stratified
sampled model of the last iteration is applied to the 100 presented articles of the current
iteration. We now extend the stratified sampled training data by two instances per class to
117 samples in total.

• RE (No. 9.0): Using the selected samples of iteration 9 as training and testing data set,
the calculated RE is zero.

• HO (No. 9.1): Taking the selected samples of iteration 9 as training data set and all
1,000 checked elements of all iterations 0 to 9 as testing data set, the resulting tables
are Table 7.30 and Table 7.31.

• RE (No. 9.2): Using the selected samples of iterations 0 to 9 as training and testing
data set, the RE is zero.

• HO (No. 9.3): Using the selected samples of iterations 0 to 8 as training data set and
all 1,000 checked elements of iterations 0 to 9 as testing data set, the resulting tables
are Table 7.32 and Table 7.33.
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Predicted \Actual 0 1 2 Sum(Predicted)
0 280 4 36 320
1 39 5 13 57
2 500 30 93 623

Sum(Actual) 819 39 142 1000

Table 7.30.: HO (No. 9.1), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 280 141 40 539 87.5 % 34.2 % 42.1 %
1 5 909 52 34 8.8 % 12.8 % 91.4 %
2 93 328 530 49 14.9 % 65.5 % 42.1 %

Average 37.1 % 37.5 % 58.5 %

Table 7.31.: HO (No. 9.1), Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 675 0 35 710
1 100 38 53 191
2 44 1 54 99

Sum(Actual) 819 39 142 1000

Table 7.32.: HO (No. 9.3), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 675 146 35 144 95.1 % 82.4 % 82.1 %
1 38 808 153 1 19.9 % 97.4 % 84.6 %
2 54 813 45 88 54.6 % 38.0 % 86.7 %

Average 56.5 % 72.6 % 84.5 %

Table 7.33.: HO (No. 9.3), Metrics
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Predicted \Actual 0 1 2 Sum(Predicted)
0 68 0 6 74
1 8 1 11 20
2 4 1 1 6

Sum(Actual) 80 2 18 100

Table 7.34.: HO (No. 9.4), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 68 14 6 12 91.9 % 85.0 % 82.0 %
1 1 79 19 1 5.0 % 50.0 % 80.0 %
2 1 77 5 17 16.7 % 5.6 % 78.0 %

Average 37.9 % 46.9 % 80.0 %

Table 7.35.: HO (No. 9.4), Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 0 0 1 1
1 0 1 1 2
2 2 1 0 3

Sum(Actual) 2 2 2 6

Table 7.36.: HO (No. 9.5), Confusion Matrix

• HO (No. 9.4): To see what would have happened if we had estimated the articles from
this iteration with the stratified sampling model, the following analysis is executed: All
selected samples of iterations 0 to 8 are used as training data set and the current 100
articles of iteration 9 as testing data set. The results are displayed in Table 7.34 and
Table 7.35.

• HO (No. 9.5): The selected samples of iterations 0 to 8 are used as training data set,
while the selected samples of iteration 9 are used as testing data set. The results are
shown in Table 7.36 and Table 7.37.

• HO (No. 9.6): When using the 117 selected samples of iterations 0 to 9 as training data
set and all 883 remaining labeled samples of iteration 0 to 9 as testing data set, the
resulting metrics are shown in Table 7.38 and Table 7.39.
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Class \Metric TP TN FP FN Precision Recall Accuracy
0 0 3 1 2 0.0 % 0.0 % 50.0 %
1 1 3 1 1 50.0 % 50.0 % 66.7 %
2 0 1 3 2 0.0 % 0.0 % 16.7 %

Average 16.7 % 16.7 % 44.5 %

Table 7.37.: HO (No. 9.5), Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 648 0 33 681
1 90 0 51 141
2 42 0 19 61

Sum(Actual) 780 0 103 883

Table 7.38.: HO (No. 9.6), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 648 70 33 132 95.2 % 83.1 % 81.3 %
1 0 742 141 0 0.0 % 0.0 % 84.0 %
2 19 738 42 84 31.2 % 18.5 % 85.7 %

Average 42.1 % 33.8 % 83.7 %

Table 7.39.: HO (No. 9.6), Metrics
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Figure 7.3.: Metrics over iterations 0 to 9
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Observations:

• Time Effort: With interactive labeling, it is possible to classify up to 200 articles in
one hour. Manual labeling can be done fast with the prototype developed in Jupyter
Notebook, because moving the slider with the mouse is faster and more comfortable
than typing a number in Excel. With labels that are already suggested correctly, most
of the time is saved because no user input is necessary at all. However, some time is
needed per iteration to apply the algorithm to update the labels.

In sum, about ten hours were needed to label 1,500 articles, which corresponds to a
working time of one or two working days. To label 10,000 articles, the user would need
approximately one working week. This can be further optimized by using an improved
interactive labeling strategy, as suggested in Section 7.7.

• Figure 7.3 shows that the model’s Recall scores improve significantly through strati-
fied sampling, especially for Class 1 (merger). Precision improved on average through
stratified sampling, as can be seen from the graph.

Conclusions: Stratified sampling is the preferred method for an optimal labeling strategy
as it significantly saves time and is more comfortable compared to the conventional method.
High Recall scores for Class 1 (merger) are encouraging. Still, the quality of the predictor is
not yet satisfactory. This could be due to the fact that the training data set is very small and
consists of only 117 instances in the last iteration.

7.5. Finding the Best Instances for User Verification

This section examines which strategy is best suited for presenting instances to the user. First,
a method using three separate binary models as predictor is compared to the multi-class
model. As an alternative, a strategy using class probabilities (generated by the classification
algorithm) as decision boundaries is considered.

7.5.1. Three-Model-Approach – Classification using Binary-Models

So far, a single overall model is used to classify the articles. We now compare three separate,
independent classification models to it. Each of these binary models refers to one of the
three label classes, what is also called One-vs-All strategy. The idea is: By simultaneously
applying these three models to our data, we want to find out whether it provides information
on disambiguities. If the three individual models conflict, that could also be used to select
suitable instances for user verification. Table 7.40 illustrates how such a detection could work
in practice using an example with dummy data. Possible ambiguities are marked in yellow.

Each of the three models is created according to the following scheme:
For a Class X, a corresponding binary Model X is trained. In order to take stratified sampling

into account, half the training data is of Class X, half the training data is in equal parts of
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Article Index Model 0 Model 1 Model 2 Case
0 1.0 1.0 0.0 ambiguous
1 1.0 0.0 0.0 unambiguous
2 0.0 1.0 0.0 unambiguous
3 1.0 0.0 0.0 unambiguous
4 1.0 1.0 1.0 ambiguous
5 0.0 1.0 0.0 unambiguous
6 1.0 0.0 0.0 unambiguous
7 1.0 0.0 1.0 ambiguous
8 1.0 0.0 0.0 unambiguous
9 0.0 0.0 0.0 ambiguous

Table 7.40.: Demo: Detecting ambiguous cases with the Three-Model-Approach

the other classes Y and Z (as ’ClassX’). The model will then be used to predict the articles
of Class X.
Of the 1,000 labeled articles of iterations 0 to 9, there are in total

• 819 samples of Class 0,

• 39 samples of Class 1 (merger) and

• 142 samples of Class 2

To apply Ten-Fold Cross-Validation, we split the data into ten stratified folds, each of
them containing 82 instances of Class 0, four instances of Class 1 (merger), and 14 instances
of Class 2. Then ten validation rounds are performed. Each time one fold is reserved as
testing set, the remaining nine folds are used for training.
In order to be able to compare the quality of these binary models with that of a multi-class

model, we built a Multinomial Naive Bayes model according to the same pattern.

• Model 0 is trained with the following instances: 35 instances of Class 0 (as ’Class 0’),
18 instances of Class 1 (merger), and 18 instances of Class 2 (as ’Class 0’). Thus a
training data set comprising 71 instances is obtained.

• Model 1 is trained with the following instances: 35 samples of Class 1 (as ’Class 1’),
18 samples of Class 0, and 18 samples of Class 2 (as ’Class 1’). Thus a total number of
71 instances is obtained.

• Model 2 is trained with the following instances: 35 samples of Class 2 (as ’Class 2’), 18
samples of Class 0, and 18 samples of Class 1 (merger) (as ’Class 2’). Thus one receives
a training data set of 71 instances.

• ModelMNB is trained with the following instances: 24 samples of Class 0, 24 samples
of Class 1 (merger), and 24 samples of Class 2. Thus one receives a training data set of

70



7.5. Finding the Best Instances for User Verification

Rec (Min) Rec (Max) Rec (Av) Prec (Min) Prec (Max) Prec (Av)
Class 0 0.0 % 50.0 % 33.3 % 0.0 % 3.2 % 1.9 %
Class 0 6.1 % 29.3 % 19.2 % 71.4 % 91.3 % 84.0 %

Average 10.1 % 37.8 % 26.2 % 37.0 % 47.2 % 42.9 %

Table 7.41.: Metrics of Model 0, Naive Bayes (KF )

Rec (Min) Rec (Max) Rec (Av) Prec (Min) Prec (Max) Prec (Av)
Class 1 25.0 % 100.0 % 72.5 % 4.3 % 11.1 % 9.1 %
Class 1 57.3 % 73.2 % 66.8 % 95.2 % 100.0 % 98.1 %

Average 49.1 % 84.0 % 69.6 % 49.8 % 55.9 % 53.6 %

Table 7.42.: Metrics of Model 1, Naive Bayes (KF )

Rec (Min) Rec (Max) Rec (Av) Prec (Min) Prec (Max) Prec (Av)
Class 2 0.0 % 75.0 % 36.7 % 0.0 % 15.0 % 6.6 %
Class 2 65.9 % 85.2 % 73.5 % 93.5 % 98.6 % 96.0 %

Average 35.4 % 77.1 % 55.1 % 46.8 % 56.7 % 57.8 %

Table 7.43.: Metrics of Model 2, Naive Bayes (KF )

Rec (Min) Rec (Max) Rec (Av) Prec (Min) Prec (Max) Prec (Av)
Class 0 86.3 % 84.2 % 73.4 % 94.0 % 100.0 % 97.4 %

Class 1 (merger) 50.0 % 100.0 % 80.0 % 4.6 % 18.2 % 12.9 %
Class 2 7.1 % 42.9 % 29.6 % 9.1 % 50.0 % 31.1 %

Average 36.3 % 71.6 % 61.0 % 35.9 % 53.86 % 47.1 %

Table 7.44.: Metrics of Multi-Class Model, Multinomial Naive Bayes (KF )

72 instances. With a number of only 24 instances per class and a total training data
set of 72 instances, we want to ensure that the multi-class model has no advantage
over the binary models, which are trained with only 71 instances.

7.5.2. Comparing Three-Model-Approach to Multi-Class Model

First, we examine how well these three individual models perform on the already labeled data,
more precisely, on the 1,000 articles up to iteration 9. The results of these classifications are
shown in Table 7.41, Table 7.42, Table 7.43, and Table 7.44.

Observations: Comparing the tables, it can be seen that Precision and Recall scores, es-
pecially for Class 1 (merger), are higher with multi-class classification than with the Three-
Model-Approach.
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Conclusions: Unexpectedly, the multi-class model works better, although Model 1 was
trained with more instances of Class 1 (merger). As the Recall score for Class 1 (merger)
is important for our task, the multi-class model is better suited to classify the articles and
should therefore be used for the optimal interactive labeling strategy presented in Section 7.7.
Regardless of the metrics, this strategy can still be useful to present the instances to the

user. Investigating this is a suitable topic for future work (see Section 8.2). Also, the Three-
Model-Approach is a method of applying algorithms that work without class probabilities and
offers a viable alternative to the multi-class classifier.

7.5.3. Study: Using Class Probabilities with Cutt-Off (Decision
Boundaries)

During iterations 0 to 9, only those articles which were assigned to their class with a high
probability by the algorithm were checked by the user. We now examine whether the model
improves by letting the user check those articles that were assigned to their class with a
low probability instead. The idea behind this choice is that these articles may be particularly
difficult to classify and therefore be more prone to incorrect estimates – thus, the model could
learn the most by classifying them correctly.

First we verify if there is a correlation between the estimated probability for a certain class
and the Accuracy of the prediction. Therefore, we analyze whether there are more wrongly
predicted articles in the probability range from 0.3 to 0.9 as a percentage of the total quantity.
We apply the stratified sampled Multinomial Naive Bayes model obtained in iteration 9 again,
and estimate the class affiliations and corresponding probabilities of all labeled articles from
iterations 0 to 9. Table 7.45 shows the results of this investigation.

Prediction \Probability 0.3 < p <= 0.9 0.9 < p < 1.0 p = 1.0

correct 37.7 % 63.4 % 85.4 %
incorrect 62.3 % 36.6 % 14.6 %

Table 7.45.: Correlation between Probability and Error Rate

Observations: The table shows that instances predicted with a low probability for their
class were more often incorrectly estimated than instances predicted with a high probability
for their class.

Conclusions: The observed values confirm that there is a correlation between the estimated
probability and the Error Rate. These results are in line with our theory that the algorithm
has more difficulties with low probabilities for the class assignment and the user should rather
be involved.
This consideration will be put into practice during eight more iterations:

Iterations 10 to 14 investigate the articles with low class probabilities. The results, obser-
vations and conclusions can be found in Appendix A.2 and Appendix A.3.
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Iterations 15 to 17 investigate the articles with high class probabilities. The results, obser-
vations and conclusions can be found in Appendix A.4.

7.6. Finding the Best Classification Model

In this section, the context of interactive labeling is ignored to create the best possible multi-
class model using the so far labeled data set. For this purpose, common algorithms with
changing Hyper-Parameters are applied and compared to each other.
The procedure for each calculation is:
Ten-Fold Cross-Validation is applied to the labeled data set using stratified sampling. Start-

ing point are the 1,082 labeled articles after iteration 11. Afterwards, for the ten created
models the minimum, maximum, and average score of Recall and Precision are listed.

7.6.1. Multinomial Naive Bayes Algorithm

Setting Hyper-Parameters alpha to 1.0e-10, fit_prior to False and class_prior to None, we
use scikit learn’s CountVectorizer for text conversion. The resulting metrics are listed in
Table 7.46.

Recall Precision
Min 78.7 % 72.2 %
Max 84.4 % 81.5 %

Average 81.7 % 77.7 %

Table 7.46.: Multinomial Naive Bayes algorithm, CountVectorizer (KF )

Using my own BOW implementation instead of CountVectorizer (e.g. company names are
filtered out), yields slightly better results, as can be seen in Table 7.47.

Recall Precision
Min 81.7 % 76.7 %
Max 86.2 % 84.4 %

Average 84.1 % 81.0 %

Table 7.47.: Multinomial Naive Bayes algorithm, BOW (KF )

Replacing the unigram model with the bigram model (range = (1,2)), results in the values
displayed in Table 7.48. Replacing it with the bigram model (range = (2,2)), the values in
Table 7.49 result. Although bigrams can make a significant difference, e.g. "they do not
merge", the bigram model achieves a poorer result. These results are therefore unexpected,
but are not investigated further in this work.
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Recall Precision
Min 78.7 % 61.9 %
Max 82.6 % 80.6 %

Average 80.9 % 75.6 %

Table 7.48.: Multinomial Naive Bayes algorithm, Bigram (1,2) (KF )

Recall Precision
Min 77.8 % 61.9 %
Max 82.6 % 80.0 %

Average 80.4 % 74.1 %

Table 7.49.: Multinomial Naive Bayes algorithm, Bigram (2,2), (KF )

7.6.2. SVM

Among the various SVM implementations of the scikit learn module, LinearSVC combined
with CountVectorizer and default settings offers the best results as listed in Table 7.50.

Recall Precision
Min 83.3 % 80.8 %
Max 91.7 % 91.8 %

Average 86.9 % 86.1 %

Table 7.50.: SVM (LinearSVC) algorithm (KF )

7.6.3. Word2Vec

Replacing CountVectorizer with the gensim Word2Vec implementation, Multinomial Naive
Bayes algorithm generates the results shown in Table 7.51. Using Word2Vec, LinearSVC
algorithm generates the metrics in Table 7.52.

Recall Precision
Min 71.3 % 80.1 %
Max 87.0 % 89.2 %

Average 76.1 % 84.4 %

Table 7.51.: Word2Vec, Multinomial Naive Bayes algorithm (KF )
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Recall Precision
Min 80.7 % 76.8 %
Max 86.0 % 85.8 %

Average 83.2 % 80.5 %

Table 7.52.: Word2Vec, SVM algorithm (KF )

Observations:

• The Recall and Precision scores of all classifiers applied are similar and lie between
approximately 76 % and 86 %.

• The bigram model produces poorer results than the unigram model. Word2Vec achieves
higher Precision scores than CountVectorizer, but lower scores for Recall. As Recall is
more important regarding the recognition of company mergers, this does not bring us
any advantages.

• Overall, the SVM algorithm (especially LinearSVC) achieves best results on our labeled
data set among the tested algorithms.

Conclusions: We have found that the best results for Recall and Precision are achieved
with the SVM classifier with a very small advantage. However, SVMs do not directly provide
probability estimates, these are calculated using an expensive Five-Fold Cross-Validation. But,
Multinomial Naive Bayes also achieves very good results. Since Naive Bayes’ class probabilities
are much more reliable, we will concentrate on the Multinomial Naive Bayes classifier in the
further labeling process.

7.7. Applying the Optimized Interactive Labeling Strategy

From the knowledge gained, we draw the conclusion of how the optimal interactive labeling
process must look like. As our goal is to create the best possible model with as little manual
labeling as possible, we concentrate on articles that are highly likely to be Class 1 (merger).
Since the searched articles statistically make up only 4.6 % of all articles in the data set,
they represent the bottleneck in stratified sampling. By significantly increasing these class
instances, the total training data set increases and the model can thus be improved.

Iteration 18: After the previous iteration, there are 8,588 unlabeled instances. The train-
ing data set consists of 104 instances of each class, so 312 instances in total. With the
help of Multinomial Naive Bayes classifier, the classes for all unlabeled instances are esti-
mated. Class 0 is predicted 7,060 times, Class 1 (merger) is predicted 481 times, and Class 2
is predicted 1,047 times. Of the 481 articles estimated as Class 1 (merger), 396 have a class
probability of exactly 1.0. Of these, 100 instances are randomly selected to be presented to
the user. The results of iteration 18 are displayed in Table 7.53 and Table 7.54.
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Predicted \Actual 0 1 2 Sum(Predicted)
0 0 0 0 0
1 18 33 49 100
2 0 0 0 0

Sum(Actual) 18 33 49 100

Table 7.53.: Iteration 18, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 0 82 0 18 0.0 % 0.0 % 82.0 %
1 33 0 67 0 33.0 % 100.0 % 33.0 %
2 0 51 0 49 0.0 % 0.0 % 51.0 %

Average 11.0 % 33.3 % 55.3 %

Table 7.54.: Iteration 18, Metrics

Observations:

• The quality of the prediction has already significantly improved compared to the previous
iterations. Almost all texts examined have a merger reference or are about a deal. In
the false positive articles, which had to be corrected to Class 2, it is often about an
aborted or still running merger. With such articles it is sometimes difficult even for the
user to distinguish them from the relevant ones.

• With a 33% hit rate for Class 1 (merger), this strategy is the best we have examined in
this thesis. Compared to the statistical frequency of Class 1 (merger) instances (3.9%),
we were able to increase the hit rate by a factor of eight.

Conclusion: The strategy presented here is an appropriate approach to achieve the best
possible result with as few manual labels as possible. The labeling process is controlled by the
user so that the stratified sampling training set grows evenly and the model can improve from
iteration to iteration. The presented concept can also be adapted individually. For example,
it is conceivable to include a keyword search or restriction of the word count of an article in
order to get as many hits as possible of a certain class.

7.8. Conclusion for the Entire Data Set

The knowledge gained in the last sections is now applied to the entire data set of 10,000
news articles. The basis for the predictions is the LinearSVC model from Section 7.6, which
was identified as the best model. As these are estimations only, they may differ significantly
from reality.
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Class Samples Percent
0 5,543 62.2 %
1 1,183 13.3 %
2 2,192 24.6 %

Sum (Total) 8,918 100.0 %

Table 7.55.: LinearSVC prediction for the unclassified articles (HO)

Class Samples Percent
0 847 78.3 %
1 50 4.6 %
2 185 17.1 %

Sum (Total) 1,082 100.0 %

Table 7.56.: Actual number of labels per class

7.8.1. Prognoses for the Remaining Unlabeled Data

The remaining unlabeled instances after iteration 9 (8,918 articles) are estimated as shown
in Table 7.55.
To determine if that is plausible, the actual number of labels of the already classified data

in Table 7.56 is counted as a comparison.

Observations: Looking at the actual number of labels per class (see Table 7.56) and trans-
ferring this to the remaining unlabeled data, label 0 should occur 6,983 times, label 1 should
occur 410 times and label 2 should occur 1,525 times. The SVM algorithm estimates, how-
ever, 5,543, 1,183, and 2,192 instances for classes 0, 1, and 2 (see Table 7.55), which marks
a significant discrepancy.

Conclusions: The observed discrepancy could be an indication that our model is not yet
accurate enough and that the number of labeled data is not yet sufficient. The prognoses on
the remaining unclassified data could possibly be improved by a larger data set.

7.8.2. Perspective of Users

Based on the best model identified in Section 7.6, we analyze the metrics regarding Class 1 (merger)
as shown in Table 7.57. Scaled up to the unknown data set, this corresponds to the distribu-
tion in Table 7.58.
The fact, that the previously made predictions do not include any false negatives, is already

satisfying, since the user does not want to miss any articles about mergers. However, there
is quite a large number of false positives. The user would have to check all articles that are
predicted as Class 1 (merger) to get an accurate assignment for articles about mergers. All
true positives (410 instances) and all false positives (749 instances) add up to 1,159 articles
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Metric Samples Percent
true positives 50 4.6 %
true negatives 941 87.0 %
false positives 91 8.4 %
false negatives 0 0.0 %
Sum (Total) 1,082 100.0 %

Table 7.57.: Accuracy for Class 1 (merger)

Metric Samples Percent
true positives 410 4.6 %
true negatives 7,759 87.0 %
false positives 749 8.4 %
false negatives 0 0.0 %
Sum (Total) 8,918 100.0 %

Table 7.58.: Estimated Accuracy for Class 1 (merger) based on Table 7.57

in total, which corresponds to 13.0 % of the entire data set (see the orange marked rows in
Table 7.58). Of these, approximately 64.6 % would have been incorrectly labeled, so that
only 35.4 % would actually belong to Class 1 (merger).
If the user labels 100 articles per hour, this corresponds to a working time of 12 hours.

Whereas, if the user would label the articles of all classes, he would get about 2 1
2 weeks for

all remaining 8,918 articles. We have therefore achieved a time saving of 87.0 %.
With the optimized labeling strategy presented in Section 7.7, it is possible to increase the

hit rate for Class 1 (merger) instances by a factor of eight if news articles with the highest
class probability are examined first. This means that a balanced model, i.e., using stratified
sampling, can be built eight times faster than with conventional labeling.

7.8.3. Perspective of Management

By applying the methods described in this thesis, company mergers in news articles can be
recognized much faster than if every single article of a news feed is read by a human reader.
For the manager of a company this means that in the long run, a considerable amount of
working time and, therefore, costs can be saved. However, the cost-effectiveness depends on
the expected gain for each identified merger, if the gain is very high (e.g., say 1,000’s of €),
the manual labeling of articles is beneficial as missing a single article reduces the opportunities
– in some cases, even having multiple labels from experts per article might be cost-effective.
A special feature of the developed method is that the model is already trained while the

user is still labeling. This can be compared to a pre-trained model, which normally has to be
purchased externally, assuming that a model suitable for the task exists at all.
Even without iterations, labeling in general can be done by starting with the articles that

are "easy to categorize" (which have a high class probability) and then working towards the
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articles which have a low class probability.
The hit rate for Class 1 (merger) of 33.0 % achieved with the presented strategy is eight

times higher than the 3.9% hit rate with conventional labeling. In this way, the user is able
to quickly get many instances of the interesting class (in our case Class 1 (merger)), which
allows to rapidly build as large a stratified set as possible for a good classifier.
The labeling process can be terminated as soon as the user is satisfied with the quality of

the model or as soon as the estimates mostly match the manual labels, so that the user does
not have to label the complete data set here either.

Summary:
In this chapter, we first examined the company names recognition in more detail discovering
which aspects require special attention. We have evaluated the two different labeling tech-
niques by executing several practical studies. It has been found that conventional manual
labeling is particularly suitable for small data sets. Regarding interactive labeling, the appro-
priate number of classes used was discussed, as well as the importance of stratified sampling
was determined. Strategies for selecting the articles to be presented to the user have been
researched. We found out that it is useful to consider the class probabilities of the Naive Bayes
algorithm focusing on articles that have been assigned to their class with a low probability.
A strength of interactive labeling is that large data sets can be labeled selectively and thus
faster. More precisely, the data does not have to be completely labeled by the user, as part of
the "simple" work is done by the algorithm. Through a final practical study, we conduct the
optimized interactive labeling strategy and discuss our observations. Last but not least, we
make a forecast for the entire data set and find that our strategy can save the user 87.0 % of
the time compared to conventional labeling. In the last chapter, we summarize the essential
aspects of this thesis and make suggestions for further work.
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This last chapter summarizes our work and draws conclusions from the gained knowledge in
Section 8.1. Lastly, we make suggestions for future work in Section 8.2.

8.1. Summary and Conclusions

In this thesis, we developed a strategy for recognizing company mergers in news articles
focusing on the creation of a labeled data set.
In Chapter 1, we explained the benefit for companies to be informed about current corporate

mergers and how we intend to solve this problem. In addition, the idea behind the interactive
labeling was presented underlining its value for the user. In Chapter 2, background information
about company mergers, human-computer interaction, NER, text classification, and the used
metrics was provided. Chapter 3 presented other work related to our strategy of data labeling.
In Chapter 4, we defined how the problem of detecting mergers in news articles is solved and
how the interactive labeling strategy is investigated in comparison to a conventional labeling
strategy. The used data set was explored in Chapter 5, as it is particularly important for
further evaluation to have as much information as possible about the data set. We found
out, e.g., that big companies are particularly frequently reported on and that on average five
different company names are mentioned in one article. Chapter 6 presented an excerpt of
the developed interactive labeling tool demonstrating how to use it. In Chapter 7, difficulties
regarding company recognition using NER were analyzed. Also, both labeling techniques were
evaluated in detail.
We found out, that conventional labeling is particularly suitable for small data sets, as no

special tools are required and it is possible to start directly without major preparations. For
large data sets, however, it is rather time-consuming and inefficient.
The presented method of interactive labeling is a convenient alternative to conventional

data labeling when it comes to large data sets. Because the number of articles to be labeled
can be reduced, the user can save up to 87.0 % of time, why we consider this approach to
be promising. The time used for the realization of interactivity is compensated the faster and
larger the data set to be labeled is.
A special feature of interactive labeling is that the user can (to a certain extent) control

the articles to be labeled and the tendency in which the model develops.
Furthermore, interactive labeling allows to concentrate on articles that are difficult to

classify during the labeling process, thus creating a reasonable division of work between
human and machine. Alternatively, the user can concentrate on the articles with a high class
probability and thus achieve a higher hit rate of desired articles.
The innovative approach of using labeling iterations allows the Machine Learning model to
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be continuously improved. On the labeled data set, a common SVM model achieves a Recall
score of 86.9 % and a Precision score of 86.1 %.
Our demonstration of numerous studies on labeling methods encourages users to apply

this approach themselves. It is simple to implement and users should experiment with the
presented concepts, depending on the individual task. The presented incremental method is
not only suitable for text classification problems, but universal for all kinds of large unclassified
data sets.
Last but not least, the psychological aspect of human-computer interaction plays an im-

portant role. Regarding the user experience, it can be perceived as exciting to see if the
algorithm’s predictions are correct. Also, the model’s improvement from iteration to iteration
spurs the user to perform more iterations which leads to a growing labeled data set. In total,
the experience of using the developed interactive labeling tool is much more interesting and
diversified as manual labeling and can therefore increase the user’s work motivation.

8.2. Future Work

This work offers various points for further work, as we encountered numerous challenges
during our analysis.
Concerning interactive labeling, the proposed optimized strategy should be applied from

the beginning over numerous iterations in order to better evaluate the method. Regarding the
selection of unambiguous class label predictions in Section 7.5, the Three-Model-Approach
would still have to be examined in detail.
The problem of making predictions about news articles could also be solved with an Artificial

Neural Network (ANN). Neural Networks have become increasingly popular in the last few
years as they can yield better results than the classic Machine Learning methods. In our case,
a Feedforward Neural Network (FFN) or a Recurrent Neural Network (RNN), which can word
order take into account, could bring the desired results.
Difficulties have also been identified in recognizing company names (see Section 7.3), which

could not all be solved. Regarding this problem, better results may be achieved with the help
of a ANN. Murthy and Bhattacharyya have already discussed a Deep Learning solution which
promises good results. [MB16].
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A. Additional Evaluation

A.1. Iterations 2 - 8 (Reinvestigating Model Improvement)

In addition to Section 7.4.3, iterations 2 to 8 are examined more closely here.

Iteration 2: After iteration 2, another 100 instances are labeled. Of 82 samples of Class 0,
five samples of Class 1 (merger) and 13 samples of Class 2, we add 15 samples (five per class)
to the stratified sample. The overall stratified sampled model now consists of 36 instances.
To reconstruct what would have happened if we had estimated the articles of this iteration

with our stratified sampling model, several analyses are performed.

• HO (No. 2): Now, the 21 selected samples of iterations 0 to 1 are used as training data
set and all 100 presented elements of iteration 2 as testing data set. The resulting
metrics are shown in Table A.1 and Table A.2.

Iteration 3: After iteration 3, another 100 instances are labeled. Of 82 samples of Class 0,
four samples of Class 1 (merger) and 14 samples of Class 2, we add 12 (four per class) samples
to the training data. The overall stratified sampled model now consists of 48 instances.
The next calculation shows what would have happened, if we had estimated the articles

from this iteration with our stratified sampling model.

Predicted \Actual 0 1 2 Sum(Predicted)
0 65 2 4 71
1 14 2 8 24
2 3 0 2 5

Sum(Actual) 82 4 14 100

Table A.1.: HO (No. 2), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 65 12 6 17 91.6 % 79.3 % 77.0 %
1 2 74 22 2 8.3 % 50.0 % 76.0 %
2 2 83 3 12 40.0 % 14.3 % 85.0 %

Average 46.6 % 47.9 % 79.3 %

Table A.2.: HO (No. 2), Metrics

89



A. Additional Evaluation

Predicted \Actual 0 1 2 Sum(Predicted)
0 51 0 1 52
1 26 4 12 42
2 5 0 1 6

Sum(Actual) 82 4 14 100

Table A.3.: HO (No. 3), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 51 17 1 31 98.1 % 62.2 % 68.0 %
1 4 58 38 0 9.5 % 100.0 % 62.0 %
2 1 81 5 13 16.7 % 7.1 % 82.0 %

Average 41.4 % 56.5 % 70.7 %

Table A.4.: HO (No. 3), Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 60 1 4 65
1 15 3 8 26
2 6 0 3 9

Sum(Actual) 81 4 15 100

Table A.5.: HO (No. 4), Confusion Matrix

• HO (No. 3): The 36 selected samples of iterations 0 to 2 are used as training data set,
all 100 elements of iteration 3 as testing data. The results can be seen in Table A.3
and Table A.4.

Iteration 4: In iteration 4, 81 samples of Class 0, four samples of Class 1 (merger) and 15
samples of Class 2 are labeled. From these, five of each class (15 in total) are randomly
selected for the stratified sampled data set. The total number of training samples is now 60.

• HO (No. 4): As training data set, all 48 selected samples of iterations 0 to 3 are used.
As testing data set, the 100 elements of iteration 4 are used. Table A.5 and Table A.6
show the resulting metrics.

Iteration 5: The procedure here is the same as in the previous iterations. The stratified
sampled model of the last iteration is applied to the 100 presented articles of the current
iteration. Afterwards, the stratified sampled training data set is extended by the equal number
of instances per class.
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A.1. Iterations 2 - 8 (Reinvestigating Model Improvement)

Class \Metric TP TN FP FN Precision Recall Accuracy
0 60 14 5 21 92.3 % 74.1 % 74.0 %
1 3 73 23 1 11.5 % 75.0 % 76.0 %
2 3 79 6 12 33.3 % 20.0 % 82.0 %

Average 45.7 % 56.4 % 77.3 %

Table A.6.: HO (No. 4), Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 67 0 5 72
1 18 2 5 25
2 3 0 0 3

Sum(Actual) 88 2 10 100

Table A.7.: HO (No. 5), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 67 7 5 21 93.1 % 76.1 % 74.0 %
1 2 75 23 0 8.0 % 100.0 % % 77.0
2 0 87 3 10 0.0 % 0.0 % 87.0 %

Average 33.7 % 58.7 % 79.3 %

Table A.8.: HO (No. 5), Metrics

• HO (No. 5): The selected subset of iterations 0 to 4 is used as training data set, all 100
elements of iteration 5 are used as testing data set. Table A.7 and Table A.8 show the
resulting metrics.

Iteration 6: The procedure here is the same as in the previous iterations. The stratified
sampled model of the last iteration is applied to the 100 presented articles of the current
iteration. Then, the stratified sampled training data set is extended by the same number of
instances per class. Table A.9 and Table A.10 show the resulting metrics.

• HO (No. 6): We use the selected samples of iterations 0 to 5 as training data set and
all 100 elements of iteration 6 as testing data set.

Iteration 7: The procedure here is the same as in the previous iterations. The stratified
sampled model of the last iteration is applied to the 100 presented articles of the current
iteration. Then, the stratified sampled training data set is extended by the same number of
instances per class.
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Predicted \Actual 0 1 2 Sum(Predicted)
0 63 0 3 66
1 19 1 8 28
2 6 0 0 6

Sum(Actual) 88 1 11 100

Table A.9.: HO (No. 6), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 63 9 3 25 95.5 % 71.6 % 72.0 %
1 1 72 27 0 3.6 % 100.0 % 73.0 %
2 0 83 6 11 0.0 % 0.0 % 83.0 %

Average 33.0 % 57.2 % 76.0 %

Table A.10.: HO (No. 6), Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 53 0 5 58
1 20 6 10 36
2 3 0 3 6

Sum(Actual) 76 6 18 100

Table A.11.: HO (No. 7), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 53 19 5 23 91.4 % 69.7 % 72.0 %
1 6 64 30 0 16.7 % 100.0 % 70.0 %
2 3 79 3 15 50.0 % 16.7 % 82.0 %

Average 52.7 % 62.1 % 74.7 %

Table A.12.: HO (No. 7), Metrics

• HO (No. 7): Using the selected samples of iterations 0 to 6 as training data set and
all 100 checked elements of iteration 7 as testing data set, the resulting tables are
Table A.11 and Table A.12.

Iteration 8: The procedure here is the same as in the previous iterations. The stratified
sampled model of the last iteration is applied to the 100 presented articles of the current
iteration. Then, the stratified sampled training data set is extended by the same number of
instances per class.

• HO (No. 8): Using the selected samples of iterations 0 to 7 as training data set and
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A.2. Iterations 10 - 11

Predicted \Actual 0 1 2 Sum(Predicted)
0 66 1 4 71
1 7 6 8 21
2 6 1 1 8

Sum(Actual) 79 8 13 100

Table A.13.: HO (No. 8), Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 66 16 5 13 93.0 % 83.5 % 82.0 %
1 6 77 15 2 28.6 % 75.0 % 83.0 %
2 1 80 7 12 12.5 % 7.7 % 81.0 %

Average 44.7 % 55.4 % 82.0 %

Table A.14.: HO (No. 8), Metrics
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Figure A.1.: Estimation after labeling iteration 9

all 100 checked elements of iteration 8 as testing data set, the resulting tables are
Table A.13 and Table A.14.

A.2. Iterations 10 - 11

To find out at what probability threshold the articles should be examined next, we plot a
probability distribution in Figure A.1. It shows how many of the articles were assigned to
their class with the respective probability. Based on this diagram, the user can then decide
on a split point depending on how many items are to be checked in the next iteration. As
decision boundary for the next iteration, a probability of 0.99 is chosen.
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Predicted \Actual 0 1 2 Sum(Predicted)
0 9 4 12 25
1 3 1 1 5
2 4 1 14 19

Sum(Actual) 16 6 27 49

Table A.15.: Iteration 10, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 9 17 16 7 36.0 % 56.3 % 53.0 %
1 1 39 4 5 20.0 % 16.7 % 82.0 %
2 14 17 5 13 73.7 % 51.9 % 63.0 %

Average 43.2 % 41.6 % 66.0 %

Table A.16.: Iteration 10, Metrics
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Figure A.2.: Estimation after labeling iteration 10

Iteration 10: All 49 articles of the remaining 9,000 unlabeled articles that are estimated with
a probability below the decision boundary of 0.99, are presented to the user. The resulting
Confusion Matrix (after correction by the user) and the corresponding metrics are listed in
Table A.15 and Table A.16.

After iteration 10, we plot the current probability distribution displayed in Figure A.2. As
can be seen from the diagram, the intermediate values have thinned out, which is an indicator
that the classifier can now differentiate better.

Iteration 11: As decision boundary, a probability of 0.999 was chosen this time. 33 articles
of the remaining 8,951 unlabeled articles are estimated with a probability below 0.999, which
are presented to the user. The correctness of the proposed labels can be assessed using
Table A.17 and Table A.18.
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A.3. Iterations 12 - 14

Predicted \Actual 0 1 2 Sum(Predicted)
0 9 1 7 17
1 1 1 0 2
2 2 3 9 14

Sum_Actual 12 5 16 33

Table A.17.: Iteration 11, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 9 13 8 3 52.9 % 75.0 % 67.0 %
1 1 27 1 4 50.0 % 20.0 % 85.0 %
2 9 12 5 7 64.3 % 56.3 % 64.0 %

Average 55.7 % 50.4 % 72.0 %

Table A.18.: Iteration 11, Metrics

Observations:

• For the user as well, the articles during iterations 10 and 11 are particularly difficult to
classify, as they often lie between two classes in terms of content.

• We discover that these articles are remarkably short. Sometimes they consist of only
two or three sentences.

• Since these articles are more often wrongly predicted (due to their relatively low prob-
ability) than those with a higher probability, the metrics Precision and Recall initially
decrease.

Conclusions: As already mentioned, only articles that are particularly difficult to classify
have been added in the last iterations. After several repetitions, after the most difficult articles
are processed, the model might even ameliorate.
An alternative to the selection of articles described in the previous would be to focus on

instances predicted as Class 1 (merger) and Class 2 during labeling, so that the quantity of all
classes grows equally. Thereby, stratified sampling could be applied in the best possible way
after each iteration. However, the difficulty here is, that instances with such low probabilities
actually often turn out to be a different class than what they were estimated for. This means
that it is only possible to influence whether the classes increase evenly to a limited extent.

A.3. Iterations 12 - 14

We start with the already labeled articles (1,082 instances after interations 0 to 11) and use
these to train a stratified SVM model. After predicting all 8,918 unlabeled instances, the
estimated class label and the class probability are annotated.
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A. Additional Evaluation

Predicted \Actual 0 1 2 Sum(Predicted)
0 2 0 2 4
1 5 0 1 6
2 0 0 0 0

Sum(Actual) 7 0 3 10

Table A.19.: Iteration 12, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 2 1 2 5 50.0 % 28.6 % 30.0 %
1 0 4 6 0 0.0 % 0.0 % 40.0 %
2 0 7 0 3 0.0 % 0.0 % 70.0 %

Average 16.7 % 9.5 % 46.7 %

Table A.20.: Iteration 12, Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 1 0 2 3
1 2 1 1 4
2 2 0 1 3

Sum(Actual) 5 1 4 10

Table A.21.: Iteration 13, Confusion Matrix

Appling the concept of Section 7.5.3, ten articles with the lowest probabilities are presented
to the user and revised manually.
This procedure is executed with three further iterations 12, 13 and 14. After each iteration,

RE is calculated to detect errors during manual labeling.

Iteration 12: In order to evaluate how accurate the estimated labels match the actual labels
in this iteration, the corresponding Confusion Matrix is listed in Table A.19 and the metrics
are presented in Table A.20. The RE is zero.

Iteration 13: We evaluate how well the estimated labels match the actual labels in this
iteration. The results are listed in Table A.21 and Table A.22. The RE is zero.

Iteration 14: Again, we evaluate how accurate the predictions for this iteration are. The
results are listed in Table A.23 and Table A.24. The RE is zero.

Observations:
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A.3. Iterations 12 - 14

Class \Metric TP TN FP FN Precision Recall Accuracy
0 1 3 2 4 33.3 % 20.0 % 40.0 %
1 1 6 3 0 25.0 % 100.0 % 70.0 %
2 1 4 2 3 33.3 % 25.0 % 50.0 %

Average 30.6 % 48.3 % 53.3 %

Table A.22.: Iteration 13, Metrics

Predicted \Actual 0 1 2 Sum(Predicted)
0 2 0 1 3
1 2 0 0 2
2 3 1 1 5

Sum(Actual) 7 1 2 10

Table A.23.: Iteration 14, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 2 2 1 5 66.7 % 28.6 % 40.0 %
1 0 7 2 1 0.0 % 0.0 % 70.0 %
2 1 4 4 1 20.0 % 50.0 % 50.0 %

Average 28.9 % 26.2 % 53.3 %

Table A.24.: Iteration 14, Metrics
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Predicted \Actual 0 1 2 Sum(Predicted)
0 0 0 0 0
1 60 17 23 100
2 0 0 0 0

Sum(Actual) 60 17 23 100

Table A.25.: Iteration 15, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 0 40 0 60 0.0 % 0.0 % 40.0 %
1 17 0 83 0 17.0 % 100.0 % 17.0 %
2 0 77 0 23 0.0 % 0.0 % 77.0 %

Average 5.7 % 33.3 % 44.67 %

Table A.26.: Iteration 15, Metrics

• Metrics have considerably decreased from iteration 11 to 14. The model’s predictions’
poor performance for the tested samples is possibly due to the fact that the selected
articles consisted of those that were assigned to their class with a low probability and
this in turn indicates some uncertainty.

• Especially for Class 1 (merger) the predictions are weak; in iteration 12 and 14 Recall
and Precision equal zero.

Conclusions: In order to evaluate the proposed optimised method even more precisely,
many more iterations would actually have to be performed. Only then, it is possible to finally
conclude how effective the proposed method actually is. This should be a focus of future
work, as proposed in Section 8.2.

A.4. Iterations 15 - 17

This section’s focus is on the investigation of articles that have been estimated by the classifier
with a high probability as Class 1 (merger).

Iteration 15: At the beginning of this iteration there are still 8,888 news articles without
label. Since SVM has been identified as the best classifier in Section 7.6, its class probabilities
are now inspected. For this, SVM is applied to the unlabeled data annotating the class
probabilities. Now the 100 instances with the highest probability are manually checked, in
this case with a class probability >= 0.4646.

Observations: The examined texts are exclusively short news, partly consisting of only one
sentence or even only headwords.
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A.4. Iterations 15 - 17

Predicted \Actual 0 1 2 Sum(Predicted)
0 0 0 0 0
1 76 13 11 100
2 0 0 0 0

Sum(Actual) 76 13 11 100

Table A.27.: Iteration 16, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 0 24 0 76 0.0 % 0.0 % 24.0 %
1 13 0 87 0 13.0 % 100.0 % 13.0 %
2 0 89 0 11 0.0 % 0.0 % 89.0 %

Average 4.33 % 33.33 % 42.0 %

Table A.28.: Iteration 16, Metrics

Conclusion: Since the classification cannot work properly with extremely short texts, we
limit the selection to texts with at least 700 characters in the next iteration.

Iteration 16: At the beginning of this iteration, there are still 8,788 news articles without
a class label. Again, the SVM algorithm is applied to the unlabeled data by using a stratified
sampled training data set and then annotating the class probabilities. Considering all articles
whose class is predicted as Class 1 (merger), we limit the selection to articles that contain at
least 500 characters in the full text and have a high class probability of at least 0.47003. These
100 instances are manually checked and corrected if necessary. The results are presented in
Table A.27 and Table A.28.

Observations: The selection still consists of many short news that have little to do with
mergers in terms of content.

Conclusion: Since the classification of very short articles works insufficiently, the limit of
the number of characters has to be increased even further.

Iteration 17: There are 8,688 news articles without a class label after iteration 16. Again,
the SVM algorithm is applied to the unlabeled data by using a stratified sampled train-
ing data set and then annotating the class probabilities. Class 0 is predicted 6,066 times,
Class 1 (merger) is predicted 1,349 times, and Class 2 is predicted 1,273 times. Considering
all articles whose class is predicted as Class 1 (merger), we limit the selection to articles that
contain at least 700 characters in the full text and have a high class probability of at least
0.41064. These 100 instances are manually checked and corrected if necessary. The results
are presented in Table A.29 and Table A.30.
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A. Additional Evaluation

Predicted \Actual 0 1 2 Sum(Predicted)
0 0 0 0 0
1 58 22 20
2 0 0 0

Sum(Actual) 58 22 20 100

Table A.29.: Iteration 17, Confusion Matrix

Class \Metric TP TN FP FN Precision Recall Accuracy
0 0 42 0 58 0.0 % 0.0 % 42.0 %
1 22 0 78 0 22.0 % 100.0 % 22.0 %
2 0 80 0 20 0.0 % 0.0 % 80.0 %

Average 7.3 % 33.3 % 48.0 %

Table A.30.: Iteration 17, Metrics

Observations: After removing short news from the selection, the classification works much
better than in the previous iterations. There are even many Class 2 articles that are related
to mergers.

Conclusion: This iteration represents the best variant of the methods examined so far, in
terms of the hit rate of Class 1 (merger) articles. However, the result is not yet sufficient,
which is why the Multinomial Naive Bayes algorithm is applied in the last iteration. As it
turns out, the last iteration 18 delivers the best results and is therefore presented in section
Section 7.7.
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