

A Workflow for Identifying Jobs with Similar I/O Behavior Utilizing Time Series Analysis

Limitless Storage **Limitless** Possibilities

https://hps.vi4io.org

Iulian M. Kunkel, Eugen Betke

CHPC Conference

- 1 Introduction
- 2 Approach
- 3 Evaluation
- 4 Summary

Julian Kunkel South Africa (Virtual), 2020 2/22

Motivation

Introduction

- Data center staff are supporting users
 - ▶ Optimization of programs
 - Monitoring of (in)efficient usage
- Assume you identified an interesting job
 - ▶ Might be particularly inefficient or efficient
 - e.g., via monitoring/tracing or user feedback
- Questions support staff may have
 - ▶ Will optimization pay off to other jobs?
 - Is the job a good blueprint for optimization?
- Problem: 100,000 of jobs are executed on a cluster
 - How can we find similar jobs?

Julian Kunkel South Africa (Virtual), 2020 3/2

DKRZ Monitoring System

Introduction

000

Details

- Periodicity: 10s
- Record metrics
 - From /proc
 - 9 aggregated
- Jobs are linked to the data

Mistral Supercomputer

- **3,340 Nodes**
- 2 Lustre file systems
- 52 PByte capacity
- 100+ OSTs per fs

Julian Kunkel South Africa (Virtual), 2020 4/:

Monitoring Data of a lob

- Grafana visualization
- Read/write shown
- Metrics supported
 - ▶ md file create
 - md file delete
 - md read (only)
 - md mod(ify)
 - md other
 - read bytes
 - read calls
 - write bytes
 - write calls

Outline

- 1 Introduction
- 2 Approach
- 3 Evaluation
- 4 Summary

Identifying Similar Jobs Using Time Series

- Previous work: utilized clustering algorithm(s)
- Today: workflow for supporting the investigation of jobs
- Derived meaningful distance measures
 - Must compare multiple metrics with different units/Range
 - ▶ Must handle variable number of nodes and runtime
- Conduct a study on 580,000 jobs (6 months of data from DKRZ)
 - Recorded using DKRZ monitoring system
 - Compute similarity of all jobs to three reference jobs
 - Quantitative analysis: behavioral comparison
 - ▶ Qualitative analysis: investigate top 100 similar jobs manually
 - Explored several algorithms

Julian Kunkel South Africa (Virtual), 2020 7/2:

 Introduction
 Approach
 Evaluation
 Summary

 000
 00 ●00
 0000000000
 00

Handle variable number of nodes and runtime

Variable number of nodes

- Calculate statistics across the number of nodes
- Obtain one time line per job metrics

Segmentation across time dimension

- Segment: calculated average across 10 min time interval
- Result is time series of segments
- Earlier attempt: used additional statistics

Julian Kunkel South Africa (Virtual), 2020 8/2

Compare Multiple Metrics with Different Units/Range

Convert raw data (X Bytes/s or Y opens/s) to categories

■ Categorization based on the quantiles of all jobs segments

Categories:

000

- ▶ 0 = non-IO (< 99% quantile)</p>
- ▶ 1 = HighIO (< 99.9% quantile)
- ▶ 4 = CriticalIO (>)
- Analysis of result shows that the categories are meaningful
 - ▶ e.g., 99% quantile is 1 op/s

Julian Kunkel South Africa (Virtual), 2020 9/3

Algorithms

- Define the pre-processing and distance metrics
- Explored six algorithms that differ in:
 - ► Aggregation (Each metric indepenently/together and which dimensions)
 - Coding (quantized/rounded to 17 states, binary)
 - ▶ Distance measure (Levensthein, Euclidean)
- Time series based algorithms
 - ▶ B-all: binary encode activity (Yes/No) of all metrics into one series
 - ▶ B-aggzero: remove subsequent segments of zero activity
 - Q-lev: quantized coding, Levensthein distance
 - ▶ Q-native: quantized, Euclidean distance, sliding window
 - ightharpoonup Q-phases: extract phase information (metric \neq 0 and match)
- Non time series algorithm: Kolmogorov-Smirnov
 - Concatenate individual node data (instead of averaging)

Julian Kunkel South Africa (Virtual), 2020 10/22

Outline

- 3 Evaluation

The Three Reference Jobs (Average across all nodes)

8 md_read write_bytes write_calls 10 20 30 40 Segment number

Job-M: 8 hours, 128 Nodes; other metrics == 0

Job-L: 66 hours, 20 Nodes; other metrics == 0

Job-S: Postprocessing

Julian Kunkel South Africa (Virtual), 2020 12/2:

Histogram of Jobs in Quantized coding

Job-S Histogram

Job-M Histogram

Julian Kunkel South Africa (Virtual), 2020 13/2:

Similarity to Job-S

- 100% sim is the reference job
 - ▶ Job-S is CMORization control
- Names in the job pool
 - 22,580 have somewhat "cmor"
 - ▶ 367 have somewhat "control"
- Observations
 - Most jobs have a low similarity
 - ► Clusters are visible
 - ➤ 30-40 of most similiar jobs have control in the name
 - All algorithms work somewhat
- User may explore from most similar job to least
 - A cluster is reasonable cut-off

Inspecting Selected Jobs: B aggzeros

Segment number

Non-cmor job: Rank 76, SIM=69%

Non-control job: Rank 4, SIM=81%

Inspecting Selected Jobs: Q_Lev

Rank 2, SIM=96% Rank 15, SIM=90% That looks rather similar, even better than B aggzeros

Rank 100. SIM=79%

Julian Kunkel South Africa (Virtual), 2020 16/22

Similarity to Job-M

100 - 75 - 50 - 25 - 0 -

50 Similarity in %

- Different behavior than for Job-S
- Much smaller similarity
- Q-native has highest similarity

100

75

Inclusivity and Specificity for Job-M 100 Similar Jobs

Distribution of node counts (job=128)

Distribution of Runtime (iob = 28.828s)

■ The algorithms identify a wide range of job runtime, node counts and different users

Julian Kunkel South Africa (Virtual), 2020 18/22

Inspecting Selected Jobs: Q-native

Rank 3, SIM=97%

Rank 15, SIM=91%

Rank 100. SIM=88%

Similarity to Job-L

- There are not many such long jobs
- The Q-phases and KS algorithms finds many jobs
 - ► There is only one IO phase
 - Many jobs have indeed similar profiles
- What to include?
 - It depends on the definition of similarity

Outline

- 4 Summary

Conclusions

- Distance measures allow to find similar jobs
- Utilizing time series of system statistics seems suitable
 - ► All algorithms worked rather well on Job-S
 - ► For Job-M and Job-S, we prefer Q-native and Q-lev
 - Runtime (not shown here) is also feasible (near realtime)
- It all depends on our expectation of "similarity"
 - ▶ What does a user need? Find similar phases in jobs? Do we require the same job length?
 - The community should define "similarity"
- Check the previous paper for this work:
 - Eugen Betke and Julian Kunkel Classifying Temporal Characteristics of lob I/O Using Machine Learning Techniques The Journal of High-Performance Storage, https://ihps.vi4io.org/incubator/