

Data-Centric IO: Potential for Climate/Weather

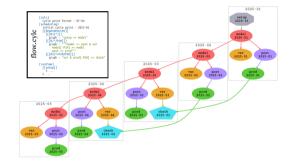
Limitless Storage Limitless Possibilities https://hps.vi4io.org

Julian M. Kunkel, Luciana Pedro, Bryan Lawrence, Glenn Greed, David Matthews, Hua Huang

6th ENES HPC Workshop

2020-05-29

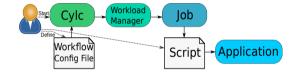
Copyright University of Reading


LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

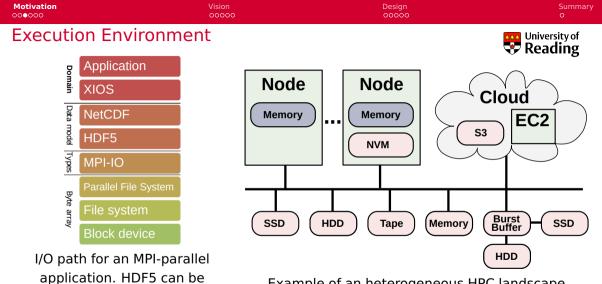
Motivation	Vision	Design	Summary
●00000	00000	ooooo	O
Climate/Weather \	Norkflows		Iniversity of

Climate/Weather Workflows

- A workflow consists of many steps
 - Repeated for simulation time
 - E.g., weather for 14 days
- Scientists use Cylc to handle such cycling workflows
- Cylc workflow specifies
 - Tasks with commands
 - Environment variables
 - Dependencies



Motivation	Vision	Design	Summary
o●oooo	ooooo	ooooo	O
Markflow Execution			


Workflow Execution

- 1 Cylc analyzes workflow
 - Creates a job script for each task
 - Submits to workload manager
- 2 Wflow manager allocates resources
 - Starts a job with env. vars
- Job script runs applications
 - File names set by
 - env. var
 - command
 - May depend on cycle

The data dependency between tasks is currently stored implicitly

Example of an heterogeneous HPC landscape

replaced with ESDM.

Motivation	Vision	Design	Summary
○○○●○○	00000	00000	O
Earth-System	Data Middleware		University of

Part of the ESiWACE Center of Excellence in H2020

Centre of Excellence in Simulation of Weather and Climate in Europe

https://www.esiwace.eu

Integrated as NetCDF backend

ESDM provides a transitional approach towards a vision for I/O addressing

- Scalable data management practice
- The inhomogeneous storage stack
- Suboptimal performance and performance portability
- Data conversion/merging

Motivation	Vision	Design	Summary
0000●0	ooooo	ooooo	O

EU funded Project: ESiWACE

The Centre of Excellence in Simulation of Weather and Climate in Europe

- Representing the European community for
 - Climate modelling and numerical weather simulation
- Goals in respect to HPC environments:
 - Improve efficiency and productivity
 - Supporting the end-to-end workflow of global Earth system modelling
 - Establish demonstrator simulations that run at highest affordable resolution
- Funding via the European Union's Horizon 2020 program (grant #823988)

http://esiwace.eu

Motivation	Vision	Design	Summary
00000●	ooooo	ooooo	O
Data Center Perspect	ive: Utilization of HP	C Resources	🚥 University of

Projects run in Data Centers

- Proposals may include: Time needed, CPU (GPU) hours, storage space
- After resources are granted scientists basically do what they want
 - Some limitations, e.g., quota, compute limit
 - But actual usage and access patterns?
 - The system is not aware what possibly could happen
 - The data center does not know sufficiently what users do
- Additionally: Execution uses often tools with 40year old concepts

Projects executed in Cern/LHC and other big experiments

- A detailed planning of activities is performed
- Experiments are proposed with detailed plans (time, resource utilization)

😎 Reading

Motivation	Vision	Design	Summary
000000	●0000	ooooo	O
Outline			•••• University of

1 Motivation

2 Vision

3 Design

4 Summary

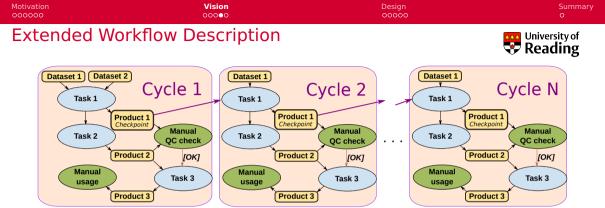
Julian M. Kunkel 📈

Motivation	Vision	Design	Summary
000000	⊙●○○○	ooooo	O
Planning HPC	Resources: An Alte	rnative Universe	University of

Scientists deliver

- detailed but abstract workflow orchestration
- containers with all software
- data management plan with data lifecycle
- time constraints and budget
- Data centers and vendors
 - Simulate the execution before workflow is executed
 - Estimate costs, energy consumption
 - Determine if it is the best option to run
- Systems
 - Utilize the information to orchestrate I/O AND computation
 - Make decisions about data location and placement:
 - Trade compute vs. storage and energy/costs vs. runtime
 - Ensure proper execution
- Provoking: Big data technology is ahead of HPC in such an agenda

💎 Reading

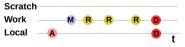

Motivation oooooo	Vision oo●oo	Design 00000	Summary O
Micion, Exploit Morkfle	w Knowlodgo		

Vision: Exploit Workflow Knowledge

Enhance workflow description with IO characteristics

- Needed input
- Generated output and its characteristics
- Information Lifecycle (data life)
 - How long to keep data, type of data...
- ⇒ Explicit input/output definition (dependencies) instead of implicit
- Smarter IO scheduling
 - Considering the hardware/software environment
 - Data placement: Transfer, migration, staging, replication, allocation
 - Data reduction: data compression and data recomputation
- \Rightarrow Providing a separation of concern
 - Scientist declares workflow including IO
 - System maps workflow to hardware using expert knowledge and ML

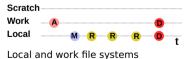
Enhance workflow description with IO characteristics


- Input required
- Output generated and its characteristics

Motivation	Vision	Design	Summary
000000	0000●	ooooo	O
Smarter IO Scl	heduling: Advantag	e for Data Placement	University of Reading

Scenario

- Consider three file systems: local, scratch, and work
 - Local is a compute-node local storage system
- Data can be stored on any of these storage systems
- Scheduler to optimize data placement throughout life cycle to hardware


Alternative life cycles for mapping a dataset (Selection)

Local and work file systems

Scratch A R R D Work ______

Scratch file system only

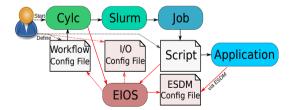
Allocation, Migration, Reading, and Deleting

t

Motivation	Vision	Design	Summary
000000	00000	●0000	O
Outline			6000 University of

1 Motivation

3 Design


Motivation	Vision	Design	Summary
oooooo	00000	⊙●000	O
Design Overview			Con University of

Relevant components

- Configuring system information
- Extending the workflow description
- Providing a smart I/O scheduler (EIOS)

Modified workflow execution

- Cylc analyzes workflow
 - EIOS provides Slurm variables
- 2 Wflow manager allocates resources
 - May schedule on nodes of prev. jobs
- Job script runs applications
 - EIOS generates pseudo filenames encoding scheduling information

💎 Reading

Motivation 000000	Vision ooooo	Design 00●00	Summary O
Configuring Sy	stem Information	•	•• University of
Reuse the	Earth-System Data Midd	leware (ESDM) configuration file	😵 Reading
🕨 Contai	ns available storage target	s, performance model, further infor	mation
"performance-mw "max-threads-pe "max-fragment- "max-global-thu "accessibility" }, {"type": "POSIX",	size" : 104857600, reads" : 200,	put" : 500000.0}, 02/projectX/",	
"max-threads-pd "max-fragment-: "max-global-th "accessibility' },	size" : 104857600, reads" : 200,		
{"type": "POSIX", "performance-mo "max-threads-po	size" : 10485760, reads" : 0,	put" : 200.0},	

Motivation	Vision	Design	Summary
000000	00000	000●0	O
Easter aller a Mar	al al anno 10 an an tha bha an		

Extending Workflow Description

Additional IO workflow file (later to be integrated)

EIOS knows workflow from Cylc and reads this file

```
[Task 1]
[[inputs]]
  topography = "/pool/input/app/config/topography.dat"
  checkpoint = "[Task 1].checkpoint$(CYCLE - 1)"
              = "/pool/input/app/config/init.dat"
  init
[[outputs]]
  [[[varA]]] # This is the name of the variable
     pattern = 1 dav
     lifetime = 5 years
     type = product
    datatype = float
     size = 100 \text{ GB}
     precision.absolute tolerance = 0.1
   [[[checkpoint]]]
     pattern = $(CYCLE)
     lifetime = 7 \text{ days}
     type = checkpoint
    datatype = float
     dimension = (100.100.100.50)
```

Motivation	Vision	Design	Summary
000000	00000	0000●	O
Smarter I/O Sch	neduler		University of Reading

Provides hints for colocating tasks with data

- Create dummy file name to include schedule (e.g., prefer local storage)
- ESDM parses the schedule information and enacts it (if possible)
- Optimizing data placement strategy in ESDM/workflow scheduler
 - Utilizing hints for IME to pin data to cache
 - Storing data locally between depending tasks (using modified Slurm)
 - Optimizing initial data allocation (e.g., alternating storage between cycles)

These changes are planned as part of the ESiWACE project

- Relevant for climate/weather applications and achievable now
- Considered to be intermediate and leading towards the vision

Motivation	Vision	Design	Summary
000000	00000	ooooo	●
Summary and Co		University of Reading	

Goals of our vision and design

- Separation of concerns between developer/user and system optimization
- Scientists enhances workflow descriptions with IO characteristics
- System exploits workflow specification considering system characteristics

Outlook: Opportunities Knowing Workflows

- Performance modelling (simulation or via. recorded behavior)
 - Imagine to include compute model, too
 - Analyse: How long will the workflow run, costs to run it on a given platform?
 - What if analysis: How to change the system / storage to improve performance?
- Data centers may require submission of workflow descriptions for proposals
 - Data center could predict benefit, costs, explore how to run it optimally
 - May hand over to vendors, explore signposting to alternative systems