

Smarter Management using Metadata and Workflow Expertise

Limitless Storage **Limitless** Possibilities https://hps.vi4io.org

BoF: Knowledge Is Power: Unleashing the Potential of Your Archives Through Metadata

2019-11-21

Outline

- 1 Data Organization
- 2 Workflows
- 3 ESiWACE Project
- 4 Summary

Data Organization

What scientists care about

- Organization of the (hierarchical) namespace
- Choosing the storage location/s
 - ▶ Often (if not policy driven): when to archive/how?
- Management of the applications that generate data
- Loads of scripts to run applications, manage data
- The reproduction of experiments after their data is archived
- Sometimes: High-level databases to manage data
 - ▶ The allow to ingest metadata and organize data accordingly

Summary

What scientists should care about

- Setup of the workflow all processing steps
- Providing accurate metadata describing experiments and data
- Documentation of experiment: Ensuring reproducibility
 - Supported by tools that record the data lineage
- Information lifecycle management
 - ► How long to keep data/workflow/reproducible data
 - Metadadata and rules guiding the life of data

Data Organization Workflows **ESIWACE Project** Summary

How to Search and Address Data?

High-Level questions relevant to scientists

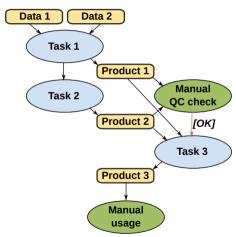
- What experiments did I run vesterday?
- Show me the data of experiment X, with parameters Z...
- Cleanup unneeded temporary stuff from experiment X
- Compare the mean temperature of one model for one experiment across model versions

A Semantic Namespace might help!

- Allow to explore data based on user metadata
- User-defined properties but provide means to validate schemas
- Similar to an MP3 library (search by Genre/Year/Artist/...)

Outline

- 2 Workflows


 Data Organization
 Workflows
 ESIWACE Project
 Summary

 000
 0 ● 000
 0000
 00
 00

Workflows

- Consider workflow from 0 to insight
 - Needs/produces data
 - Uses tasks
 - Parallel apps?
 - Big data tools?
 - Manual analysis
 - May need month to complete
 - Manual tasks are unpredictable
 - What are users interested in?
- Not well described in HPC
 - Mostly hardcoded in scripts
- Can we exploit workflows?
 - ► Can we use **archives** more?
 - Enforce ILM as needed by users

Scenario: Large Simulation

- Assume large scale simulation, timeseries (e.g., 1000 y climate)
- Assume manual data analysis needed (but time consuming)
- We need all 1000 y for detailed analysis!

A typical workflow execution

- Run simulation for 1000 year simulation time
 - Store various data on (online) storage
 - Keep checkpoints to allow reruns
 - Maybe backup data in archive
- Explore data to identify how to analyze data
- At some point: Run the analysis on all data
- Problem: Occupied storage capacity

Data Organization Workflows **ESIWACE Project** Summary

Alternative Workflows Done by Scientists

Recomputation

- Run climate simulation
 - Store checkpoints
 - Store only selected data (wrt. resolution, section, time)
- Explore data
 - ► Run recomputation to create needed data (e.g., last year)
- At some point: run analysis across all data needed
- This is a manual process, must consider
 - Runtime parameters
 - System configuration/available resources
 - ▶ We are trading compute cycles vs. storage
 - It would be great if a system considers costs and does this automatically

Data Organization Workflows **ESIWACE Project** Summary

Another Alternative Workflows

Provided by more intelligent storage and better workflows

- Run simulation
 - Store checkpoints on node-local storage
 - Redundancy: from time to time restart from another node
 - ► Store selected data on online storage (e.g., 1% of volume)
 - Also store high-resolution data sample (e.g., 1% of volume)
 - ► Store high-resolution data directly in a cold **archive**
- Explore data on snapshot
- Month later: schedule analysis of data needed
 - ▶ The system retrieves data from the **archive**
 - Performs the scheduled operations on **streams** while data is pulled in
 - Informs user about analysis progress
- Some people do this manually or use some tools to achieve similarly
 - ▶ Aim for domain & platform independence and heterogenous HPC landscapes

Outline

- 1 Data Organization
- 2 Workflows
- 3 ESiWACE Project
- 4 Summary

ESiWACE: http://esiwace.eu

The Centre of Excellence in Simulation of Weather and Climate in Europe

- Prepare the European weather and climate community
 - ▶ Make use of future exascale systems
- Goals in respect to HPC environments
 - ► Improve efficiency and productivity
 - ▶ Supporting the end-to-end workflow of global Earth system modelling
 - ▶ Establish demonstrator simulations; run at the highest affordable resolution
- Funding via the European Union's Horizon 2020 program

Iulian M. Kunkel

ESIWACECENTRE OF EXCELLENCE IN SIMULATION OF WEATHER AND CLIMATE IN EUROPE

Earth-System Data Middleware

A transitional approach towards a vision for I/O addressing

- Scalable data management practice
- The inhomogeneous storage stack
- Suboptimal performance and performance portability
- Data conversion/merging

Design goals of the Earth-System Data Middleware

- Relaxed access semantics, tailored to scientific data generation.
- 2 Site-specific (optimized) data layout schemes
- Ease of use and deploy a particular configuration
- 4 Enable a configurable namespace based on scientific metadata

Summary

ESiWACE2 Plans for ESDM

Data Organization

- FUSE prototype to dynamically build a hierarchical semantic namespace
 - ► E.g., <model>/<date>/<variable>
- Supporting post-processing, analytics and (in-situ) visualization
 - Support of computation offloading within ESDM
 - ▶ Integration with analysis tools, e.g., Ophidia, CDO
 - ▶ Direct data exchange between processes

Long-term goals

- Cost-modelling for optimized workflows utilizing heterogenous storage
- Performing operations while streaming data from tape
 - ▶ Or any storage/compute opportunity ⇒ Liquid Computing

Summary •0

Outline

Data Organization

University of Reading

- 4 Summary

Summary

Summary

Data Organization

- Manual data placement leads to suboptimal results
- Semantic namespace is an opportunity to abstraction
 - Necesary to manage the data deluge
- With ESDM, we explore some aspects as part of the ESiWACE project
- Workflows must be lifted to a higher level
 - ▶ Utilization of heterogenous storage/compute infrastructure
 - See NGI initiative at VI4IO
 - ► https://ngi.vi4io.org