
Copyright University of Reading

USING DEEP LEARNING TO IDENTIFY
ATMOSPHERIC FEATURES

Julian Kunkel1, Bryan Lawrence1, Daniel Galea1 and Jeffrey Adie2

1Uni. Reading 2NVIDIA AI Tech Center

1

Department of Computer Science

THE NVIDIA AI TECHNOLOGY CENTER

3

NVIDIA AI TECHNOLOGY CENTER (NVAITC)

Singapore (AP HQ)

Taiwan

China

Australia

Hong Kong

Luxembourg

Thailand

United

Kingdom

Indonesia

India

Finland

Italy

Catalyse AI transformation through research-centric integrated engagements

Established Aug 2015 in Singapore

Collaboration Footprint: Singapore. ASEAN. Taiwan. China. Hong Kong. Australia. Europe.

4
AI Tech
Centre

NVAITC STRATEGIC INVOLVEMENTS

Higher Education & Research

(HER)

Government

Industry

Nvidia AI Technology Center

(NVAITC)

• Strategic Lab Collaborations
• Research Collaborations
• Advisory for AI initiatives/roadmaps
• AI Research Community

Positioned alongside collaborators to catalyse and enable AI transformation

5

NVAITC COLLABORATORS
Singapore China

Europe

Taiwan

Thailand

Australia

Indonesia

Hong Kong

AI Acceleration
Advisory Board

India

6
AI Tech
Centre

ONGOING PROJECT INVOLVING THE NVAITC
ATMOS

See their paper: DeepTC: ConvLSTM Network for Trajectory Prediction of Tropical Cyclone using
Spatiotemporal Atmospheric Simulation Data, 2018

7
AI Tech
Centre

KISTI’S DL MODELS

8
AI Tech
Centre

NWP + ML MODEL

PROJECT: DEEP LEARNING

ATMOSPHERIC FEATURES

• Collaboration between University of Reading and NVAITC

• PhD student: Daniel GALEA d.galea@pgr.reading.ac.uk

• Supervisors

• Primary: Bryan Lawrence

• Secondary: Julian Kunkel

• Supported by NVAITC (Jeffrey Adie)

mailto:d.galea@pgr.reading.ac.uk

MOTIVATION

• Numerical Weather Prediction (NWP) models and climate model runs

• produce TB of data every day

• Manual inspection of data to make accurate forecasts or work on

improving climate science is infeasible

• Storing large amount of data leads to ever-increasing costs

• Hence, a method to reduce the data would be desirable

• Can we store data only when we observe interesting events?

AIMS

• Automatic detection of meteorological features in data using DL

• Focus on tropical cyclones

• Integration into the existing workflow of a NWP or climate model

• For in-situ data analysis

• For triggering I/O upon event detection

• Constraints:

• Detection of features in a distributed/parallel application

• Domain decomposition must be taken into account

PROGRESS

1. Develop a first DL model to detect TCs

• Learning about DL and machine learning

• Testing parallel training ...

• Verification of the accuracy: can TCs be detected correctly?

• Exploring hyperparameters

• Benefits/drawbacks of different network architectures

• Analysis isn't complete, but many aspects tested

• Development of appropriate training/validation sets

2. Ongoing activity: Integration into the model

Let's have a look at the best model we optained so far

ACCURACY - DATA

• ECMWF's ERA-Interim data set from 1st January 1979 to the 30th

June 2017

• Resolution of ~75km

• Five fields were used to train the Deep Learning model

• Mean Sea Level Pressure (MSLP)

• 10m Wind Speed

• Vorticity at 850hPa

• Vorticity at 700hPa

• Vorticity at 600hPa

Data for Hurricane Katrina at 25/08/2005 at 18Z

MSLP 10m Wind Speed

Vorticity at 850hPa Vorticity at 700hPa Vorticity at 600hPa

PROGRESS - DATA
• Data cropped to cover Western Atlantic and Western Pacific basins

• The final dataset had 51931 cases

• ~80% having no TC present

• ~20% having TCs present

• Data was normalized by:

• First applying a log scale to the wind speed

• Min/Max normalization to obtain values in the range of [0, 1]

• Resolution: 225km (1/3rd of original data)

• Data split into

• training set (60%)

• validation set (20%)

• test set (20%)

10oW 90oE 180oE100oW

DEEP LEARNING MODEL

• DL model containing convolutional layers and fully connected layers

• Manual hyperparamter tuning was performed:

• Method of weight initialization (Glorot)

• Number of convolutional layers and fully connected layers

• Number of nodes in the layers

• Normalization method (L2 normalization penalty factor 0.0001)

• Activation functions (Leaky ReLU)

• Batch size (2000)

• Methods to balance the dataset

• The final model obtained 94% accuracy for detecting Tropical Cyclones

in the Western Atlantic and Western Pacific basins

DEEP LEANING MODEL

• Convolution layer 10x10 window, 8 kernels, 1 stride

• Dropout probability 0.3

• MaxPool 2x2 window, 1 stride

• Convolution layer 5x5 window, 16 kernels, 1 stride

• Dropout probability 0.3

• MaxPool 2x2 window, 1 stride

• Convolution layer 10x10 window, 32 kernels, 1 stride

• MaxPool 2x2 window, 1 stride

• Flatten

• Dense (Fully-Connected) layer 128 nodes

• Dropout probability 0.3

• Dense (Fully-Connected) layer 64 nodes

• Dropout probability 0.3

• Dense (Fully-Connected) layer 1 node, Sigmoid activation
17

Resolution in km

• 2250 x 2250

• 450 x 450

• 4500 x 4500

• 900 x 900

• 9000 x 9000

• 1800 x 1800

FORTRAN IMPLEMENTATION

• Integration of DL model into NWP/climate workflow

• Fortran code base!

• Approach

• Training in Python

• Loading weigths in C++ using the frugally-deep package

• Fortran/C++ interface

• Reproduction of the validation results loading the same data from Fortran

Frugally-Deep: https://github.com/Dobiasd/frugally-deep

FORTRAN IMPLEMENTATION

DETAILS

• Save Deep Learning model from Python

• model.save('keras_model.h5', include_optimizer=False)

• Use python script included in frugally-deep to save the model in an
appropriate format:

• python3 convert_model.py keras_model.h5 fdeep_model.json

• Load model in C++ using frugally-deep package:

• const auto model = fdeep::load_model("fdeep_model.json");

• Load data from FORTRAN

• pass it to function in C++

• make inference

• pass inference result back to FORTRAN

NEXT STEPS

• Expand the DL model to be able to handle data from across the globe

• Improve the Deep Learning model performance

• How does the resolution impact on the model's performance?

• Does more training data help improve final testing accuracy?

• Can a better method for balancing the dataset be found?

• Can better hyperparameters be found?

• How do more/less fields impact on the final testing accuracy?

• Deal with the domain decomposition of the parallel model

• Convolutional layer seems a good candidate

• Need some data from neighbours?

• Finish the DL model in the workflow of an NWP or climate model

