**Department of Computer Science** 



#### USING DEEP LEARNING TO IDENTIFY ATMOSPHERIC FEATURES

Julian Kunkel<sup>1</sup>, Bryan Lawrence<sup>1</sup>, Daniel Galea<sup>1</sup> and Jeffrey Adie<sup>2</sup> <sup>1</sup>Uni. Reading <sup>2</sup>NVIDIA AI Tech Center



## THE NVIDIA AI TECHNOLOGY CENTER

#### **NVIDIA AI TECHNOLOGY CENTER (NVAITC)**

Catalyse AI transformation through research-centric integrated engagements



#### NVAITC STRATEGIC INVOLVEMENTS

Positioned alongside collaborators to catalyse and enable AI transformation





#### **NVAITC COLLABORATORS**



#### ONGOING PROJECT INVOLVING THE NVAITC ATMOS









See their paper: DeepTC: ConvLSTM Network for Trajectory Prediction of Tropical Cyclone using 《 Spatiotemporal Atmospheric Simulation Data, 2018





#### **KISTI'S DL MODELS**









#### NWP + ML MODEL





# PROJECT: DEEP LEARNING ATMOSPHERIC FEATURES



- Collaboration between University of Reading and NVAITC
  - PhD student: Daniel GALEA <u>d.galea@pgr.reading.ac.uk</u>
- Supervisors
  - Primary: Bryan Lawrence
  - Secondary: Julian Kunkel
  - Supported by NVAITC (Jeffrey Adie)

## MOTIVATION



- Numerical Weather Prediction (NWP) models and climate model runs
  - produce TB of data every day
- Manual inspection of data to make accurate forecasts or work on improving climate science is infeasible
- Storing large amount of data leads to ever-increasing costs
- Hence, a method to reduce the data would be desirable
  - Can we store data only when we observe interesting events?





- Automatic detection of meteorological features in data using DL
  - Focus on tropical cyclones
- Integration into the existing workflow of a NWP or climate model
  - For in-situ data analysis
  - For triggering I/O upon event detection
- Constraints:
  - Detection of features in a distributed/parallel application
  - Domain decomposition must be taken into account

#### PROGRESS



- 1. Develop a first DL model to detect TCs
  - Learning about DL and machine learning
    - Testing parallel training ...
  - Verification of the accuracy: can TCs be detected correctly?
  - Exploring hyperparameters
    - Benefits/drawbacks of different network architectures
    - Analysis isn't complete, but many aspects tested
  - Development of appropriate training/validation sets
- 2. Ongoing activity: Integration into the model

Let's have a look at the best model we optained so far

#### **ACCURACY - DATA**



- ECMWF's ERA-Interim data set from 1st January 1979 to the 30th June 2017
- Resolution of ~75km
- Five fields were used to train the Deep Learning model
  - Mean Sea Level Pressure (MSLP)
  - 10m Wind Speed
  - Vorticity at 850hPa
  - Vorticity at 700hPa
  - Vorticity at 600hPa

#### Data for Hurricane Katrina at 25/08/2005 at 18Z







10m Wind Speed

MSLP



Vorticity at 850hPa

Vorticity at 700hPa

Vorticity at 600hPa

## **PROGRESS - DATA**



Data cropped to cover Western Atlantic and Western Pacific basins



- The final dataset had 51931 cases
  - ~80% having no TC present
  - ~20% having TCs present
- Data was normalized by:
  - First applying a log scale to the wind speed
  - Min/Max normalization to obtain values in the range of [0, 1]
- Resolution: 225km (1/3<sup>rd</sup> of original data)
- Data split into
  - training set (60%)
  - validation set (20%)
  - test set (20%)

## **DEEP LEARNING MODEL**



- DL model containing convolutional layers and fully connected layers
- Manual hyperparamter tuning was performed:
  - Method of weight initialization (Glorot)
  - Number of convolutional layers and fully connected layers
  - Number of nodes in the layers
  - Normalization method (L2 normalization penalty factor 0.0001)
  - Activation functions (Leaky ReLU)
  - Batch size (2000)
  - Methods to balance the dataset
- The final model obtained 94% accuracy for detecting Tropical Cyclones in the Western Atlantic and Western Pacific basins

# **DEEP LEANING MODEL**

- Convolution layer 10x10 window, 8 kernels, 1 stride
  - Dropout probability 0.3
- MaxPool 2x2 window, 1 stride
- Convolution layer 5x5 window, 16 kernels, 1 stride
  - Dropout probability 0.3
- MaxPool 2x2 window, 1 stride
- Convolution layer 10x10 window, 32 kernels, 1 stride
- MaxPool 2x2 window, 1 stride
- Flatten
- Dense (Fully-Connected) layer 128 nodes
  - Dropout probability 0.3
- Dense (Fully-Connected) layer 64 nodes
  - Dropout probability 0.3
- Dense (Fully-Connected) layer 1 node, Sigmoid activation



Resolution in km

- 2250 x 2250
- 450 x 450
- 4500 x 4500
- 900 x 900
- 9000 x 9000
- 1800 x 1800



- Integration of DL model into NWP/climate workflow
  - Fortran code base!
- Approach
  - Training in Python
  - Loading weigths in C++ using the frugally-deep package
  - Fortran/C++ interface
- Reproduction of the validation results loading the same data from Fortran

Frugally-Deep: https://github.com/Dobiasd/frugally-deep

# FORTRAN IMPLEMENTATION DETAILS



- Save Deep Learning model from Python
  - model.save('keras\_model.h5', include\_optimizer=False)
- Use python script included in frugally-deep to save the model in an appropriate format:
  - python3 convert\_model.py keras\_model.h5 fdeep\_model.json
- Load model in C++ using frugally-deep package:
  - const auto model = fdeep::load\_model("fdeep\_model.json");
- Load data from FORTRAN
  - pass it to function in C++
  - make inference
  - pass inference result back to FORTRAN

## **NEXT STEPS**



- Expand the DL model to be able to handle data from across the globe
- Improve the Deep Learning model performance
  - How does the resolution impact on the model's performance?
  - Does more training data help improve final testing accuracy?
  - Can a better method for balancing the dataset be found?
  - Can better hyperparameters be found?
  - How do more/less fields impact on the final testing accuracy?
- Deal with the domain decomposition of the parallel model
  - Convolutional layer seems a good candidate
  - Need some data from neighbours?
- Finish the DL model in the workflow of an NWP or climate model