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Climate/Weather Workflows ( ssiwace

Challenges

I Programming of efficient workflows

I Efficient analysis of data

I Organizing data sets

I Ensuring reproducibility of workflows/provenance of data

I Meeting the compute/storage needs in future complex hardware landscape
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I Goal: We shall be able to use all storage technologies concurrently

» Without explicit migration, put data where it fits

» Administrators just add new technology (e.g., SSD pool) and users benefit from it
I May utilize local storage, SSDs, NVMe

» Even without communication used in workflows
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ESIWACE: http://esiwace.eu ( ssiwace

The Centre of Excellence in Simulation of Weather and Climate in Europe

Prepare the European weather and climate community
Make use of future exascale systems
Goals in respect to HPC environments

Improve efficiency and productivity
Supporting the end-to-end workflow of global Earth system modelling
Establish demonstrator simulations that run at the highest affordable resolution

Funding via the European Union’s Horizon 2020 program (ESiWACE2 2019-2022)

( esiwace I
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The ESIWACE Community C esiwace

20 partners from 9 countries
35 supporters

Figure: Group Photo during the ESIWACE2 Kick-Off Meeting (March 2019)
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ESDM Summary
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Earth-System Data Middleware  ssiwece

A transitional approach towards a vision for |/O addressing

Scalable data management practice
The inhomogeneous storage stack
Suboptimal performance and performance portability

Data conversion/merging

Design goals of the Earth-System Data Middleware

1 Relaxed access semantics, tailored to scientific data generation
2 Site-specific (optimized) data layout schemes

3 Ease of use and deploy a particular configuration

4

Enable a configurable namespace based on scientific metadata
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Architecture

Key concepts

O esiwece

I Middleware utilizes layout component to make placement decisions

I Applications work through existing API
0 Data is then written/read efficiently; potential for optimization inside library

User-level APIs
Data-type aware

Site-specific
back-ends

and
mapping —
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Architecture: Detailed View of the Software Landscape L ssiwece

Application]

T python4-NetCDF
o (patched)
T NetCDF4 (patched)

Application2 Application3

Tools and services (planned)

esd-FUSE ‘ﬁm‘

ESDM API

Performance model |—| Layout
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Data Model ( esiwace

@ Container:

» Provides a flat (simple hierarchical) namespace
» Contains Datasets + (arbitrary) metadata
» Can be constructed on the fly

[ Dataset:

» Multi-dimensional data of a specified data type

Write-once semantics (epochs are planned)

Contains arbitrary number of data fragments

Data of different fragments can be disjoint or overlapping
Dimensions can be named and unlimited

» Self-describing, can be linked to multiple containers

vvyyvyy

M Fragment:

» Holds data, arbitrary continuous sub-domain (data space)
» Stored on exactly one storage backend
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Discussion of the Data Model { esiwace

[ Fragment domain is flexible

» Avoid false sharing (of data blocks) in the write path
» A fragment can be globally available or just locally
» Reduce penalties of shared file access

2 Self-describing data format
» Metadata contains relevant scientific metadata, datatypes
8] Layout of the fragments can be dynamically chosen

» Based on site-configuration and performance model
» Site-admin/project group defines a mapping
» Use multiple storages concurrently, use local storage

@ Containers could be created on the fly to mix-in datasets
» Open one container for input that has everything you need
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Backends  ssiwece
Storage backends

POSIX: Backwards compatible for any shared storage
CLOVIS: Seagate-specific interface, will be open sourced soon
WOS: DDN-specific interface for object storage

KDSA: Specific interface for the Kove cluster-wide memory

PMEM: Non-volatile storage interface (http://pmem.io)

Metadata backends

POSIX: Backwards compatible for any shared storage

Investigated performance of ElasticSearch, MongoDB as potential NoSQL solutions
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Namespace C sswece

I The namespace of ESDM is separated from the file system
I Currently, hierarchically too

I NetCDF can use ESDM by just utilizing the esdm:// prefix
[ Example:

$ nccopy test _echam _spectral.nc esdm://user/test _echam _spectral
$ // do something with the file in ESDM, e.g.

$ ncdump -h esdm://user/test _echam spectral

$ // export the file into the portable NetCDF4 format

$ nccopy -4 esdm://user/test echam spectral out.nc
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The Blocking |/O Path: Write ( esiwece

Note: Processes write path is independent from any global state

1 Scheduler identifies how to partition the data into fragments and assigns backends
A maximum fragment size is defined by each backend
May also use a performance model to partition data
(We aim to utilize workflow information for the partitioning)

2 Append the fragment to the local dataset (mark as dirty)
31 A backend-specific thread pool processes the fragments
The backend is called with the fragment
May use direct 1/O or reorganize the data in-memory

4 Wait until all fragments are processed

Collective operation

5 Upon close/sync, the MPI interface synchronizes the fragment knowledge

6 A single process updates the JSON metadata for the dataset/container
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The Blocking 1/O Path: Read ( eswace

Preliminaries — Collective open/ref. operation of a dataset/container

-

Upon open, the fragment information is read by one process

N

Broadcast fragment information to all processes

3] Identify the overlap of fragments with the data space requested
4 Make a schedule to read each cell once (there could be replicas)

5 A backend-specific thread pool processes the fragments
Backend loads the fragments requested (use direct |/O or copy data if needed)

6 Wait until all fragments are processed
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Evaluation
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Evaluation ( esiwace
System

Test system: DKRZ Mistral supercomputer
Nodes: 100, 200, 500

Benchmark
Uses ESDM interface directly; metadata on Lustre
Write/read a timeseries of a 2D variable; 3x repeated
Grid size: 200k x 200k x 8 Bytes x 10 iterations
Data volume: size = 2980 GiB; compared to IOR performance

ESDM configurations

Splitting data into fragments of 100 MiB
Use /dev/shm (TMPES) or /tmp directory (Local SSD)
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Performance Growth of ESDM on Lustre (PPN = 1)
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Discussion

I Benefit when accessing multiple global file systems
I Write performance benefits from using both file systems

» Most benefit when using 200 nodes (2x)
» 500 nodes: 180 GiB/s vs. 140 GiB/s (single fs)

I Read performance shows some benefit for larger configurations
I ESDM achieves similar performance regardless of PPN (not shown)

I What is the performance when we use node-local storage?
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Performance on TMPFS vs. IOR (nodes = 500, varied PPN) & sayeee
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Discussion

I Node-local storage is much faster than global storage

» TMP achieves 750-1,000 GB/s for write (500 SSDs, some caching)
» TMP reads are actually cached (6 GB data per node)
» TMPFS achieves up to 3,000 GB/s

@ TMP write is invariant to PPN
» ESDM configured to use at least four threads per node
B TMPFS write depends on PPN

» ESDM configured to not use threads, could use them to improve performance!
I IOR is faster; potential to improve ESDM path further
» Localization of fragments using r-tree
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Performance on NVDIMMs C esiwece

GiB/s

I ESDM on the NextGenlO Prototype with a first naive approach (with PMEM)
I Test run on four dual-socket nodes with 80 GByte of data
I Theoretic HW performance per node (12 NVDIMMs) W: 96 GB/s, R: 36 GB/s

I Max test: explore best case performance (single file)
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Status ( eswece

I NetCDF: Done, minor issues to fix, use tests for checking compatibility

» netcdf4-python: Available, derived tests with supported features
» Report for compatibility will appear soon (Oct. 2019)
» Some unsupported features, e.g., NetCDF4-groups, will be done depending on needs

I First tools implemented (esdm-mkfs, esdm-rm)

i1 Deployed daily regression testing using Jenkins (Webpage to go public: Oct. 2019)
I FUSE prototype to dynamically build a hierarchical namespace on semantics
» E.g., <model>/<date>/<variable>

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 25 /28



Introduction Evaluation Outlook

00000000 0000000 0000

I Hardening and optimization of ESDM

» Performance optimization of the read path (fragments involved in 1/0)
» Replicate data upon read

I Integrate an improved performance model

I Industry proof of concepts for EDSM, i.e., shipping of HW with software
I Improvements on data compression (also for NetCDF)

I Optimized backends for, e.g., Clovis, IME, S3

I Supporting post-processing, analytics and (in-situ) visualization

» Support of computation offloading within ESDM (+X on Slide 11)
» Integration with analysis tools, e.g., Ophidia, CDO
» Sending fragment data directly to another process
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Long Term Vision: Full Separation of Concerns  ssiwace

Decisions made by scientists

Scientific metadata
Declaring workflows

Covering data ingestion, processing, product generation, and analysis
Data life cycle (and archive/exchange file format)

Constraints on: accessibility (permissions), ...

Expectations: completion time (interactive feedback human/system)

Modifying workflows on the fly
Interactive analysis, e.g., Visual Analytics

Declaring value of data (logfile, data-product, observation)
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Summary C

Software
1 ESDM: Performance-portable 1/O utilizing heterogeneous storage
2| The data model is mostly backwards compatible to NetCDF
3 NetCDF/Python workflows supported
4] Working towards workflow and active storage support
5

Ongoing: exploiting node-local storage better
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netcdf test echam spectral {
dimensions:

time = UNLIMITED ; // (8 currently)

lat = 96 ;

lon = 192 ;

mlev = 47 ;

ilev = 48 ;

spc = 2080 ;

complex = 2 ;

variables:

float abso4(time, lat, lon) ;
abso4:long_name = "antropogenicysulfuryburden" ;
abso4:units = "kg/mxx2" ;

abso4:code = 235
abso4:table = 128 ;
abso4:grid type = "gaussian"
... [126+ more variables]
// global attributes:

:CDI = "Climate Dataylnterface version 1.4.6,(http://code.zmaw.de/projects/cdi)"
:Conventions = "CF—1.0"

:source = "ECHAM6.1"

rinstitution = "Max—Planck—Institute for Meteorology" ;

... 10 more attributes

:NCO = "4.4.5"
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Stored metadata inside the metadata directory

containers/user/test echam spectral.nc.md
datasets /VZ/zMKbbzj9YOkEpk .md
for each dataset one file

Metadata is stored as JSON: the container

"Variables": { # Metadata of the global attributes
"childs": {
"CDI": {
"data": "Climate Dataylnterfaceyversion 1.4.6,(http://code.zmaw.de/projects/cdi)"
"type": "q71@I|" # The datatype ASCIl encoded

}
"dsets": [

"id": "VZzMKbbzj9YOkEpk" ,
"name": "abso4"
}, ... # for each dataset one ]|

}
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Metadata is stored as JSON: a dataset

{ "Variables": {
"childs": { # Attributes ...

"grid_type": { "data": "gaussian", "type": "q8@I"}

T
"dims": 3, # dimensionality of the data
"dims dset id": [ "time", "lat", "lon"], # the named dimensions
"fill —value": {"data": 9.96920997e+36, "type": "j"
"size": [0, 96, 192], # the dimensionality of the data, here unlimited 1st dim
"typ": "j" # The type of the data, here float
"id": "VZzMKbbzj9YOkKEpk", # ID of the dataset
"fragments": [

{"id":"VZzMKbGtnusZsRVv3Pky" ,"pid":"pl" ,"size":[1,96,192],"offset":[0,0,0]},
{"id": "VZzMKbRhYpl6cOIOfrBX" , "pid":"pl"  "size":[1,96,192] "offset":[1,0,0]},

{"id " "VZzMKbI8JyXkafUXfwrS" " pid":"pl"  "size":[1,06,192] "offset":[7,0,0]}]

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 31 /28



Mapping of Fragments by Storage Backends ( esiwace
Mapping of the POSIX storage

A fragment is mapped into a file: <dataset>/<fragmentID>
Contains the raw data

Optionally suffixed by some metadata to allow "restoration" of broken storage

Mapping of the KDSA storage

Volume of shared memory is partitioned into blocks
Block header describes free/occupied blocks
Atomic operations to aquire/free a block

A block stores one fragment; ID is the offset into the volume
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