The Earth-System Data Middleware: An Approach for
Heterogeneous Storage Infrastructure

Julian Kunkel on behalf of the ESIWACE WP4 Team
Department of Computer Science, University of Reading
23 October 2019

esivwace

CENTRE OF EXCELLENCE IN SINULATION OF WEATHER
< AND CLIMATE IN EUROPE

OUt'Ine _C esiwace

Introduction
ESDM
Evaluation
B Outlook

H Summary

Disclaimer: This material reflects only the author’s view and the EU-Commission is not responsible for any use

that may be made of the information it contains

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 2/28

Introduction Outlook Summary

@000

Climate/Weather Workflows (ssiwace

Challenges

I Programming of efficient workflows

I Efficient analysis of data

I Organizing data sets

I Ensuring reproducibility of workflows/provenance of data

I Meeting the compute/storage needs in future complex hardware landscape

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 3/28

Introduction

0 Outlook Summary
foY Yolo) o 00 0000
The Coexistence of Storage — Impact of Local Storage { ssiwace
Data center N
Node Node Local facility

Lo
| e
Cloud

@ EC2

I Goal: We shall be able to use all storage technologies concurrently

» Without explicit migration, put data where it fits

» Administrators just add new technology (e.g., SSD pool) and users benefit from it
I May utilize local storage, SSDs, NVMe

» Even without communication used in workflows

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 4 /28

Introduction Evaluation Outlook Summary

[e]e] o]

ESIWACE: http://esiwace.eu (ssiwace

The Centre of Excellence in Simulation of Weather and Climate in Europe

Prepare the European weather and climate community
Make use of future exascale systems
Goals in respect to HPC environments

Improve efficiency and productivity
Supporting the end-to-end workflow of global Earth system modelling
Establish demonstrator simulations that run at the highest affordable resolution

Funding via the European Union’s Horizon 2020 program (ESiWACE2 2019-2022)

(esiwace I

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER *
AND CLIMATE IN EUROPE * x Kk

*
*
*

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 5/28

http://esiwace.eu

Introduction Summary

[eJe]e]]

The ESIWACE Community C esiwace

20 partners from 9 countries
35 supporters

Figure: Group Photo during the ESIWACE2 Kick-Off Meeting (March 2019)

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 6 /28

ESDM
©0000000

Outline £ ssiwace

ESDM

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 7/28

ESDM Summary

O@00000000

Earth-System Data Middleware ssiwece

A transitional approach towards a vision for |/O addressing

Scalable data management practice
The inhomogeneous storage stack
Suboptimal performance and performance portability

Data conversion/merging

Design goals of the Earth-System Data Middleware

1 Relaxed access semantics, tailored to scientific data generation
2 Site-specific (optimized) data layout schemes

3 Ease of use and deploy a particular configuration

4

Enable a configurable namespace based on scientific metadata

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 8 /28

ESDM

[e]e] lele]e]ele)

Architecture

Key concepts

O esiwece

I Middleware utilizes layout component to make placement decisions

I Applications work through existing API
0 Data is then written/read efficiently; potential for optimization inside library

User-level APIs
Data-type aware

Site-specific
back-ends

and
mapping —

Kunkel (WP4 Team)

Site

file c|

The Earth-System Data Middleware

Canonical
Format

Internet
Archival

23 October 2019

9/ 28

ESDM
000®0000

Architecture: Detailed View of the Software Landscape L ssiwece

Application]

T python4-NetCDF
o (patched)
T NetCDF4 (patched)

Application2 Application3

Tools and services (planned)

esd-FUSE ‘ﬁm‘

ESDM API

Performance model |—| Layout

- | Datatypes

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 10 / 28

duction ESDM Outlook Summary
000 [e]e]ele] Telelelele)] O [O [e]

Data Model (esiwace

@ Container:

» Provides a flat (simple hierarchical) namespace
» Contains Datasets + (arbitrary) metadata
» Can be constructed on the fly

[Dataset:

» Multi-dimensional data of a specified data type

Write-once semantics (epochs are planned)

Contains arbitrary number of data fragments

Data of different fragments can be disjoint or overlapping
Dimensions can be named and unlimited

» Self-describing, can be linked to multiple containers

vvyyvyy

M Fragment:

» Holds data, arbitrary continuous sub-domain (data space)
» Stored on exactly one storage backend

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 11 /28

Introduction ESDM Evaluation Outlook Summary
0000080000 00 0000 o

Discussion of the Data Model { esiwace

[Fragment domain is flexible

» Avoid false sharing (of data blocks) in the write path
» A fragment can be globally available or just locally
» Reduce penalties of shared file access

2 Self-describing data format
» Metadata contains relevant scientific metadata, datatypes
8] Layout of the fragments can be dynamically chosen

» Based on site-configuration and performance model
» Site-admin/project group defines a mapping
» Use multiple storages concurrently, use local storage

@ Containers could be created on the fly to mix-in datasets
» Open one container for input that has everything you need

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 12 / 28

ESDM i Summary

0000008000

Backends ssiwece
Storage backends

POSIX: Backwards compatible for any shared storage
CLOVIS: Seagate-specific interface, will be open sourced soon
WOS: DDN-specific interface for object storage

KDSA: Specific interface for the Kove cluster-wide memory

PMEM: Non-volatile storage interface (http://pmem.io)

Metadata backends

POSIX: Backwards compatible for any shared storage

Investigated performance of ElasticSearch, MongoDB as potential NoSQL solutions

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 13 /28

http://pmem.io

ESDM Summary

0O000000e00

Namespace C sswece

I The namespace of ESDM is separated from the file system
I Currently, hierarchically too

I NetCDF can use ESDM by just utilizing the esdm:// prefix
[Example:

$ nccopy test _echam _spectral.nc esdm://user/test _echam _spectral
$ // do something with the file in ESDM, e.g.

$ ncdump -h esdm://user/test _echam spectral

$ // export the file into the portable NetCDF4 format

$ nccopy -4 esdm://user/test echam spectral out.nc

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 14 / 28

Summary

The Blocking |/O Path: Write (esiwece

Note: Processes write path is independent from any global state

1 Scheduler identifies how to partition the data into fragments and assigns backends
A maximum fragment size is defined by each backend
May also use a performance model to partition data
(We aim to utilize workflow information for the partitioning)

2 Append the fragment to the local dataset (mark as dirty)
31 A backend-specific thread pool processes the fragments
The backend is called with the fragment
May use direct 1/O or reorganize the data in-memory

4 Wait until all fragments are processed

Collective operation

5 Upon close/sync, the MPI interface synchronizes the fragment knowledge

6 A single process updates the JSON metadata for the dataset/container

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 15 / 28

Summary

The Blocking 1/O Path: Read (eswace

Preliminaries — Collective open/ref. operation of a dataset/container

-

Upon open, the fragment information is read by one process

N

Broadcast fragment information to all processes

3] Identify the overlap of fragments with the data space requested
4 Make a schedule to read each cell once (there could be replicas)

5 A backend-specific thread pool processes the fragments
Backend loads the fragments requested (use direct |/O or copy data if needed)

6 Wait until all fragments are processed

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 16 / 28

Evaluation
©000000

Outline £ ssiwace

Evaluation

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 17 / 28

Evaluation Summary

0O@00000

Evaluation (esiwace
System

Test system: DKRZ Mistral supercomputer
Nodes: 100, 200, 500

Benchmark
Uses ESDM interface directly; metadata on Lustre
Write/read a timeseries of a 2D variable; 3x repeated
Grid size: 200k x 200k x 8 Bytes x 10 iterations
Data volume: size = 2980 GiB; compared to IOR performance

ESDM configurations

Splitting data into fragments of 100 MiB
Use /dev/shm (TMPES) or /tmp directory (Local SSD)

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 18 / 28

Evaluation
00®0000

Performance Growth of ESDM on Lustre (PPN = 1)

200-

Performance in GiB/s

g

=

100 200 500
Number of nodes

config B ustre-both [lustre-bothlarge B lustre02 B lustre02-large
Figure: Write

Kunkel (WP4 Team)

The Earth-System Data Middleware

175+

Performance in GiB/s
g

125+

100 200 500
Number of nodes
config B8 lustre-both B lustre-bothlarge B lustre02 B lustre02-large

Figure: Read

23 October 2019

O esiwece

19 / 28

Introduction Evaluation Outlook Summary

0O00@000

L, esiwace

Discussion

I Benefit when accessing multiple global file systems
I Write performance benefits from using both file systems

» Most benefit when using 200 nodes (2x)
» 500 nodes: 180 GiB/s vs. 140 GiB/s (single fs)

I Read performance shows some benefit for larger configurations
I ESDM achieves similar performance regardless of PPN (not shown)

I What is the performance when we use node-local storage?

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 20 / 28

Evaluation
000000

Performance on TMPFS vs. IOR (nodes = 500, varied PPN) & sayeee

4000 *
6000~

3000~

4000~

2000~

Performance in GiB/s
Performance in GiB/s

2000~

1000+

PPN PPN
config B iortmpfs-fpp B8 ESDM-tmpfs config B3 or-tmpfs-fpp B8 ESDM-tmpfs
Figure: Write Figure: Read

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 21 /28

Introduction Evaluation Outlook Summary

[e]e]ele]e] o)

‘(/ esiwace

Discussion

I Node-local storage is much faster than global storage

» TMP achieves 750-1,000 GB/s for write (500 SSDs, some caching)
» TMP reads are actually cached (6 GB data per node)
» TMPFS achieves up to 3,000 GB/s

@ TMP write is invariant to PPN
» ESDM configured to use at least four threads per node
B TMPFS write depends on PPN

» ESDM configured to not use threads, could use them to improve performance!
I IOR is faster; potential to improve ESDM path further
» Localization of fragments using r-tree

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 22 /28

Evaluation
000000e

Performance on NVDIMMs C esiwece

GiB/s

I ESDM on the NextGenlO Prototype with a first naive approach (with PMEM)
I Test run on four dual-socket nodes with 80 GByte of data
I Theoretic HW performance per node (12 NVDIMMs) W: 96 GB/s, R: 36 GB/s

I Max test: explore best case performance (single file)
PPNme m2 w4

6 24 48
PPN m¢ ® 250
250
200 200
150 150
2
100 @
2 100
50
50
TMPFS POSIX Optane NVDIMM NVDIMM 48 NVDIMM Max
threads per Test TMPFS POSIX Optane NVDIMM NVDIMM 48 NVDIMM Max
.) . node Optane threads per Test
Figure: Write)] ode
Figure: Read

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 23 /28

Outlook
©000

Outline £ ssiwace

B Outlook

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 24 /28

Introduction Evaluation Outlook Summary

0e00

Status (eswece

I NetCDF: Done, minor issues to fix, use tests for checking compatibility

» netcdf4-python: Available, derived tests with supported features
» Report for compatibility will appear soon (Oct. 2019)
» Some unsupported features, e.g., NetCDF4-groups, will be done depending on needs

I First tools implemented (esdm-mkfs, esdm-rm)

i1 Deployed daily regression testing using Jenkins (Webpage to go public: Oct. 2019)
I FUSE prototype to dynamically build a hierarchical namespace on semantics
» E.g., <model>/<date>/<variable>

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 25 /28

Introduction Evaluation Outlook

00000000 0000000 0000

I Hardening and optimization of ESDM

» Performance optimization of the read path (fragments involved in 1/0)
» Replicate data upon read

I Integrate an improved performance model

I Industry proof of concepts for EDSM, i.e., shipping of HW with software
I Improvements on data compression (also for NetCDF)

I Optimized backends for, e.g., Clovis, IME, S3

I Supporting post-processing, analytics and (in-situ) visualization

» Support of computation offloading within ESDM (+X on Slide 11)
» Integration with analysis tools, e.g., Ophidia, CDO
» Sending fragment data directly to another process

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019

Summary

ESIWACE2 Plans for ESD C ssiwece

26 / 28

Introduction Evaluation Outlook Summary

[e]e]e]]

Long Term Vision: Full Separation of Concerns ssiwace

Decisions made by scientists

Scientific metadata
Declaring workflows

Covering data ingestion, processing, product generation, and analysis
Data life cycle (and archive/exchange file format)

Constraints on: accessibility (permissions), ...

Expectations: completion time (interactive feedback human/system)

Modifying workflows on the fly
Interactive analysis, e.g., Visual Analytics

Declaring value of data (logfile, data-product, observation)

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 27 / 28

Introduction Evaluation Outlook

esiwace

Summary C

Software
1 ESDM: Performance-portable 1/O utilizing heterogeneous storage
2| The data model is mostly backwards compatible to NetCDF
3 NetCDF/Python workflows supported
4] Working towards workflow and active storage support
5

Ongoing: exploiting node-local storage better

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 28 / 28

Metadata of a Complex File: The NetCDF Metadata smiwece

netcdf test echam spectral {
dimensions:

time = UNLIMITED ; // (8 currently)

lat = 96 ;

lon = 192 ;

mlev = 47 ;

ilev = 48 ;

spc = 2080 ;

complex = 2 ;

variables:

float abso4(time, lat, lon) ;
abso4:long_name = "antropogenicysulfuryburden" ;
abso4:units = "kg/mxx2" ;

abso4:code = 235
abso4:table = 128 ;
abso4:grid type = "gaussian"
... [126+ more variables]
// global attributes:

:CDI = "Climate Dataylnterface version 1.4.6,(http://code.zmaw.de/projects/cdi)"
:Conventions = "CF—1.0"

:source = "ECHAM6.1"

rinstitution = "Max—Planck—Institute for Meteorology" ;

... 10 more attributes

:NCO = "4.4.5"

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 29 / 28

Mapping by the POSIX Metadata Storage (esiwece
Stored metadata inside the metadata directory

containers/user/test echam spectral.nc.md
datasets /VZ/zMKbbzj9YOkEpk .md
for each dataset one file

Metadata is stored as JSON: the container

"Variables": { # Metadata of the global attributes
"childs": {
"CDI": {
"data": "Climate Dataylnterfaceyversion 1.4.6,(http://code.zmaw.de/projects/cdi)"
"type": "q71@I|" # The datatype ASCIl encoded

}
"dsets": [

"id": "VZzMKbbzj9YOkEpk" ,
"name": "abso4"
}, ... # for each dataset one]|

}

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 30 /28

Mapping by the POSIX Metadata Storage (ssiwese

Metadata is stored as JSON: a dataset

{ "Variables": {
"childs": { # Attributes ...

"grid_type": { "data": "gaussian", "type": "q8@I"}

T
"dims": 3, # dimensionality of the data
"dims dset id": ["time", "lat", "lon"], # the named dimensions
"fill —value": {"data": 9.96920997e+36, "type": "j"
"size": [0, 96, 192], # the dimensionality of the data, here unlimited 1st dim
"typ": "j" # The type of the data, here float
"id": "VZzMKbbzj9YOkKEpk", # ID of the dataset
"fragments": [

{"id":"VZzMKbGtnusZsRVv3Pky" ,"pid":"pl" ,"size":[1,96,192],"offset":[0,0,0]},
{"id": "VZzMKbRhYpl6cOIOfrBX" , "pid":"pl" "size":[1,96,192] "offset":[1,0,0]},

{"id " "VZzMKbI8JyXkafUXfwrS" " pid":"pl" "size":[1,06,192] "offset":[7,0,0]}]

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 31 /28

Mapping of Fragments by Storage Backends (esiwace
Mapping of the POSIX storage

A fragment is mapped into a file: <dataset>/<fragmentID>
Contains the raw data

Optionally suffixed by some metadata to allow "restoration" of broken storage

Mapping of the KDSA storage

Volume of shared memory is partitioned into blocks
Block header describes free/occupied blocks
Atomic operations to aquire/free a block

A block stores one fragment; ID is the offset into the volume

Kunkel (WP4 Team) The Earth-System Data Middleware 23 October 2019 32 /28

	Introduction
	placeholder

	ESDM
	Mapping of Data
	I/O Path

	Evaluation
	Outlook
	Summary
	Appendix

