Department of Computer Science

Fighting the Data Deluge with Data-Centric Middleware

Limitless Storage Limitless Possibilities https://aces.cs.reading.ac.uk https://hps.vi4io.org

Julian M. Kunkel, Bryan Lawrence

PASC Minisymposium: The Exabyte Data Challenge

2019-06-14

Copyright University of Reading

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

Climate/Weather IO	Earth System Data Middleware	Outlook	Summary
oooooooooo	00000000	ooooooo	OO
Outline			university of

- 1 Climate/Weather IO
- 2 Earth System Data Middleware
- 3 Outlook
- 4 Summary

Long-term predictions uses historical data (before 2000)

One "field-year": 26 GB 1 field, 1 year, 6 hourly, 80 levels 1 x 1440 x 80 x 148 x 192 One "field-year": 6 TB 1 field, 1 year, 6 hourly, 180 levels 1 x 1440 x 180 x 1536 x 2048

1 km is the current European Network for Earth System Modelling (ENES) goal! Consider N13256 (1.01km, 26512x19884):

1 field, 1 year, 6 hourly, 180 levels

■ 1 x 1440 x 180 x 26512 x 19884 = 1.09 PB

Can no longer consider serial diagnostics

but with 10 variables hourly: > 220 TB/day!

Climate/Weather Workflows

- General Challenges Related to IO
 - Programming of efficient workflows
 - Efficient analysis of data
 - Organizing data sets
 - Ensuring reproducability of workflows/provenance of data
 - Meeting the compute/storage needs in future complex hardware landscape

Expected Data Characteristics in 2020+

- Velocity: Input 5 TB/day (for NWP; reduced data from instruments)
- Volume: Data output of ensembles in PBs of data
- Variety: Various file formats, input sources
- Usability: Data products are widely used by 3rd parties

Julian M. Kunkel HPS

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 6/30

Climate/Weather IO	Earth System Data Middleware	Outlook	Summary
	00000000	ooooooo	oo
Conoral I/O Cha	llongos		I Iniversity of

General I/O Challenges

- Large data volume and high velocity
- Data management practice does not scale and is not portable
 - Cannot easily manage file placement and knowledge of what file contains
 - Hierarchical namespaces does not reflect use cases
 - Individual strategies at every site
- Data conversion/merging is often needed
 - ▶ To combine data from multiple experiments, time steps, ...
- The storage stack becomes more inhomogeneous
 - Non-volatile memory, SSDs, HDDs, tape
 - Node-local, vs. global shared, partial access (e.g., racks)
- Suboptimal performance & performance portability
 - Users cannot properly exploit the hardware / storage landscape
 - Tuning for file formats and file systems necessary at the application level

Best settings for read (excerpt)

 					/								
Nodes	PPN	Stripe	W1	W2	W3	R1	R2	R3	Avg. Write	Avg. Read	WNode	RNode	RPPN
1	6	1	3636	3685	1034	4448	5106	5016	2785	4857	2785	4857	809
2	6	1	6988	4055	6807	8864	9077	9585	5950	9175	2975	4587	764
10	16	2	16135	24697	17372	27717	27804	27181	19401	27567	1940	2756	172

of nodes

- Domain metadata is treated like normal data
 - Need for higher-level databases like Mars
- Interfaces focus on variables but lack features
 - Workflows
 - Information life cycle management

Figure: Typical I/O stack

- Without explicit migration etc. put data where it fits
- Administrators just add a new technology (e.g., SSD pool) and users benefit
- Why no manual configuration, e.g., partitioning by file?
 - Reminds on implementing manual RAID across HDDs
 - Increases burden of data management

Climate/Weather IO	Earth System Data Middleware	Outlook	Summary
0000000000	●೦೦೦೦೦೦೦	ooooooo	oo
Outline			👀 University of

- 1 Climate/Weather IO
- 2 Earth System Data Middleware
- 3 Outlook
- 4 Summary

EU funded Project: ESiWACE

The Centre of Excellence in Simulation of Weather and Climate in Europe

- Representing the European community for
 - climate modelling and numerical weather simulation
- Goals in respect to HPC environments:
 - Improve efficiency and productivity
 - Supporting the end-to-end workflow of global Earth system modelling
 - Establish demonstrator simulations that run at highest affordable resolution
- Funding via the European Union's Horizon 2020 program (grant #675191)

Julian M. Kunkel HPS

http://esiwace.eu

Part of the ESiWACE Center of Excellence in H2020.

ESDM provides a transitional approach towards a vision for I/O addressing

- Scalable data management practice
- The inhomogeneous storage stack
- Suboptimal performance & performance portability
- Data conversion/merging

Earth-System Data Middleware

Design Goals of the Earth-System Data Middleware

- Relaxed access semantics, tailored to scientific data generation
 - Avoid false sharing (of data blocks) in the write-path
 - Understand application data structures and scientific metadata
 - Reduce penalties of shared file access
- 2 Site-specific (optimized) data layout schemes
 - Based on site-configuration and performance model
 - Site-admin/project group defines mapping
 - Flexible mapping of data to multiple storage backends
 - Exploiting backends in the storage landscape
- **3** Ease of use and deployment particularly configuration
- 4 Enable a configurable namespace based on scientific metadata

Climate/Weather IO	Earth System Data Middleware	Outlook	Summary
0000000000	○○○○●○○○	ooooooo	OO
Architecture			University of Reading

Key Concepts

- Middleware utilizes layout component to make placement decisions
- Applications work through existing API (currently: NetCDF library)
- Data is then written/read efficiently; potential for optimization inside library

Climate/Weather IO	Earth System Data Middleware	Outlook	Summary
0000000000	००००००●०	ooooooo	OO
Evaluation			💀 University of

System

20/30

- Test system: DKRZ Mistral supercomputer
- Nodes: 200 (we have also other measurements)

Benchmark

- Uses ESDM interface directly; Metadata on Lustre
- Write/read a timeseries of a 2D variable
- Grid size: 200k · 200k · 8Byte · 10iterations
- Data volume: size = 2980 GiB; compared to IOR performance

ESDM Configurations

- Splitting data into fragments of 100 MiB (or 500)
- Use different storage systems
- Uses 8 threads per node (max per application 400)

Earth System Data Middleware

Outlook

Summary 00

Measured Performance

- IOR serves as baseline (optimal IO)
- Chunking into files increases performance
- Usage of multiple Lustre fs +25%
- Can utilize various storage "tiers"
- We are still working on it

Climate/Weather IO	Earth System Data Middleware	Outlook	Summary
ooooooooooo	00000000	●000000	oo
Outline			••• University of

- 1 Climate/Weather IO
- 2 Earth System Data Middleware
- 3 Outlook
- 4 Summary

Climate/Weather IO	Earth System Data Middleware	Outlook	Summary
0000000000	00000000	o●ooooo	oo
ESiWACE2 Pla	ns for ESDM		University of

ESIMALEZ Plans for ESDM

ESiWACE2 follow up grant (2019-2022)

- Hardening of ESDM
- Integrate an improved performance model
- Improvements on compression (also for NetCDF)
- Optimized backends for, e.g., Clovis, IME, S3
- Integrate Workflows (Cylc) with ESDM
 - Extensions to Cylc to cover data lifecycle, I/O performance needs
 - Cylc to provide information about workflow to ESDM
 - ESDM to make superior placement decisions
- Industry proof of concepts for EDSM: Vendors to ship ESDM
- Supporting post-processing, analytics and (in-situ) visualization
 - Exploring the support of data-centric computation workflows within ESDM
 - Integration with analysis tools, e.g., Ophidia, CDO

Decisions made by scientists

- Scientific metadata
- Declaring workflows
 - Covering data ingestion, processing, product generation and analysis
 - Data life cycle (and archive/exchange file format)
 - Constraints on: accessibility (permissions), ...
 - Expectations: completion time (interactive feedback human/system)
- Modifying workflows on the fly
- Interactive analysis, e.g., Visual Analytics
- Declaring value of data (logfile, data-product, observation)

Programmers of models/tools

- Decide about the most appropriate API to use (e.g., NetCDF + X)
- Register compute snippets (analytics) to API
- Do not care **where** and **how** compute/store

Decisions made by the (compute/storage) system

- Where and how to store data, including file format
- Complete management of available storage space
- Performed data transformations, replication factors, storage to use
- Including scheduling of compute/storage/analysis jobs (using, e.g., ML)
- Where to run certain data-driven computations (Fluid-computing)
 - Client, server, in-network, cloud, your connected laptop

Julian M. Kunkel HPS

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 25/30

Figure: Proposed software stack

- Smart hardware and software components
- Storage and compute are covered together
- User metadata and workflows as first-class citizens
- Self-aware instead of unconscious
- Improving over time (self-learning, hardware upgrades)

Why do we need a new domain-independent API?

- Many domains have similar issues
- It is a hard problem approached by countless approaches
- Harness RD&E effort across domains

- Establishing a Forum (similarly to the Message Passing Interface MPI)
 - Model targets High-Performance Computing and data-intensive compute

Open board: encourage community collaboration

Climate/Weather IO	Earth System Data Middleware	Outlook	Summary
0000000000	0000000	ooooooo	●○
Summary			University of Reading

- Simulation workflows in Climate and Weather are data-intensive
- Optimization requires knowledge about workflows
- Integrated and smart compute & storage is the future

Participate defining NG interfaces

- Join the mailing list / Slack
- Visit: https://ngi.vi4io.org

Climate/Weather IO	Earth System Data Middleware	Outlook	Summary
000000000	0000000	000000	00

The ESiWACE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **675191**

Disclaimer: This material reflects only the author's view and the EU-Commission is not responsible for any use that may be made of the information it contains

Julian M. Kunkel HPS

Appendix

Scenario: Large Simulation

- Assume large scale simulation, timeseries (e.g., 1000 y climate)
- Assume manual data analysis needed (but time consuming)
- We need all 1000 y for detailed analysis!

A typical workflow execution

- Run simulation for 1000 y
 - Store various data on (online) storage
 - Keep checkpoints to allow reruns
 - Maybe backup data in archive
- Explore data to identify how to analyze data
- At some point: Run the analysis on all data
- Problem: Occupied storage capacity

Alternative Workflows Done by Scientists

University of Reading

Recomputation

- Run simulation
 - Store checkpoints
 - Store only selected data (wrt. resolution, section, time)
- Explore data
 - Run recomputation to create needed data (e.g., last year)
- At some point: run analysis across all data needed
- This is a manual process, must consider
 - Runtime parameters
 - System configuration/available resources
 - ▶ We are trading compute cycle vs. storage
 - It would be great if a system would consider costs...

Another Alternative Workflows

Provided by more intelligent storage and better workflows Run simulation

- Store checkpoints on node-local storage
 - Redundancy: from time to time restart from another node
- Store selected data on online storage (e.g., 1% of volume)
 - Also store high-resolution data sample (e.g., 1% of volume)
- Store high-resolution data directly on tape
- Explore data on snapshot
- Month later: schedule analysis of data needed
 - The system retrieves data from tape
 - Performs the scheduled operations on streams while data is pulled in
 - Informs user about analysis progress
- Some people do this manually or use some tools to achieve similarly
 - ▶ Aim for domain & platform independence and heterogenous HPC landscapes

Scenario: Data Organization

0000

Goal: Semantic Namespace

- Provide features of data repositories (e.g., MARS) to explore data
- User-defined properties but provide means to validate schemas
- Similar to MP3 library ...

High-Level questions addressed by them

- What experiments did I run yesterday?
- Show me the data of experiment X, with parameters Z...
- Cleanup unneeded temporary stuff from experiment X
- Compare the mean temperature of one model for one experiment across model versions