WP4: Highlights, challenges and outlook

<u>Julian Kunkel</u>^{1,(7)} <u>Bryan N. Lawrence^{2,3} Alessandro Danca⁵</u> Sandro Fiore⁵ Huang Hu⁶

Department of Computer Science, University of Reading
 2 UK National Centre for Atmospheric Science
 3 Department of Meteorology, University of Reading
 4 STFC Rutherford Appleton Laboratory
 5 CMCC Foundation
 6 Seagate Technology LLC
 7 DKRZ

11 March 2019

Outline

1 Introduction

2 Task1: Business

3 Task 2: ESDM

4 Task 3: New Tape Methods

5 Summary & Next Steps

Disclaimer: This material reflects only the author's view and the EU-Commission is not responsible for any use that may be made of the information it contains

Kunkel & Lawrence (WP4 Team)

Project Organisation

WP1 Governance and engagement WP2 High-resolution demonstrators WP3 Usability

WP4 Exploitability

- Exploiting high volume data: How to get more science done
- Storage layout for Earth system data
- Methods of exploiting tape

WP5 Management and Disssemination

Business Models

Documentation Coarse-grained model Fine-grained model

D4.1

New Storage Layout

- Software & Design ESD Middleware
- Design delivered D4.2
- Initial benchmarks
- Development ongoing

New Tape Methods

- Software JDMA data migration
- Prototype in place
- D4.4; Wrapup ongoing

Kunkel & Lawrence (WP4 Team)

Introduction	Task1: Business ●००००	Task 2: ESDM	Task 3: New Tape Methods	Summary & Next Steps
Outline				

1 Introduction

- 2 Task1: Business
- 3 Task 2: ESDM
- 4 Task 3: New Tape Methods
- 5 Summary & Next Steps

Kunkel & Lawrence (WP4 Team)

Kunkel & Lawrence (WP4 Team)

Some Examples of Business Considerations

One cost model of storage based on DKRZ

- Tape: 12 € per TB/ year
- Software licenses for tape are driving the costs!
- Parallel Disk: 28 € TB/year
- Object storage: 12.5 € TB/year (without software license costs)
- Cloud: \$ 48 TB/year (only storage, access adds costs)
- Alternative models: $8 \in /153 \in$ for tape/disk per year
- Idle (unused) data is an important cost driver!

Lüttgau, Kunkel; Cost and Performance Modeling for Earth System Data Management and Beyond; High-Performance Computing; ISC-HPC workshops

Kunkel & Lawrence (WP4 Team)

Lüttgau, Kunkel; Simulation of Hierarchical Storage Systems for TCO and QoS; High-Performance Computing; ISC-HPC workshops

Kunkel & Lawrence (WP4 Team)

Challenges

- Costs for hardware/software often intertwined, hard to disentangle
- Obscured behavior of hardware/software (e.g., HPSS)
- We had only a small budget to address these issues

Outlook

Modelling and simulation remains important

How can we best use heterogeneous systems?

No continuation of activity in ESiWACE 2 (but we'll continue outside)

Introduction	Task1: Business	Task 2: ESDM ●○○○○○○○○○○	Task 3: New Tape Methods	Summary & Next Steps
Outline				

- 3 Task 2: ESDM

Kunkel & Lawrence (WP4 Team)

Earth-System Data Middleware

Design Goals of the Earth-System Data Middleware

- 1 Relaxed access semantics, tailored to scientific data generation
 - > Avoid false sharing (of data blocks) in the write-path
 - Understand application data structures and scientific metadata
 - Reduce penalties of shared file access
- 2 Site-specific (optimized) data layout schemes
 - Based on site-configuration and performance model
 - Site-admin/project group defines mapping
 - Flexible mapping of data to multiple storage backends
- 3 Ease of use and deployment particularly configuration

Introduction	Task1: Business 00000	Task 2: ESDM ○○●○○○○○○○○○	Task 3: New Tape Methods	Summary & Next Steps
Benefits				

- Independent, share-nothing lock-free writes from parallel applications
- Storage layout is optimized to local storage
 - Exploits characteristics of diverse storage
 - Preserve compatibility by creating platform-independent file formats on the site boundary/archive
- Less performance tuning from users needed
 - ▶ One data structure can be fully or partially replicated with different layouts
 - Using multiple storage systems concurrently
- (Expose/access the same data via different APIs¹)
 - (Flexible and automatic namespace¹)

Kunkel & Lawrence (WP4 Team)

¹Explored outside the ESiWACE scope

Introduction	Task1: Business	Task 2: ESDM ○○○●○○○○○○○○	Task 3: New Tape Methods	Summary & Next Steps
Architecture				

Key Concepts

- Middleware utilizes layout component to make placement decisions
- Applications work through existing API
- Data is then written/read efficiently; potential for optimization inside library

Kunkel & Lawrence (WP4 Team)

Introduction	Task1: Business	Task 2: ESDM ○○○○○●○○○○○○	Task 3: New Tape Methods	Summary & Next Steps
Measured	Performance			

 Introduction
 Task1: Business
 Task 2: ESDM
 Task 3: New Tape Methods
 Summary & Next Steps

 00
 00000
 000000
 000000
 000000
 00

Data Backends – DDN Object Store (CMCC)

WOS Prototype

- Backend works
- Developed C wrapper for the C++ DDN WOS libraries
- Designed a parallel approach for independent / multiple write operations on WOS storage

Kunkel & Lawrence (WP4 Team)

on Task1: Business

Task 2: ESDM

Task 3: New Tape Methods

Deployment Testing Example

Test and Deployment

Ophidia (in-memory data analytics) as a test application for ESDM

Import and Export

Ophidia operators adapted for integration with ESDM storage

- Uses patched NetCDF
- ESDM successfully built on:
 - Athena HPC Cluster
 - OphidiaLab
- Creation of a VM for the whole software stack

Kunkel & Lawrence (WP4 Team)

WP4: Highlights, challenges and outlook

11 March 2019 17 / 29

Kunkel & Lawrence (WP4 Team)

Introduction	Task1: Business	Task 2: ESDM ○○○○○○○○●○○	Task 3: New Tape Methods	Summary & Next Steps

ESDM Development

Status

- **ESDM** Architecture Design for Prototype (D4.2)
- Multi-threaded data path
- Data backend Plugins for POSIX, CLOVIS, WOS (Reached: MS7)
- Trivial POSIX metadata store on the shared file system
- Proof of concept for adaptive tier selection in HDF5
 - But only for a trivial use case!
- 60%: ESDM library implementation²
- Partial implementation for HDF5 VOL
- Evaluation of ESDM benchmark at DKRZ, STFC, CMCC (Reached: MS9)
- Started direct NetCDF integration prototype for the write-path works

²Note that for execution of applications not all 100% functionality will ever be needed. Kunkel & Lawrence (WP4 Team) WP4: Highlights, challenges and outlook 11 M
 Introduction
 Task1: Business
 Task 2: ESDM
 Task 3: New Tape Methods
 Summary & Next Steps

 00
 00000
 0000000000
 000000000
 000000000
 00

Challenges & Outlook

Challenges

- Choosing HDF5 (VOL) wasted too much of effort
- Backend: DDN discontinued WOS
- Core-development with too few FTE for PostDoc
- People leaving teams (Seagate, DKRZ)
- Teamwork between DKRZ and Seagate was suboptimal
- Identification of NoSQL Metadata backend

Challenges & Outlook

Outlook

- Building a performance model for WOS/CLOVIS as blueprint for backends
- Hired a PostDoc at UoR to continue effort
- Goal: Supporting a subset of NetCDF applications
 - NetCDF benchmark
 - ▶ Toy model: Shallow water equation
 - Ophidia: use it in one big data workflow
- Improve data plugin for POSIX
- Optimize read path exploring a NoSQL backend
- Run small benchmarks at sites
 - > CLOVIS performance in various configurations on a reasonable cluster

Introduction	Task1: Business	Task 2: ESDM	Task 3: New Tape Methods ●०००००	Summary & Next Steps
Outline				

- 3 Task 2: ESDM
- 4 Task 3: New Tape Methods

Kunkel & Lawrence (WP4 Team)

Introduction	Task1: Business	Task 2: ESDM 00000000000	Task 3: New Tape Methods ○●○○○○	Summary & Next Steps
Approach				

Semantic Storage Library

Task 3: Developing new tape access strategies and software ... higher bandwidth to tape storage and increased storage redundancy.

- Increase bandwidth to/from tape by exploiting RAID-to-TAPE.
 - Decided that this was too difficult to do in a portable manner and that portable (tape + object store) workflow was a more important initial priority.
- Provide a portable library to address user management of data files on disk (POSIX and/or Object Store) and tape which
 - **1** does not *require* significant sysadmin interaction, but
 - 2 can make use of local customisation if available/possible
 - 3 exploits existing metadata conventions
 - 4 prototype can be deployed fast enough that we can use it for Exascale Demonstrator

Introduction	Task1: Business 00000	Task 2: ESDM	Task 3: New Tape Methods ००●०००	Summary & Next Steps
Architecture				

Two Key Components

- **1** S3NetCDF replacement for NetCDF4-python with support for object stores
- 2 CacheFace a portable frontend for managing content in object stores/tape

Introduction	Task1: Business	Task 2: ESDM	Task 3: New Tape Methods ००●०००	Summary & Next Steps
Architecture				

Two Key Components

- **1** S3NetCDF replacement for NetCDF4-python with support for object stores
- 2 CacheFace a portable frontend for managing content in object stores/tape

Information Structure

Exploiting the Climate Forecast Aggregation (CFA) Framework¹, which

- 1 Defines how CF fields may be combined into one larger field
- 2 Is fully general and based purely on CF metadata
- 3 Includes a syntax for storing an aggregation in a NetCDF file using JSON string content to point at aggregated files

1:https://goo.gl/DdxGtw

Architecture

- Master Array File is a NetCDF file containing dimensions and metadata for the variables including URLs to fragment file locations
- Master Array file optionally in persistent memory or online, nearline, etc NetCDF tools can query file CF metadata content without fetching them

Kunkel & Lawrence (WP4 Team)

Status:

- Prototype released (milestone 7B). Subsequent refactoring complete (October 2018) in preparation for parallelisation.
- ESiWACE1 goal: add prototype parallelisation, measure performance, publish paper and more complete usage documentation. (ESiWACE2: performance, integrate components with ESDM).

Kunkel & Lawrence (WP4 Team)

JDMA: a Prototype Tape Library for Advanced Tape Subsystems

- JDMA: Joint Data Migration App(lication)
- A general-purpose multi-tiered storage library
 - Provides a single API to users to move data to and from different systems
 - HTTP API running on webserver, database records requests and file metadata
 - Command line client which interfaces to HTTP API
- Multiple storage "backends" supported via plugin
 - Amazon S3 (Simple Storage Solution) for Object Stores and AWS
 - FTP, also for tape systems with a FTP interface
 - Elastic Tape a proprietary tape system based on CASTOR
- A number of daemons (scheduled processes) carry out the data transfer
 - Asynchronously
 - On behalf of the user

Introduction	Task1: Business	Task 2: ESDM	Task 3: New Tape Methods ○○○○○●	Summary & Next Steps

JDMA System Architecture

Kunkel & Lawrence (WP4 Team)

WP4: Highlights, challenges and outlook

11 March 2019 27 / 29

Introduction	Task1: Business	Task 2: ESDM	Task 3: New Tape Methods	Summary & Next Steps ●○
Outline				

- 3 Task 2: ESDM

5 Summary & Next Steps

Kunkel & Lawrence (WP4 Team)

Introduction	Task1: Business	Task 2: ESDM	Task 3: New Tape Methods	Summary & Next Steps ○●
Summary				

Software

- **1** ESDM: Performance-portable I/O with NetCDF on heterogeneous storage
- 2 S3NetCDF: Prototype for handling object store/tape
- 3 JDMA: portable, lightweight (towards HSM) system

ESiWACE1 Goals

- **1** ESDM: Extend usability, complete NetCDF integration, improve plugin, layout, and performance
- **2** S3NetCDF parallelise and publicises. Release prototype complete system.

Kunkel & Lawrence (WP4 Team)

The ESiWACE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **675191**

Disclaimer: This material reflects only the author's view and the EU-Commission is not responsible for any use that may be made of the information it contains

Kunkel & Lawrence (WP4 Team)

WP4: Highlights, challenges and outlook

11 March 2019 30 / 29

The PTA multi-model workflow implemented in Ophidia has been executed and validated at CMCC on 11 models from CMIP5 experiment for a total of 181 tasks, 2.5 minutes, 96 cores on OphidiaLab

Kunkel & Lawrence (WP4 Team)

WP4: Highlights, challenges and outlook

00