WP4: Highlights, challenges and outlook

Julian Kunkel1,7, Bryan N. Lawrence2,3, Jakob Luettgau7, Neil Massey4, Alessandro Danca5, Sandro Fiore5, Huang Hu6

1Department of Computer Science, University of Reading
2UK National Centre for Atmospheric Science
3Department of Meteorology, University of Reading
4STFC Rutherford Appleton Laboratory
5CMCC Foundation
6Seagate Technology LLC
7DKRZ

11 March 2019
Outline

1. Introduction

2. Task 1: Business

3. Task 2: ESDM

5. Summary & Next Steps

Disclaimer: This material reflects only the author’s view and the EU-Commission is not responsible for any use that may be made of the information it contains
Project Organisation

WP1 Governance and engagement

WP2 High-resolution demonstrators

WP3 Usability

WP4 Exploitability

- Exploiting high volume data: How to get more science done
- Storage layout for Earth system data
- Methods of exploiting tape

WP5 Management and Dissemination
Work Package 4 — Exploitability (of data); Overview

Partners

DKRZ, STFC, CMCC, Seagate, UREAD

ECMWF was a partner but we removed the relevant task in the reprofiling following the first review

Task 4.1

Business Models

- Documentation
 - Coarse-grained model
 - Fine-grained model
- D4.1

Task 4.2

New Storage Layout

- Software & Design
 - ESD Middleware
- Design delivered D4.2
- Initial benchmarks
- Development ongoing

Task 4.3

New Tape Methods

- Software
 - JDMA data migration
- Prototype in place
- D4.4; Wrapup ongoing
Outline

1. Introduction
2. Task 1: Business
3. Task 2: ESDM
5. Summary & Next Steps
Coarse-Grained Models

Simple graph models

High-level representation
- Hardware/software
- Purpose: Ease understanding

Includes:
- performance
- resilience
- cost

Deliverable D4.1 (done)

Scenarios discussing architectural changes for data centres, and implications for cost/performance
Some Examples of Business Considerations

One cost model of storage based on DKRZ

- Tape: 12 € per TB/year
- Software licenses for tape are driving the costs!
- Parallel Disk: 28 € TB/year
- Object storage: 12.5 € TB/year (without software license costs)
- Cloud: $ 48 TB/year (only storage, access adds costs)
- Alternative models: 8 € / 153 € for tape/disk per year
- Idle (unused) data is an important cost driver!

Lüttgau, Kunkel; Cost and Performance Modeling for Earth System Data Management and Beyond; High-Performance Computing; ISC-HPC workshops
Fine-Grained Performance Modelling

Detailed Modelling

A simulator has been developed; covers
- HW, software, tape drives, library, cache
- Can replay recorded FTP traces
- Validated with DKRZ environment

Usage

Aim to use to evaluate performance and costs of future storage scenarios – particularly tape

Lüttgau, Kunkel; Simulation of Hierarchical Storage Systems for TCO and QoS; High-Performance Computing; ISC-HPC workshops
Challenges

- Costs for hardware/software often intertwined, hard to disentangle
- Obscured behavior of hardware/software (e.g., HPSS)
- We had only a small budget to address these issues

Outlook

- Modelling and simulation remains important
 - How can we best use heterogeneous systems?
- No continuation of activity in ESiWACE 2 (but we’ll continue outside)
Outline

1. Introduction
2. Task 1: Business
3. Task 2: ESDM
5. Summary & Next Steps
Design Goals of the Earth-System Data Middleware

1. Relaxed access semantics, tailored to scientific data generation
 - Avoid false sharing (of data blocks) in the write-path
 - Understand application data structures and scientific metadata
 - Reduce penalties of **shared** file access

2. Site-specific (optimized) data layout schemes
 - Based on site-configuration and performance model
 - Site-admin/project group defines mapping
 - Flexible mapping of data to multiple storage backends

3. Ease of use and deployment particularly configuration
Benefits

■ Independent, share-nothing lock-free writes from parallel applications
■ Storage layout is optimized to local storage
 ▶ Exploits characteristics of diverse storage
 ▶ Preserve compatibility by creating platform-independent file formats on the site boundary/archive
■ Less performance tuning from users needed
 ▶ One data structure can be fully or partially replicated with different layouts
 ▶ Using multiple storage systems concurrently
■ (Expose/access the same data via different APIs\(^1\))
■ (Flexible and automatic namespace\(^1\))

\(^1\)Explored outside the ESiWACE scope
Key Concepts

- Middleware utilizes layout component to make placement decisions
- Applications work through existing API
- Data is then written/read efficiently; potential for optimization inside library
Evaluation of the Prototype at DKRZ Mistral

System
- Test system: DKRZ Mistral supercomputer
- Nodes: 200

Benchmark
- Uses ESDM interface directly; Metadata on Lustre
- Write/read a timeseries of a 2D variable
- Grid size: $200k \times 200k \times 8$ Byte \times 10 iterations
- Data volume: size = 2980 GiB; compared to IOR performance

ESDM Configurations
- Splitting data into fragments of 100 MiB (or 500)
- Use different storage systems
Measured Performance

- Read is handled inefficiently in ESDM at the moment. We will optimize the read path.

Kunkel & Lawrence (WP4 Team)

WP4: Highlights, challenges and outlook

11 March 2019
Data Backends – DDN Object Store (CMCC)

WOS Prototype

- Backend works
- Developed C wrapper for the C++ DDN WOS libraries
- Designed a parallel approach for independent / multiple write operations on WOS storage
Deployment Testing Example

Test and Deployment

Ophidia (in-memory data analytics) as a test application for ESDM

- **Import and Export**
 - Ophidia operators adapted for integration with ESDM storage
 - Uses patched NetCDF

- **ESDM successfully built on:**
 - Athena HPC Cluster
 - OphidiaLab

- Creation of a VM for the whole software stack

- **Deployment Testing Example**
Architecture: View of the Software Landscape as Planned

- Application1
- Application2
 - NetCDF4 (patched)
- HDF5 VOL (unmodified)
- ESD (Plugin)
- ESD (Plugin)
- Application3
 - GRIB
- cp-esd
- esd-FUSE
- esd-daemon

ESD interface

- Site configuration
- Performance model
- Layout
- Datatypes
- Metadata backend
- Storage backends
 - NoSQL
 - RDBMS
 - POSIX-IO
 - Object storage
 - Lustre

Tools and services

Kunkel & Lawrence (WP4 Team)
ESDM Development

Status

- ESDM Architecture Design for Prototype (D4.2)
- Multi-threaded data path
- Data backend Plugins for POSIX, CLOVIS, WOS (Reached: MS7)
- Trivial POSIX metadata store on the shared file system
- Proof of concept for adaptive tier selection in HDF5
 - But only for a trivial use case!
- 60%: ESDM library implementation
- Partial implementation for HDF5 VOL
- Evaluation of **ESDM benchmark** at DKRZ, STFC, CMCC (Reached: MS9)
- Started direct NetCDF integration – prototype for the write-path works

₂Note that for execution of applications not all 100% functionality will ever be needed.
Challenges & Outlook

Challenges

- Choosing HDF5 (VOL) wasted too much of effort
- Backend: DDN discontinued WOS
- Core-development with too few FTE for PostDoc
- People leaving teams (Seagate, DKRZ)
- Teamwork between DKRZ and Seagate was suboptimal
- Identification of NoSQL Metadata backend
Outlook

- Building a performance model for WOS/CLOVIS as blueprint for backends
- Hired a PostDoc at UoR to continue effort
- Goal: Supporting a subset of NetCDF applications
 - NetCDF benchmark
 - Toy model: Shallow water equation
 - Ophidia: use it in one big data workflow
- Improve data plugin for POSIX
- Optimize read path exploring a NoSQL backend
- Run small benchmarks at sites
 - CLOVIS performance in various configurations on a reasonable cluster
<table>
<thead>
<tr>
<th></th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Task 1: Business</td>
</tr>
<tr>
<td>3</td>
<td>Task 2: ESDM</td>
</tr>
<tr>
<td>4</td>
<td>Task 3: New Tape Methods</td>
</tr>
<tr>
<td>5</td>
<td>Summary & Next Steps</td>
</tr>
</tbody>
</table>
Approach

Semantic Storage Library

Task 3: Developing new tape access strategies and software . . . higher bandwidth to tape storage and increased storage redundancy.

- **Increase bandwidth to/from tape by exploiting RAID-to-TAPE.**
 - Decided that this was too difficult to do in a portable manner and that portable (tape + object store) workflow was a more important initial priority.

- Provide a portable library to address user management of data files on disk (POSIX and/or Object Store) and tape which
 1. does not *require* significant sysadmin interaction, but
 2. can make use of local customisation if available/possible
 3. exploits existing metadata conventions
 4. prototype can be deployed fast enough that we can use it for Exascale Demonstrator
Architecture

Two Key Components

1. S3NetCDF — replacement for NetCDF4-python with support for object stores
2. CacheFace — a portable frontend for managing content in object stores/tape
Architecture

Two Key Components

1. S3NetCDF — replacement for NetCDF4-python with support for object stores
2. CacheFace — a portable frontend for managing content in object stores/tape

Information Structure

Exploiting the Climate Forecast Aggregation (CFA) Framework\(^1\), which

1. Defines how CF fields may be combined into one larger field
2. Is fully general and based purely on CF metadata
3. Includes a syntax for storing an aggregation in a NetCDF file using JSON string content to point at aggregated files

\(^1:\)https://goo.gl/DdxGtw
S3NetCDF (working title)

File split following CFA conventions

Object
Store
Each object is a valid NetCDF File

App
S3netCDF
Local cache

Architecture

- Master Array File is a NetCDF file containing dimensions and metadata for the variables including URLs to fragment file locations
- Master Array file optionally in persistent memory or online, nearline, etc. NetCDF tools can query file CF metadata content without fetching them
S3NetCDF (working title)

File split following CFA conventions

Status:

- Prototype released (milestone 7B). Subsequent refactoring complete (October 2018) in preparation for parallelisation.
- ESiWACE1 goal: add prototype parallelisation, measure performance, publish paper and more complete usage documentation. (ESiWACE2: performance, integrate components with ESDM).
JDMA: a Prototype Tape Library for Advanced Tape Subsystems

- **JDMA: Joint Data Migration App(lication)**
- **A general-purpose multi-tiered storage library**
 - Provides a single API to users to move data to and from different systems
 - HTTP API running on webserver, database records requests and file metadata
 - Command line client which interfaces to HTTP API
- **Multiple storage “backends” supported via plugin**
 - Amazon S3 (Simple Storage Solution) for Object Stores and AWS
 - FTP, also for tape systems with a FTP interface
 - Elastic Tape – a proprietary tape system based on CASTOR
- **A number of daemons (scheduled processes) carry out the data transfer**
 - Asynchronously
 - On behalf of the user
JDMA System Architecture

- Backends:
 - ElasticTape
 - FTP
 - ObjectStore

- Worker Processes:
 - jdma_lock
 - jdma_pack
 - jdma_transfer
 - jdma_monitor
 - jdma_verify
 - jdma_tidy

- Database

- JDMA client

- Web server

- HTTP API
Outline

1 Introduction
2 Task1: Business
3 Task 2: ESDM
4 Task 3: New Tape Methods
5 Summary & Next Steps
Summary

Software

1. **ESDM**: Performance-portable I/O with NetCDF on heterogeneous storage
2. **S3NetCDF**: Prototype for handling object store/tape
3. **JDMA**: portable, lightweight (towards HSM) system

ESiWACE1 Goals

1. **ESDM**: Extend usability, complete NetCDF integration, improve plugin, layout, and performance
2. **S3NetCDF** – parallelise and publicises. Release prototype complete system.
The ESiWACE project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 675191

Disclaimer: This material reflects only the author's view and the EU-Commission is not responsible for any use that may be made of the information it contains
The PTA multi-model workflow implemented in Ophidia has been executed and validated at CMCC on 11 models from CMIP5 experiment for a total of 181 tasks, 2.5 minutes, 96 cores on OphidiaLab