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High-Performance Computing (HPC)

Definitions

� HPC: Field providing massive compute resources for a computational task

I Task needs too much memory or time for a normal computer
⇒ Enabler of complex scientific simulations, e.g., weather, astronomy

� Supercomputer: aggregates power of many compute devices

Example Supercomputers

DKRZ: Mistral

� Compute: 3,000 dual socket nodes

I Linpack: 3 Petaflop/s (1015)

� Storage: 52 Petabyte

I 10k HDDs, 300 servers
I Cost: 6 M€

RRZK Cologne: CHEOPS

� Compute: 831 nodes (dual/quad)

I Linpack: 86 Teraflop/s
I Storage: 500 Terabyte
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Supercomputers & Data Centers
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A View on The I/O Stack

� Parallel application

I Is distributed across many nodes
I Has a specific access pattern for I/O
I May use several interfaces

File (POSIX, ADIOS, HDF5), SQL, NoSQL

� Middleware provides high-level access

� POSIX: ultimately file system access

I Provides a hierarchical namespace and “file” interface

� Parallel file system: Lustre, GPFS, PVFS2

I Parallel: multiple processes can access data concurrently

� File system: EXT4, XFS, NTFS

� Operating system: (orthogonal aspect)

The layers provide optimization strategies and tunables

Example I/O stack
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Challenges

� Achieving high performance

� Understanding observed behavior (and performance)

I The I/O hardware/software stack is very complex – even for experts

� Tuning system settings and configurations

� Enabling performance portability

� Managing files and (data-intense) workflows

� Utilizing heterogenous storage landscapes

These are opportunities for tools and method development!

� Diagnosing causes, predicting performance, prescribing settings

� Smarter ways of data handling
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The Performance Challenge

� DKRZ file systems offer about 700 GiB/s throughput

I However, I/O operations are typically inefficient: Achieving 10% of peak is good

� Influences on I/O performance

I Application’s access pattern and usage of storage interfaces
I Network congestion
I Slow storage media (tape, HDD, SSD)
I Concurrent activity – shared nature of I/O
I Tunable optimizations deal with characteristics of storage media
I These factors lead to complex interactions and non-linear behavior
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Illustration of Performance Variability

� Best-case benchmark: optimal application I/O

I Independent I/O with 10 MiB chunks of data
I Real-world I/O is sparse and behaves worse

� Configurations vary:

I Number of nodes the benchmark is run
I Processes per node
I Read/Write accesses
I Tunable: stripe size, stripe count

� Optimal performance:

I Small configuration: 6 GiB/s per node
I Large configurations: 1.25 GiB/s per node

� Best setting depends on configuration!
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Illustration of Performance Variability (2)
� Rerunning the same operation (access size, ...) leads to performance variation
� Individual measurements – 256 KiB sequential reads (outliers purged)
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Research Activities & Interest

High-performance storage for HPC

� Efficient I/O

I Performance analysis methods, tools and benchmarks
I Optimizing parallel file systems and middleware
I Modeling of performance and costs
I Tuning of I/O: Prescribing settings
I Management of workflows

� Data reduction: compression library, algorithms, methods

� Interfaces: towards domain-specific solutions and novel interfaces

Other research interests

� Application of big data analytics (e.g., for humanities, medicince)

� Domain-specific languages (for Icosahedral climate models)

� Cost-efficiency for data centers in general
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Personal Vision: Towards Intelligent Storage Systems and Interfaces

Access paradigm
Database File system

Local storage

ILM/HSM Self-awareness
System characteristics

NoSQL    HDF5

Topology aware
Hierarchical storage

Performance model

Data replication

Semi-structured data

Content aware

Semantical access

Data transformation

Dynamic “on-disk” format

Intelligence Smart

Natural storage access
Data exploration

Semantical name space       Guided interface

Programmability

Data mining

Application focus U
ser

S
torage  system

Arbitrary views
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Support Activities

� Community building

I Bootstrapped: The Virtual Institute for I/O https://www.vi4io.org
I Supporting: European Open File System (EOFS) https://www.eofs.eu/
I Organizing: Various I/O workshops

� Awareness: co-created the IO-500 list http://io-500.org

� Beyond teaching:

I Online teaching platform for C-Programming (ICP project)
I A HPC certification program https://hpc-certification.org

� Standardization:

I Compression interfaces (AIMES project)
I Next-Generation I/O Interfaces (https://ngi.vi4io.org)
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https://www.vi4io.org
https://www.eofs.eu/
http://io-500.org
https://hpc-certification.org
https://ngi.vi4io.org


HPC & Storage Research Activities Performance Analysis Prediction/Prescribing with ML Data Compression Next-Generation I/O Interfaces Perspectives & Summary

Outline

1 HPC & Storage

2 Research Activities

3 Performance Analysis
Introduction
Measurements
Results

4 Prediction/Prescribing with ML

5 Data Compression

6 Next-Generation I/O Interfaces

7 Perspectives & Summary
Julian Kunkel Köln, 2019 14 / 44



HPC & Storage Research Activities Performance Analysis Prediction/Prescribing with ML Data Compression Next-Generation I/O Interfaces Perspectives & Summary

Performance Analysis

Problem
Assessing observed time for I/O is difficult.
What best-case performance can we expect?

Support for analysis – my involvement

� Models and simulation

I Trivial models: using throughput + latency
I PIOSimHD: MPI application + storage system simulator

� Tools to capture and analyze system statistics and I/O activities

I HDTrace – tracing tool for parallel I/O (+ PVFS2)
I SIOX – tool to capture I/O on various levels
I Grafana – Online monitoring for DKRZ (support)

� Benchmarks – on various levels, e.g., Metadata (md-workbench, IOR)

� Statistic model to determine likely cause based on time
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I/O Modeling and Diagnosing Causes with Statistics

Issue

� Measuring the same operation repeatedly results in different runtime

� Reasons:

I Sometimes a certain optimization is triggered, shortening the I/O path
I Example strategies: read-ahead, write-behind

� Consequence: Non-linear access performance, time also depends on access size

� It is difficult to assess performance of even repeated measurements!

Goal

� Predict likely reason/cause-of-effect by just analyzing runtime

� Estimate best-case time, if optimizations would work as intended
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Comparing Density Plot with the Individual Data Points

Duration for sequential reads with 256 KiB accesses (off0 mem layout)

Algorithm for determining classes (color schemes)

� Create density plot with Gaussian kernel density estimator

� Find minima and maxima in the plot

� Assign one class for all points between minima and maxima

� Rightmost hill is followed by cutoff (blue) close to zero⇒ outliers (unexpected slow)
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Write Operations

Results for one write run with sequential 256 KiB accesses (off0 mem layout).

Known optimizations for write

� Write-behind: cache data first in memory, then write back

� Write back is expected to be much slower

This behavior can be seen in the figure !
Julian Kunkel Köln, 2019 18 / 44
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Resulting Performance Models for Read

Read models predicting caching and memory location.
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Using the Model to Identify Anomalies
Using the model, the figure for reverse access shows slow-down (by read-ahead)
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Prescriptive Analysis: Learning Best-Practises for DKRZ

� Performance benefit of I/O optimizations is non-trival to predict

� Non-contiguous I/O supports data-sieving optimization

I Transforms non-sequential I/O to large contiguous I/O
I Tunable with MPI hints: enabled/disabled, buffer size
I Benefit depends on system AND application

Requested data

Accessed data

Data 
sieving

File offset

� Data sieving is difficult to parameterize

I What should be recommended from a data center’s perspective?
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Measured Data

� Simple single threaded benchmark, vary access granularity and hole size

� Captured on DKRZ porting system for Mistral

� Vary Lustre stripe settings

I 128 KiB or 2 MiB
I 1 stripe or 2 stripes

� Vary data sieving

I Off or On (4 MiB)

� Vary block and hole size (similar to before)

� 408 different configurations (up to 10 repeats each)

I Mean arithmetic performance is 245 MiB/s
I Mean can serve as baseline “model”
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System-Wide Defaults

� Comparing a default choice with the best choice

� All default choices achieve 50-70% arithmethic mean performance

� Picking the best default default for stripe count/size: 2 servers, 128 KiB

I 70% arithmetic mean performance
I 16% harmonic mean performance⇒ some bad choices result in very slow performance

Default Choice Best Worst Arithmethic Mean Harmonic Mean
Servers Stripe Sieving Freq. Freq. Rel. Abs. Loss Rel. Abs.

1 128 K Off 20 35 58.4% 200.1 102.1 9.0% 0.09
1 2 MiB Off 45 39 60.7% 261.5 103.7 9.0% 0.09
2 128K Off 87 76 69.8% 209.5 92.7 8.8% 0.09
2 2 MiB Off 81 14 72.1% 284.2 81.1 8.9% 0.09
1 128 K On 79 37 64.1% 245.6 56.7 15.2% 0.16
1 2 MiB On 11 75 59.4% 259.2 106.1 14.4% 0.15
2 128K On 80 58 68.7% 239.6 62.6 16.2% 0.17
2 2 MiB On 5 74 62.9% 258.0 107.3 14.9% 0.16

Performance achieved with any default choice
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Applying Machine Learning
� Building a classification tree with different depths
� Even small trees are much better than any default
� A tree of depth 4 is nearly optimal; avoids slow cases

Perf. difference between learned and best choices, by maximum tree depth, for DKRZ’s porting system

Julian Kunkel Köln, 2019 25 / 44
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Decision Tree & Rules
Extraction of knowledge from a tree

� For writes: Always use two servers; For holes below 128 KiB⇒ turn DS on, else off

� For reads: Holes below 200 KiB⇒ turn DS on

� Typically only one parameter changes between most frequent best choices

Decision tree with height 4. In the leaf nodes, the settings (Data sieving, server number, stripe size) and number of instances
for the two most frequent best choices

Julian Kunkel Köln, 2019 26 / 44



HPC & Storage Research Activities Performance Analysis Prediction/Prescribing with ML Data Compression Next-Generation I/O Interfaces Perspectives & Summary

Outline

1 HPC & Storage

2 Research Activities

3 Performance Analysis

4 Prediction/Prescribing with ML

5 Data Compression
Algorithms
Data Characteristics
Determine Scientific File Formats
Contribution

6 Next-Generation I/O Interfaces

7 Perspectives & Summary
Julian Kunkel Köln, 2019 27 / 44



HPC & Storage Research Activities Performance Analysis Prediction/Prescribing with ML Data Compression Next-Generation I/O Interfaces Perspectives & Summary

Compression Research: Involvement

� Development of algorithms for lossless compression

I MAFISC: suite of preconditioners for HDF5, aims to pack data optimally
Reduced climate/weather data by additional 10-20%, simple filters are sufficient

� Cost-benefit analysis: e.g., for long-term storage MAFISC pays of

� Analysis of compression characteristics for earth-science related data sets

I Lossless LZMA yields best ratio but is very slow, LZ4fast outperforms BLOSC
I Lossy: GRIB+JPEG2000 vs. MAFSISC and proprietary software

� Development of the Scientific Compression Library (SCIL)

I Separates concern of data accuracy and choice of algorithms
I Users specify necessary accuracy and performance parameters
I Metacompression library makes the choice of algorithms
I Supports also new algorithms
I Ongoing: standardization of useful compression quantities

� A method for system-wide determination of data characteristics

I Method has been integrated into a script suite to scan data centers

Julian Kunkel Köln, 2019 28 / 44
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Determining Characteristics for Data in a Data Center

� Data characteristics:

I Proportion of a given (scientific) file format
I Compression characteristics (ratio, speeds)
I Performance behavior when accessing file data (e.g. using alternative I/O)

� Understanding these characteristics is useful
I Proportions of a file format to identify relevant formats

• Starting point for optimization of format

I Conducting what-if analysis on the scale of the data center

• Estimate the influence storage compression has
• Performance expectations when applying a new I/O strategy

� Existing studies use a manual selection of “data” for representing stored data

� Conducting analysis on representative data is non-trivial

I What data makes up a representative data set?
I How can we infer knowledge for all data based on the subset?

• Based on file number/count (i.e., a typical file is like X)
• Based on file size (i.e., 10% of storage capacity is like Y)

Julian Kunkel Köln, 2019 29 / 44
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Example: Determine Scientific File Formats
� Notice the difference by file count and capacity

(a) Scientific file types (b) File types according to file magic

Julian Kunkel Köln, 2019 30 / 44
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Contribution

Goal

� Design a method based of statistical sampling to estimate file properties

� Conduct a simple study to investigate compression and file types

Approach

1 Scanning a large fraction of data on DKRZ file systems

I Analyzing file types, compression ratio and speed

2 Investigating characteristics of the data set Filetype, compression ratio, ...

3 Statistical simulation of sampling approaches

I We assume the population (full data set) is the scanned subset

4 Discuss the estimation error for several approaches

Julian Kunkel Köln, 2019 31 / 44
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Investigating Robustness: Computing by File Count

� Running the simulation 100 times to understand the variance of the estimate

� Clear convergence: thanks to Cochran’s formula, the total file count is irrelevant
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Investigating Robustness: Computing by File Size

� Using the correct sampling by weighting probability with file size
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Investigating Robustness: Computing by File Size
� Using the WRONG sampling by just picking a simple random sample

� Almost no convergence behavior; you may pick a file with 99% file size at the end
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Selected Algorithms with Good Properties (out of 160+)
Algorithm Ratio Compr.

MiB/s
Decom.
MiB/s

csc33-5 0.485 3.4 16.7
lzlib17-9 0.491 1.4 17.0
xz522-9 0.493 2.1 20.8

lzma938-5 0.493 2.2 24.2
brotli052-11 0.510 0.2 110.6
lzma938-2 0.526 7.9 23.1
zstd100-22 0.526 2.2 294.3

xpack2016-06-02-9 0.548 12.3 282.9
brotli052-5 0.549 16.5 156.6

xpack2016-06-02-6 0.549 16.9 278.9
zstd100-11 0.549 13.8 394.0
zstd100-2 0.574 177.6 455.3

lz4hcr131-16 0.640 3.1 1522.2
lzsse22016-05-14-16 0.640 7.7 1341.6

lz4hcr131-12 0.640 9.4 1519.5
lz4hcr131-9 0.640 17.2 1511.5
lz4hcr131-4 0.649 30.0 1477.8

lz515 0.673 229.2 858.6
density0125beta-2 0.683 419.4 496.5
pithy2011-12-24-9 0.694 305.91131.4

lzo1x209-1 0.726 606.7 833.7
lz4r131 0.726 469.81893.1

lz4fastr131-3 0.741 646.12001.1
lz4fastr131-17 0.7721132.72263.1

blosclz2015-11-10-3 0.872 494.42612.6
blosclz2015-11-10-1 0.900 819.42496.9

memcpy 1.0004449.14602.0

WR data

Algorithm Ratio Compr.
MiB/s

Decom.
MiB/s

lzlib17-9 0.426 1.5 22.0
xz522-9 0.427 2.2 24.3

lzma938-5 0.431 2.9 29.1
lzham10-d26-1 0.445 1.4 113.3

csc33-3 0.445 6.5 23.3
brotli052-11 0.451 0.3 124.5
lzma938-0 0.473 13.0 28.2
zstd080-22 0.476 1.1 260.7
brotli052-5 0.489 18.4 165.6
zstd080-18 0.496 3.9 434.4

xpack2016-06-02-9 0.498 19.3 386.8
xpack2016-06-02-1 0.504 53.5 362.0

zstd080-5 0.511 69.4 560.8
brotli052-2 0.512 126.6 168.7
zstd080-2 0.518 220.9 594.0
zstd080-1 0.523 355.0 633.9

lzo1c209-999 0.566 13.5 939.5
lz5hc15-4 0.574 126.31410.1

lz515 0.576 326.91934.9
lz4hcr131-16 0.577 3.1 2720.6
lz4hcr131-12 0.577 12.4 2700.8
lz4hcr131-9 0.577 28.4 2670.3
lzo1b209-6 0.578 143.3 992.5

lz4r131 0.599 951.43037.4
lz4fastr131-3 0.6031272.63215.6

pithy2011-12-24-3 0.6131787.53535.2
lz4fastr131-17 0.6141904.83610.3

DKRZ data
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Ongoing Activity: Earth-Science Data Middleware

� Part of the ESiWACE Center of Excellence in H2020

I Centre of Excellence in Simulation of Weather and Climate in Europe

� ESiWACE2 follow up has been funded!

ESDM provides a transitional approach towards a vision for I/O addressing

� Scalable data management practice

� The inhomogeneous storage stack

� Suboptimal performance & performance portability

� Data conversion/merging
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Earth-System Data Middleware

Design Goals of the Earth-System Data Middleware

1 Relaxed access semantics, tailored to scientific data generation

I Avoid false sharing (of data blocks) in the write-path
I Understand application data structures and scientific metadata
I Reduce penalties of shared file access

2 Site-specific (optimized) data layout schemes

I Based on site-configuration and performance model
I Site-admin/project group defines mapping
I Flexible mapping of data to multiple storage backends
I Exploiting backends in the storage landscape

3 Ease of use and deployment particularly configuration

4 Enable a configurable namespace based on scientific metadata
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Architecture

Key Concepts

� Middleware utilizes layout component to make placement decisions

� Applications work through existing API (currently: NetCDF library)

� Data is then written/read efficiently; potential for optimization inside library

NetCDFNetCDF ....

Layout component

User-level APIs

File system Object store ...

User-level APIs

Site-specific
back-ends
and

mapping

Data-type aware

file a file b file c obj a obj b

Site Internet
Archival

Canonical
Format
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Measured Performance
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ESDM is just the Beginning: Next Generation Interfaces

Towards a new I/O stack considering:

� User metadata and workflows as first-class citizens

� Smart hardware and software components

� Liquid-Computing: Smart-placement of computing

I Utilizing arbitrary compute and storage technology!

� Self-aware instead of unconscious

� Improving over time (self-learning, hardware upgrades)

NG
Why do we need a new domain-independent API?

� Other domains have similar issues

� It is a hard problem approached by countless approaches

� Harness RD&E effort across domains
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Ongoing Community Strategy

� Model targets High-Performance Computing and data-intensive compute

� Goal: Establishing a Forum (similarly to MPI)

� Open board: encourage community collaboration

� Joint whitepaper will be released before ISC-HPC
S
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Outline

1 HPC & Storage
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3 Performance Analysis

4 Prediction/Prescribing with ML

5 Data Compression

6 Next-Generation I/O Interfaces
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Perspectives at Cologne

Continuation of ongoing research tracks

� Parallel I/O⇒ efficient I/O

I Understanding behavior, costs and options
I Co-design of future I/O interface
I Smarter processing with Liquid computing
I Data reduction techniques
I Performance portability
I Better systems for data analytics!

� Big data applications, e.g., humanities

� Domain specific languages for performance portability

� Develop I/O methods for earth-science and beyond
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Summary

� Parallel I/O is complex

I System complexity and heterogeneity increases significantly
⇒ Expected and measured performance is difficult to assess
I HPC users (scientists) and data centers need methods and tools

� Tools, statistics and machine learning help with key aspects:

I Diagnosing causes and identify anomalies
I Predicting performance
I Prescribing best practices

� I work towards intelligent systems to increase insight and ease the burden for users

I Novel interfaces are needed to unleash the full potential of system resources
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Predicting Non-Contiguous I/O Performance
Goal: Predict storage performance based on several parameters and tunables

Alternative models

� Predict performance based on parameters

� Predict best (data sieving) settings

PM

Input

Buffer Size
Data Sieving
Data Size
Fill Level

Output

estimated Performance

Parameters

Buffer Size
Data Sieving
Data Size
Fill Level

Observed Values

Performance

train

(a) Performance Model

PSM
Input

Data Size
Fill Level

Output

best Buffer Size
best Data Sieving

Parameters

Buffer Size
Data Sieving
Data Size
Fill Level

Observed Values

Performance

train

(b) Parameter Setting Model

PM provides a perf. estimate, whereas PSM provides the “tunable” variable parameters to achieve it
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Validation on Data of the WR Cluster
� Apply k-fold cross-validation

I Split data into training set and validation set
I Train model with all (k-1) folds and evaluate it on 1 fold
I Repeat the process until all folds have been predicted

� A baseline model is the arithmethic mean performance (54.7 MiB/s)
I Achieves an arithmethic mean error of 28.5 MiB/s

� Linear models yield a mean error of ≥ 12.7 MiB/s

CART results

kPerformance errors in MB/s Class errors
min meanmax min meanmax

26.746.80 6.87 1.461.59 1.72
45.196.25 6.92 0.941.34 1.72
84.675.66 6.77 0.871.19 1.62

Prediction errors for training sets under k-fold cross-validation. Min & max refer to the folds’ mean error.
Values for k=3..7 lie in between
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Comparing Prediction with Observation

Performance classes and error for k=2, sorted by the observed performance class. Trained by 387 instances,
validated on the other 387 instances.
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Extracting Knowledge

� Rules can be easily extracted from decision trees

� Consider a performance prediction in three classes

� Rules (this is common sense for I/O experts)

I Small fill levels and data sizes are slow
I Large fill levels achieve good performance

� Surprising anomaly: smaller fill level, large access sizes are slower than medium

First three levels of the CART classifier rules for three classes slow, avg, fast ([0, 25], (25, 75], > 75 MB/s). The
dominant label is assigned to the leaf nodes – the probability for each class is provided in brackets.
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Simulation of this Behavior

� Assume we have two components

I Component A is faster than B
I Either A or B transfer data
I Cache miss of A leads to transfer for B

� Overlaying 3 stochastic processes:

I Two gamma distributions with scale=1
I Normal distribution (little impact)

Resulting time for 1000 data points
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Simulated Access Time and Resulting Density

(a) Timeline (b) Density reveals two classes

Example demonstrating the methodology. Each of the two Gamma distributed processes is drawn with its own
color.
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Approach
Assumptions

� Each “class” is caused another optimization/technology

I Assign an observation to the likely class
I This may lead to (tolerable) errors

� Behavior not visible on the density plot is irrelevant

⇒ The strategy identifies relevant “performance factors”

Concept

1 Repeatedly measure time for I/O with a given size

2 Construct the density graph and identify clusters

3 A class is caused by (at least) one performance factor

4 Build a model to assign the cluster across “sizes“

5 Optional: Identify the root cause for the cluster

6 Assign appropriate names, e.g., “client-side cached”
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Approach: Models

� Apply a family of linear models predicting time; lm(size) = c + f(size)

I Assume time correlates to the operation’s size
I Each model represents a condition C (cached, in L1, ...)
I tC(size) = lm(size) + lm′(size) + ... and check min(|tC − t̂|)

� Assume the conditions for the closest combination are the cause

� Ignore the fact of large I/O requests with mixed conditions

I i.e., some time of the operation may be caused by C and some by C′

Example models

� t(size) = m: Data is discarded on the client or overwritten in memory

� t(size) = m + c(size): Data is completely cached on the client ...
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Transformation of the Problem

� Aim to apply alternative methods from machine learning

� Many require classification problems instead of regression

⇒ Performance values need to be mapped into classes

Mapping

� Create 10 classes with the same length up to 5% of max. performance

� Then increase performance range covered by 10% each

0 max
| | | | | | | | |

l = ε ◦ max

equal
size classes c

i+1
=c

i
(1+2ε)

|||| || ||||||| || ||
Val

relative size
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Evaluation Data

We analyzed the validity of the approach on two systems

System 1: WR cluster

� Lustre 2.5

� 10 server nodes

� 1 Gb Ethernet

� 1 client node (max performance 110 MiB/s)

System 2: DKRZ porting system

� Lustre 2.5 provided by Seagate ClusterStor 9000

� 2 servers

� FDR-Infiniband

� 1 client node (max performance 800 MiB/s)
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Investigating Training Set Size
� Inverse k-fold validation: learn from 1 fold and test on (k-1)

� With ≥ 96 instances better than the linear model

Mean prediction error of PM by training set size under inverse k-fold cross-validation. Class prediction errors
show similar behavior
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Model for Reading Cached Data

Model accuracy for reading cached data (off0 locality in memory and file). Other figures look similar
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Validation: Classify Different Patterns
Experiment cached discard uncached
state-mem-file off0 rnd off0 rnd
D-reverse-off0 R 46 54 0.3 0.03 0.004
C-off0-off0 R 0 34 60 6.1 0.29
C-seq-off0 R 0 0 52 47 0.31
C-seq-reverse R 0 0 42 4.3 54
C-seq-rnd8 R 0 0 30 44 26
C-seq-rnd R 0 0 26 5.6 68
C-seq-seq R 0 0 48 9.5 42
C-seq-stride8,8 R 0 0 28 8.8 63
C-off0-rnd R 0 2e-04 18 1.9 80
U-off0-rnd R 0 0 0.01 0.15 100
U-seq-seq R 0 0 57 6.1 37
C-off0-rnd W 0 0 0 0.003 100
C-off0-seq W W 0 0 40 17 42
C-seq-seq W 0 0 40 12 48
C-off0-reverse W 0 0 71 14 15

Model predictions classes in % of data points for selected memory & file locations – access size is varied.
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Architecture of SCIL
� Contains tools to

I Create random patterns, compress/decompress, add noise, plot

� HDF5 and NetCDF4 integration

� Library offers

I Automatic algorithm selection (under development)
I Flexible compression chain:

Array of
Type-To-Type

Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compressed
data

process data process data

float float int any any

data
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Analyzing Performance of Lossy Compression using SCIL

Two new (point-wise) algorithms are provided with SCIL

Data

� Single precision (23 bits of significand, 8 bits of exponent, 1 sign bit)

� Synthetic, generated by SCIL’s pattern lib.

I e.g., Random, Steps, Sinus, Simplex

� Data of the variables created by ECHAM

I The climate model creates up to 123 vars

Experiments

� Single thread, 10 repeats

� Lossless (memcopy and lz4)

� Lossy compression with significant bits (zfp, sigbits, sigbits+lz4)

� Lossy compression with absolute tolerance (zfp, sz, abstol, abstol+lz4)

I Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of the data maximum value
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Comparing Algorithms for the Scientific Files

Throughput [MiB/s]
Algorithm RatioCompressionDecompression
sigbits 0.448 462 615
sigbits,lz4 0.228 227 479
zfp-precision0.299 155 252

Preserving 9 precision bits (instead of 23 from float) ≤ 0.56

Throughput [MiB/s]
Algorithm RatioCompressionDecompression
abstol 0.19 260 456
abstol,lz4 0.062 196 400
sz 0.078 81 169
zfp-abstol0.239 185 301

For absolute tolerance with 1% of max value < 0.22

The harmonic mean has been used
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Representative Selection

� Analyzing large quantities of data is time consuming and costly

I Scanning petabytes of data in > 100 millions of files
I With 50 PB of data and 5 GiB/s read, 115 node days are needed
I Scanning DKRZ data with a few compression algorithms cost 4000 e
⇒ Working on a representative data set reduces costs
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Efficient Sampling Strategies
Sampling to Compute by File Count

1 Enumerate all files

2 Create a simple random sample

I Select a random number of files to analyze without replacement
I For proportional variables, the number of files can be computed with Cochran’s formula

Sampling to Compute by File Size

1 Enumerate all files AND determine their file size

2 Pick a random sample based on the probability filesize
totalsize with replacement

I Large files are more likely to be chosen (even multiple times)

3 Create a list of unique file names and analyze them

I Either scan full file (once) or measure feature on a random file section (chunk)

4 Compute the arithmetic mean for the variables

I If a file has been picked multiple times in Step 2., its value is used multiple times
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Demonstration of the Strategies

� Apply the approach with an increasing number of samples

I Compare true value with the estimated value

Running one simulation for increasing sample counts
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(b) Compute mean by size

Evaluating various metrics (proportions) for an increasing number of samples

� This suggests that the results converge quickly but how trustworthy is one run?
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Challenges in the Domain of climate/weather

� High data volume and velocity

� Data management practice does not scale

I e.g., hierarchical namespaces does not reflect use cases
I Scientists spend quite some time to define the namespace

� Suboptimal performance (& performance portability) of data formats

I Tuning for NetCDF, HDF5 and GRIB necessary
I Scientists worry about interoperability

� Data conversion is often needed

I Between formats such as NetCDF and GRIB
I To combine data from multiple experiments, time steps, ...

� External data services to share data in the community

I (Scientific) metadata is provided by databases
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Benefits

� Expose/access the same data via different APIs

� Independent and lock-free writes from parallel applications

� No fixed storage layout1

� Less performance tuning from users needed

� Exploit characteristics of different storage technology

� Multiple layouts of one data structure optimize access patterns

� Flexible namespace (similar to MP3 library)
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