

The Virtual Institute of I/O

Limitless Storage **Limitless** Possibilities

https://hps.vi4io.org

Julian M. Kunkel

Supercomputing 2018

2018-11-14

Outline

- 1 Overview
- 2 Comprehensive Data Center List (CDCL)
- 3 Roadmap
- 4 Summary

Introduction

Overview

Goals of the Virtual Institute for I/O

- Provide a platform for I/O enthusiasts for exchanging information
- Foster training and collaboration in the field of high-performance I/O
- Track and encourage the deployment of large storage systems by hosting information about high-performance storage systems

https://www.vi4io.org

Introduction

Philosophical cornerstones of the institute

- Treat every member and participant equally
- Allow free participation without any membership fee inclusive to all
- Be independent of vendors and research facilities

Open Organization

- The organization uses a wiki as central hub
 - Everybody (registered users) can edit the content
 - Major changes should be discussed (see below)
 - ▶ The wiki uses tag clouds to link between similar entities
- Supported by mailing lists
 - Call-for-papers
 - Announce list for relevant information
 - Contribute list to discuss and steer organizational issues
- Major changes should be discussed on the contribute mailing list
- Members can vote for changes

Everybody is welcome to participate

Wiki Content

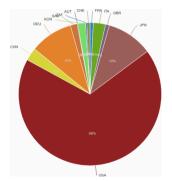
- Groups involved in high-performance storage Overview of research groups (evtl. companies involved in research)
 - Product development the group is involved in
 - Research projects (with links to their source)
 - ► Tags for layers, products and knowledge
- Tools: Overview of relevant tools with small descriptions
 - ► Types of tools: analysis, benchmarking, I/O middleware
 - Tags for layers and features
- Data Comprehensive Center List (CDCL) / High-Performance storage list Characteristics of data center systems
 - Editable and owned by the community
- Internal section Provides templates and describes rules for editing the page

Comprehensive Data Center List (CDCL)

The CDCL contains system characteristics for sites, supercomputer and storage

System Model

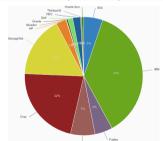
- The system model has been refined since ISC
 - Now based on an extensible ISON schema, optimized editor
 - Supports now (all) logical components and subcomponents
- Characteristics and peak values
- Measured values *-500


Components with characteristics

- Site, supercomputer, online storage, tape archives
- Compute nodes, storage nodes, local storage, accelerators, ...
- Supporting: e.g., CPU type, memory available, ...

Features

Overview


- Table view with selectable columns
- Flexible metrics and aggregation

Capacity grouped by country

#	site.institution	site.storage system.net capacity	site.supercomputer.compute peak	site.supercomputer.memory capacity				
		in PiB	in PFLOPS	in TB				
1	Oak Ridge National Laboratory	250.04	220.64	3511.66				
2	National Energy Research Scientific Computing Center	197.65	37.71	857.03				
3	Los Alamos National Laboratory	72.83	11.08	2110.00				
4	German Climate Computing Center	52.00	3.69	683.60				
5	Lawrence Livermore National Laboratory	48.85	20.10	1500.00				
6	RIKEN Advanced Institute for Computational Science	39.77	10.62	1250.00				
7	National Center for Atmospheric Research	37.00	5.33	202.75				
8	National Center for Supercomputing Applications	27.60	13.40	1649.27				
9	Global Scientific Information and Computing Center	25.84	17.89	275.98				
10	Joint Center for Advanced HPC	24.10	24.91	919.29				

-[37	Pacific Northwest National Laboratory	2.40	3.40	184.00
- [38	Navy DoD Supercomputer Resource Center	2.11	2.05	0.00
-[39	Vienna Scientific Cluster	1.81	0.68	42.18
-[40	Center for Scientific Computing	0.75	0.51	77.57
- [41	University of Bristol	0.44	0.38	43.01

Capacity grouped by vendor

Status

CDCI: What's New

- Form to create stubs for pages: https://www.vi4io.org/cdcl-add
 - ▶ This simplifies the addition of new systems significantly
- New sites:
 - National Energy Research Scientific Computing Center (#2): Comprehensive
 - ORNL, University of Bristol, Cambridge, Queen Mary U of London

Started: Web page data center representation

- Provide a lavascript for embedding into any data center web page
 - ⇒ Towards a standardized presentation of systems!
 - Allowing the site to describe and visualize their system
 - Hosted by the site directly
 - Allowing a simple export into VI4IO data center list
- Polish presentation of site's information

Roadmap for 2019

Supported community activities

- Official roadmaps for the community benchmarks IOR/MDtest
 - Various contributions to IOR/MDtest happened
- Achieve the standardized presentation of systems
 - ▶ Help is welcome: Requirements? Testers?
- Link IO-500 results with CDCL
- New training page linking resources for learning high-performance storage
- Supporting a forum for Next-Generation Storage Interfaces

Community Development of Next Generation Interfaces

Towards developing a new I/O stack API considering:

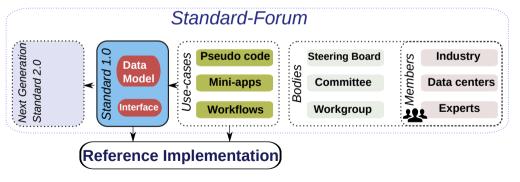
- Cover storage and data-flow computation together
- Utilizing heterogeneous storage and compute landscapes
 - Scheduler optimizes plans; beyond tiering; liquid computing
- Smart hardware and software components
 - Self-aware system instead of unconscious
 - Improving over time (self-learning, hardware upgrades)
- User metadata. ILM. and workflows as first-class citizens

Indeed many research prototypes address subproblems

- But not all aspects together
- Competing approaches; the standardization does not compete!

Pursued Community Strategy

- The **standardization** of a high-level data model & interface
 - ► Lifting semantic access to a new level (e.g. NetCDF + X)
 - Targeting data intensive and HPC workloads
 - ▶ To have a future: must be beneficial for Cloud/Big Data + Desktop, too
- Supporting a reference implementation of a smart runtime system
 - Implementing key features
 - Build on top of the available solutions!
- Demonstration of benefits on socially relevant data-intense apps



Summary

Development of the Data Model and API

- Establishing a Forum (similarly to the Message Passing Interface MPI)
- Model targets High-Performance Computing and data-intensive compute
- Open board: encourage community collaboration

Summary

- The Virtual Institute for I/O is a community hub
 - Open to everybody and free to join
- It contains information about
 - Tools, benchmarks
 - Research groups
 - Standardization efforts
- It hosts the Comprehensive Data Center List (CDCL)
 - Covers many metrics and allows flexible visualization
 - Will track metrics across years
 - Can be updated by members
- Towards standardization of system presentation and APIs
 - We are preparing a white-paper for NGI; join the mailinglist now to participate!
- We need you to participate!

