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1. Motivation



Motivation
Code similarity

• Computer programs exhibit similarities that can be detected
before, during, and after execution time.

• Programs that are similar tend to behave in similar manner too.
• Detecting program similarities may have the following

applications:

– Analyze and improve the overall performance of a set of
similar programs.

– Assist the programmer in finding code that is already
implemented instead of coding from scratch.

– Find common mistakes at designing or writing programs:
code smells.

– Detect plagiarism.
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Motivation
Code clones

The similarity between two programs can be determined by the
amount of clones they share. There are four distinct types of them:

• Type-1: this type of clones stand for pieces of code containing
differences in the layout, spaces and comments.
• Type-2: these codes also present differences in data types and

identifiers.
• Type-3: these clone types also include additions, modifications

and deletions of lines of code.
• Type-4: represent codes that present different implementation

but the same functionality.

What to compare? source code? intermediate representations?
binary code? I/O access patterns?
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2. Background



Intermediate representations (IRs)
Generalities

• The IR of a program is the central data structure in a compiler.
Around it, analysis, transformations and optimizations are
performed.

• Broad categories:

– Graphical IRs: This IR type stores the program information
in a graph-like data structure.

– Linear IRs: This IR type makes use of simple linear
sequences to store operations, similar to machine code.

– Hybrid IRs: Hybrid IRs combine elements of the previous
two categories.

• Complex compiler infrastructures might work with different
interconnected IRs, some of them closer to the source code,
others closer to the machine instruction level.
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Intermediate representations (IRs)
Abstract syntax trees (ASTs)

• ASTs are a graph-based intermediate representation.

• They are defined as contractions of parse trees.
• Most non-terminal symbols are ignored.
• The precedence and the meaning of the expressions are

preserved.
• Their level of abstraction is not far from the original source code.
• In this work we used the AST from Clang, a LLVM frontend for

C/C++/Objective C programs.

How to compare these data structures? direct tree comparison?
flatten into strings? extract attribute set?
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String kernels
Generalities

• Strings are a common and useful form of representing data
(e.g. DNA sequences).

• String kernels can be intuitively understood as functions
measuring the similarity of pairs of strings.
• The more similar two strings A and B are, the higher the value

of a string kernel K (A,B) will be.
• In particular, string kernels check the number of shared

substrings among a collection of strings.
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String kernels
Examples

Some kernel functions have been proposed:

• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?
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3. Proposed solution



Overview

1. Convert the trees into weighted strings.

2. Compress the strings in order to save some space.

3. Obtain a similarity matrix a.k.a kernel matrix using a novel string
kernel function.

4. Use a clustering algorithm to extract knowledge from the kernel
matrix.

This work extends previous research from the authors, where they
proposed a string kernel for the detection of patterns in I/O traces
• “A novel string representation and kernel function for the

comparison of I/O access patterns,” in Parallel Computing
Technologies.
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From trees to strings

a) AST. b) Extracted tokens.
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Compression of the string

1. Similar consecutive tokens:

– [BinaryOp]1[BinaryOp]1[BinaryOp]1[BinaryOp]1

↓
[BinaryOperator]4

2. Delete specific tokens:

– [CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1

[DeclRefExpr]1

↓
[DeclRefExpr]4

3. Simplify declaration tokens:

– [DeclStmt]1[VarDecl]1[DeclRefExpr]1[LEVEL_UP]4

↓
[DeclStmt]3 [LEVEL_UP]4

4. Compress in pairs:

– [IntegerLiteral]1[LEVEL_UP]5 [IntegerLiteral]1[LEVEL_UP]2

↓
[IntegerLiteral]2[LEVEL_UP]7
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KastX spectrum kernel family
Definitions

Having two strings A and B:

1. The algorithm requires a minimum weight or “cut weight” value
as parameter.

2. The aim is to find the longest matching substrings of A and B,
whose weights are greater than or equal to the cut weight. They
are called valid matching substrings.

3. A valid matching substring can appear more than once in each
string.

4. A valid matching substring must not be a substring of another
valid matching substring in at least one of the original strings.
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KastX spectrum kernel family
An example with cut weight = 4

a) S1 is the largest substring found on both examples.

b) S2 appears once as an independent case.

c) S3 appears twice as an independent case.

16 / 31



KastX spectrum kernel family
An example with cut weight = 4

a) S1 is the largest substring found on both examples.

b) S2 appears once as an independent case.

c) S3 appears twice as an independent case.

16 / 31



KastX spectrum kernel family
An example with cut weight = 4

a) S1 is the largest substring found on both examples.

b) S2 appears once as an independent case.

c) S3 appears twice as an independent case.

16 / 31



Kast1 spectrum kernel
Description

The kast1 spectrum kernel has the following definition:

• Each valid matching substring embeds a new feature for A and
B.
• The similarity value corresponds to the inner product of the new

feature vectors of A and B.
• This kernel uses only the weight of the independent valid

matching substrings.
• If the string does not present an independent occurrence of a

particular valid matching substring, the feature value is set to 1,
to avoid zero values when calculating the inner product.
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Kast1 spectrum kernel: an example (I)
New feature vector for A

weight_k1w≥4(S1)A = 19 (1)

weight_k1w≥4(S2)A = 6 (2)

weight_k1w≥4(S3)A = 9 (3)

f1w≥4(A) = {19, 6, 9} (4)
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Kast1 spectrum kernel: an example (II)
New feature vector for B

weight_k1w≥4(S1)B = 17 + 18 = 35 (5)

weight_k1w≥4(S2)B = 1 (6)

weight_k1w≥4(S3)B = 6 (7)

f1w≥4(B) = {35, 1, 6} (8)
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Kast1 spectrum kernel: an example (III)
Similarity calculation

k1w≥4(A,B) = 〈{19, 6, 9}, {35, 1, 6}〉 = 725 (9)

k̄1w≥4(A,B) =
725√

k1w≥4(A,A)× k1w≥4(B,B)
(10)

k̄1w≥4(A,B) =
725

64× 52
(11)

k̄1w≥4(A,B) =
725
3328

(12)

k̄1w≥4(A,B) ≈ 0.2178 (13)

According to this kernel, Strings A and B are approximately 21.78%
similar.
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4. Evaluation



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:

• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.
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Experiment configuration
Code samples (II)

• (C) 3D stencils.

– Compact stencil.
– Side stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.

– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.
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Experiment configuration
Other setups

• The selected cut weight values were the following:
– {20, 21, ..., 2k} : k = 9.

• The clustering algorithm here used was:
– Hierarchical Clustering.
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Baseline kernel 1
Blended spectrum kernel

Cut weight = 16.
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Baseline kernel 2 (previous work)
Kast spectrum kernel

Cut weight = 64.
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Proposed kernel
Kast1 spectrum kernel

Cut weight = 16.
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5. Conclusions and Future
Work



Conclusions

• The proposed kast1 spectrum kernel and the kast spectrum
kernel had similar clustering performance.

• They showed a consistent formation of three clusters: matching
functions, sorting functions and stencils (3D and 2D).
• They yielded better results than the blended spectrum kernel as

the clustering showed no misplaced examples.
• This indicates that this novel comparison method can be

promisingly utilized to find similarities in source code snippets.
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Future work

• Automatic selection of the cut weight.

• Analysis of the intra-cluster distances between clone types.
• Comparison against a tree kernel applied directly over the

ASTs.
• Study the linear intermediate representation delivered by the

LLVM Compiler Infrastructure.
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Thanks!
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