
Comparison of Clang Abstract Syntax Trees
using String Kernels
HPCS 2018, Orleans, France

Raul Torres, Julian M. Kunkel, Manuel F. Dolz, Thomas Ludwig



Agenda

1. Motivation

2. Background
Intermediate representations
String kernels

3. Proposed solution
Creating strings from ASTs
Finding similarities with a novel string kernel

4. Evaluation
Experiment configuration
Blended spectrum kernel
Kast spectrum kernel
Kast1 spectrum kernel

5. Conclusions and future work

2 / 31



1. Motivation



Motivation
Code similarity

• Computer programs exhibit similarities that can be detected
before, during, and after execution time.

• Programs that are similar tend to behave in similar manner too.
• Detecting program similarities may have the following

applications:

– Analyze and improve the overall performance of a set of
similar programs.

– Assist the programmer in finding code that is already
implemented instead of coding from scratch.

– Find common mistakes at designing or writing programs:
code smells.

– Detect plagiarism.

4 / 31



Motivation
Code similarity

• Computer programs exhibit similarities that can be detected
before, during, and after execution time.
• Programs that are similar tend to behave in similar manner too.

• Detecting program similarities may have the following
applications:

– Analyze and improve the overall performance of a set of
similar programs.

– Assist the programmer in finding code that is already
implemented instead of coding from scratch.

– Find common mistakes at designing or writing programs:
code smells.

– Detect plagiarism.

4 / 31



Motivation
Code similarity

• Computer programs exhibit similarities that can be detected
before, during, and after execution time.
• Programs that are similar tend to behave in similar manner too.
• Detecting program similarities may have the following

applications:

– Analyze and improve the overall performance of a set of
similar programs.

– Assist the programmer in finding code that is already
implemented instead of coding from scratch.

– Find common mistakes at designing or writing programs:
code smells.

– Detect plagiarism.

4 / 31



Motivation
Code similarity

• Computer programs exhibit similarities that can be detected
before, during, and after execution time.
• Programs that are similar tend to behave in similar manner too.
• Detecting program similarities may have the following

applications:
– Analyze and improve the overall performance of a set of

similar programs.

– Assist the programmer in finding code that is already
implemented instead of coding from scratch.

– Find common mistakes at designing or writing programs:
code smells.

– Detect plagiarism.

4 / 31



Motivation
Code similarity

• Computer programs exhibit similarities that can be detected
before, during, and after execution time.
• Programs that are similar tend to behave in similar manner too.
• Detecting program similarities may have the following

applications:
– Analyze and improve the overall performance of a set of

similar programs.
– Assist the programmer in finding code that is already

implemented instead of coding from scratch.

– Find common mistakes at designing or writing programs:
code smells.

– Detect plagiarism.

4 / 31



Motivation
Code similarity

• Computer programs exhibit similarities that can be detected
before, during, and after execution time.
• Programs that are similar tend to behave in similar manner too.
• Detecting program similarities may have the following

applications:
– Analyze and improve the overall performance of a set of

similar programs.
– Assist the programmer in finding code that is already

implemented instead of coding from scratch.
– Find common mistakes at designing or writing programs:

code smells.

– Detect plagiarism.

4 / 31



Motivation
Code similarity

• Computer programs exhibit similarities that can be detected
before, during, and after execution time.
• Programs that are similar tend to behave in similar manner too.
• Detecting program similarities may have the following

applications:
– Analyze and improve the overall performance of a set of

similar programs.
– Assist the programmer in finding code that is already

implemented instead of coding from scratch.
– Find common mistakes at designing or writing programs:

code smells.
– Detect plagiarism.

4 / 31



Motivation
Code clones

The similarity between two programs can be determined by the
amount of clones they share. There are four distinct types of them:

• Type-1: this type of clones stand for pieces of code containing
differences in the layout, spaces and comments.
• Type-2: these codes also present differences in data types and

identifiers.
• Type-3: these clone types also include additions, modifications

and deletions of lines of code.
• Type-4: represent codes that present different implementation

but the same functionality.

What to compare? source code? intermediate representations?
binary code? I/O access patterns?

5 / 31



Motivation
Code clones

The similarity between two programs can be determined by the
amount of clones they share. There are four distinct types of them:

• Type-1: this type of clones stand for pieces of code containing
differences in the layout, spaces and comments.

• Type-2: these codes also present differences in data types and
identifiers.
• Type-3: these clone types also include additions, modifications

and deletions of lines of code.
• Type-4: represent codes that present different implementation

but the same functionality.

What to compare? source code? intermediate representations?
binary code? I/O access patterns?

5 / 31



Motivation
Code clones

The similarity between two programs can be determined by the
amount of clones they share. There are four distinct types of them:

• Type-1: this type of clones stand for pieces of code containing
differences in the layout, spaces and comments.
• Type-2: these codes also present differences in data types and

identifiers.

• Type-3: these clone types also include additions, modifications
and deletions of lines of code.
• Type-4: represent codes that present different implementation

but the same functionality.

What to compare? source code? intermediate representations?
binary code? I/O access patterns?

5 / 31



Motivation
Code clones

The similarity between two programs can be determined by the
amount of clones they share. There are four distinct types of them:

• Type-1: this type of clones stand for pieces of code containing
differences in the layout, spaces and comments.
• Type-2: these codes also present differences in data types and

identifiers.
• Type-3: these clone types also include additions, modifications

and deletions of lines of code.

• Type-4: represent codes that present different implementation
but the same functionality.

What to compare? source code? intermediate representations?
binary code? I/O access patterns?

5 / 31



Motivation
Code clones

The similarity between two programs can be determined by the
amount of clones they share. There are four distinct types of them:

• Type-1: this type of clones stand for pieces of code containing
differences in the layout, spaces and comments.
• Type-2: these codes also present differences in data types and

identifiers.
• Type-3: these clone types also include additions, modifications

and deletions of lines of code.
• Type-4: represent codes that present different implementation

but the same functionality.

What to compare? source code? intermediate representations?
binary code? I/O access patterns?

5 / 31



Motivation
Code clones

The similarity between two programs can be determined by the
amount of clones they share. There are four distinct types of them:

• Type-1: this type of clones stand for pieces of code containing
differences in the layout, spaces and comments.
• Type-2: these codes also present differences in data types and

identifiers.
• Type-3: these clone types also include additions, modifications

and deletions of lines of code.
• Type-4: represent codes that present different implementation

but the same functionality.

What to compare? source code? intermediate representations?
binary code? I/O access patterns?

5 / 31



Motivation
Code clones

The similarity between two programs can be determined by the
amount of clones they share. There are four distinct types of them:

• Type-1: this type of clones stand for pieces of code containing
differences in the layout, spaces and comments.
• Type-2: these codes also present differences in data types and

identifiers.
• Type-3: these clone types also include additions, modifications

and deletions of lines of code.
• Type-4: represent codes that present different implementation

but the same functionality.

What to compare? source code? intermediate representations?
binary code? I/O access patterns?

5 / 31



2. Background



Intermediate representations (IRs)
Generalities

• The IR of a program is the central data structure in a compiler.
Around it, analysis, transformations and optimizations are
performed.

• Broad categories:

– Graphical IRs: This IR type stores the program information
in a graph-like data structure.

– Linear IRs: This IR type makes use of simple linear
sequences to store operations, similar to machine code.

– Hybrid IRs: Hybrid IRs combine elements of the previous
two categories.

• Complex compiler infrastructures might work with different
interconnected IRs, some of them closer to the source code,
others closer to the machine instruction level.

7 / 31



Intermediate representations (IRs)
Generalities

• The IR of a program is the central data structure in a compiler.
Around it, analysis, transformations and optimizations are
performed.
• Broad categories:

– Graphical IRs: This IR type stores the program information
in a graph-like data structure.

– Linear IRs: This IR type makes use of simple linear
sequences to store operations, similar to machine code.

– Hybrid IRs: Hybrid IRs combine elements of the previous
two categories.

• Complex compiler infrastructures might work with different
interconnected IRs, some of them closer to the source code,
others closer to the machine instruction level.

7 / 31



Intermediate representations (IRs)
Generalities

• The IR of a program is the central data structure in a compiler.
Around it, analysis, transformations and optimizations are
performed.
• Broad categories:

– Graphical IRs: This IR type stores the program information
in a graph-like data structure.

– Linear IRs: This IR type makes use of simple linear
sequences to store operations, similar to machine code.

– Hybrid IRs: Hybrid IRs combine elements of the previous
two categories.

• Complex compiler infrastructures might work with different
interconnected IRs, some of them closer to the source code,
others closer to the machine instruction level.

7 / 31



Intermediate representations (IRs)
Generalities

• The IR of a program is the central data structure in a compiler.
Around it, analysis, transformations and optimizations are
performed.
• Broad categories:

– Graphical IRs: This IR type stores the program information
in a graph-like data structure.

– Linear IRs: This IR type makes use of simple linear
sequences to store operations, similar to machine code.

– Hybrid IRs: Hybrid IRs combine elements of the previous
two categories.

• Complex compiler infrastructures might work with different
interconnected IRs, some of them closer to the source code,
others closer to the machine instruction level.

7 / 31



Intermediate representations (IRs)
Generalities

• The IR of a program is the central data structure in a compiler.
Around it, analysis, transformations and optimizations are
performed.
• Broad categories:

– Graphical IRs: This IR type stores the program information
in a graph-like data structure.

– Linear IRs: This IR type makes use of simple linear
sequences to store operations, similar to machine code.

– Hybrid IRs: Hybrid IRs combine elements of the previous
two categories.

• Complex compiler infrastructures might work with different
interconnected IRs, some of them closer to the source code,
others closer to the machine instruction level.

7 / 31



Intermediate representations (IRs)
Generalities

• The IR of a program is the central data structure in a compiler.
Around it, analysis, transformations and optimizations are
performed.
• Broad categories:

– Graphical IRs: This IR type stores the program information
in a graph-like data structure.

– Linear IRs: This IR type makes use of simple linear
sequences to store operations, similar to machine code.

– Hybrid IRs: Hybrid IRs combine elements of the previous
two categories.

• Complex compiler infrastructures might work with different
interconnected IRs, some of them closer to the source code,
others closer to the machine instruction level.

7 / 31



Intermediate representations (IRs)
Abstract syntax trees (ASTs)

• ASTs are a graph-based intermediate representation.

• They are defined as contractions of parse trees.
• Most non-terminal symbols are ignored.
• The precedence and the meaning of the expressions are

preserved.
• Their level of abstraction is not far from the original source code.
• In this work we used the AST from Clang, a LLVM frontend for

C/C++/Objective C programs.

How to compare these data structures? direct tree comparison?
flatten into strings? extract attribute set?

8 / 31



Intermediate representations (IRs)
Abstract syntax trees (ASTs)

• ASTs are a graph-based intermediate representation.
• They are defined as contractions of parse trees.

• Most non-terminal symbols are ignored.
• The precedence and the meaning of the expressions are

preserved.
• Their level of abstraction is not far from the original source code.
• In this work we used the AST from Clang, a LLVM frontend for

C/C++/Objective C programs.

How to compare these data structures? direct tree comparison?
flatten into strings? extract attribute set?

8 / 31



Intermediate representations (IRs)
Abstract syntax trees (ASTs)

• ASTs are a graph-based intermediate representation.
• They are defined as contractions of parse trees.
• Most non-terminal symbols are ignored.

• The precedence and the meaning of the expressions are
preserved.
• Their level of abstraction is not far from the original source code.
• In this work we used the AST from Clang, a LLVM frontend for

C/C++/Objective C programs.

How to compare these data structures? direct tree comparison?
flatten into strings? extract attribute set?

8 / 31



Intermediate representations (IRs)
Abstract syntax trees (ASTs)

• ASTs are a graph-based intermediate representation.
• They are defined as contractions of parse trees.
• Most non-terminal symbols are ignored.
• The precedence and the meaning of the expressions are

preserved.

• Their level of abstraction is not far from the original source code.
• In this work we used the AST from Clang, a LLVM frontend for

C/C++/Objective C programs.

How to compare these data structures? direct tree comparison?
flatten into strings? extract attribute set?

8 / 31



Intermediate representations (IRs)
Abstract syntax trees (ASTs)

• ASTs are a graph-based intermediate representation.
• They are defined as contractions of parse trees.
• Most non-terminal symbols are ignored.
• The precedence and the meaning of the expressions are

preserved.
• Their level of abstraction is not far from the original source code.

• In this work we used the AST from Clang, a LLVM frontend for
C/C++/Objective C programs.

How to compare these data structures? direct tree comparison?
flatten into strings? extract attribute set?

8 / 31



Intermediate representations (IRs)
Abstract syntax trees (ASTs)

• ASTs are a graph-based intermediate representation.
• They are defined as contractions of parse trees.
• Most non-terminal symbols are ignored.
• The precedence and the meaning of the expressions are

preserved.
• Their level of abstraction is not far from the original source code.
• In this work we used the AST from Clang, a LLVM frontend for

C/C++/Objective C programs.

How to compare these data structures? direct tree comparison?
flatten into strings? extract attribute set?

8 / 31



Intermediate representations (IRs)
Abstract syntax trees (ASTs)

• ASTs are a graph-based intermediate representation.
• They are defined as contractions of parse trees.
• Most non-terminal symbols are ignored.
• The precedence and the meaning of the expressions are

preserved.
• Their level of abstraction is not far from the original source code.
• In this work we used the AST from Clang, a LLVM frontend for

C/C++/Objective C programs.

How to compare these data structures? direct tree comparison?
flatten into strings? extract attribute set?

8 / 31



Intermediate representations (IRs)
Abstract syntax trees (ASTs)

• ASTs are a graph-based intermediate representation.
• They are defined as contractions of parse trees.
• Most non-terminal symbols are ignored.
• The precedence and the meaning of the expressions are

preserved.
• Their level of abstraction is not far from the original source code.
• In this work we used the AST from Clang, a LLVM frontend for

C/C++/Objective C programs.

How to compare these data structures? direct tree comparison?
flatten into strings? extract attribute set?

8 / 31



String kernels
Generalities

• Strings are a common and useful form of representing data
(e.g. DNA sequences).

• String kernels can be intuitively understood as functions
measuring the similarity of pairs of strings.
• The more similar two strings A and B are, the higher the value

of a string kernel K (A,B) will be.
• In particular, string kernels check the number of shared

substrings among a collection of strings.

9 / 31



String kernels
Generalities

• Strings are a common and useful form of representing data
(e.g. DNA sequences).
• String kernels can be intuitively understood as functions

measuring the similarity of pairs of strings.

• The more similar two strings A and B are, the higher the value
of a string kernel K (A,B) will be.
• In particular, string kernels check the number of shared

substrings among a collection of strings.

9 / 31



String kernels
Generalities

• Strings are a common and useful form of representing data
(e.g. DNA sequences).
• String kernels can be intuitively understood as functions

measuring the similarity of pairs of strings.
• The more similar two strings A and B are, the higher the value

of a string kernel K (A,B) will be.

• In particular, string kernels check the number of shared
substrings among a collection of strings.

9 / 31



String kernels
Generalities

• Strings are a common and useful form of representing data
(e.g. DNA sequences).
• String kernels can be intuitively understood as functions

measuring the similarity of pairs of strings.
• The more similar two strings A and B are, the higher the value

of a string kernel K (A,B) will be.
• In particular, string kernels check the number of shared

substrings among a collection of strings.

9 / 31



String kernels
Examples

Some kernel functions have been proposed:

• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?

10 / 31



String kernels
Examples

Some kernel functions have been proposed:
• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?

10 / 31



String kernels
Examples

Some kernel functions have been proposed:
• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?

10 / 31



String kernels
Examples

Some kernel functions have been proposed:
• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?

10 / 31



String kernels
Examples

Some kernel functions have been proposed:
• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?

10 / 31



String kernels
Examples

Some kernel functions have been proposed:
• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?

10 / 31



String kernels
Examples

Some kernel functions have been proposed:
• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?

10 / 31



String kernels
Examples

Some kernel functions have been proposed:
• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?

10 / 31



String kernels
Examples

Some kernel functions have been proposed:
• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?

10 / 31



String kernels
Examples

Some kernel functions have been proposed:
• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?

10 / 31



String kernels
Examples

Some kernel functions have been proposed:
• The bag-of-characters kernel:

– Performs single-character matching.

• The bag-of-words kernel:

– Searches for shared words among strings.

• The k -spectrum kernel:

– Counts only sub-strings of length k .

• The k -blended spectrum kernel:

– It includes all strings whose length is minor than or equal to
a given number k .

What is our contribution?
10 / 31



3. Proposed solution



Overview

1. Convert the trees into weighted strings.

2. Compress the strings in order to save some space.

3. Obtain a similarity matrix a.k.a kernel matrix using a novel string
kernel function.

4. Use a clustering algorithm to extract knowledge from the kernel
matrix.

This work extends previous research from the authors, where they
proposed a string kernel for the detection of patterns in I/O traces
• “A novel string representation and kernel function for the

comparison of I/O access patterns,” in Parallel Computing
Technologies.

12 / 31



Overview

1. Convert the trees into weighted strings.

2. Compress the strings in order to save some space.

3. Obtain a similarity matrix a.k.a kernel matrix using a novel string
kernel function.

4. Use a clustering algorithm to extract knowledge from the kernel
matrix.

This work extends previous research from the authors, where they
proposed a string kernel for the detection of patterns in I/O traces
• “A novel string representation and kernel function for the

comparison of I/O access patterns,” in Parallel Computing
Technologies.

12 / 31



Overview

1. Convert the trees into weighted strings.

2. Compress the strings in order to save some space.

3. Obtain a similarity matrix a.k.a kernel matrix using a novel string
kernel function.

4. Use a clustering algorithm to extract knowledge from the kernel
matrix.

This work extends previous research from the authors, where they
proposed a string kernel for the detection of patterns in I/O traces
• “A novel string representation and kernel function for the

comparison of I/O access patterns,” in Parallel Computing
Technologies.

12 / 31



Overview

1. Convert the trees into weighted strings.

2. Compress the strings in order to save some space.

3. Obtain a similarity matrix a.k.a kernel matrix using a novel string
kernel function.

4. Use a clustering algorithm to extract knowledge from the kernel
matrix.

This work extends previous research from the authors, where they
proposed a string kernel for the detection of patterns in I/O traces
• “A novel string representation and kernel function for the

comparison of I/O access patterns,” in Parallel Computing
Technologies.

12 / 31



Overview

1. Convert the trees into weighted strings.

2. Compress the strings in order to save some space.

3. Obtain a similarity matrix a.k.a kernel matrix using a novel string
kernel function.

4. Use a clustering algorithm to extract knowledge from the kernel
matrix.

This work extends previous research from the authors, where they
proposed a string kernel for the detection of patterns in I/O traces
• “A novel string representation and kernel function for the

comparison of I/O access patterns,” in Parallel Computing
Technologies.

12 / 31



Overview

1. Convert the trees into weighted strings.

2. Compress the strings in order to save some space.

3. Obtain a similarity matrix a.k.a kernel matrix using a novel string
kernel function.

4. Use a clustering algorithm to extract knowledge from the kernel
matrix.

This work extends previous research from the authors, where they
proposed a string kernel for the detection of patterns in I/O traces
• “A novel string representation and kernel function for the

comparison of I/O access patterns,” in Parallel Computing
Technologies.

12 / 31



From trees to strings

a) AST. b) Extracted tokens.

13 / 31



Compression of the string

1. Similar consecutive tokens:

– [BinaryOp]1[BinaryOp]1[BinaryOp]1[BinaryOp]1

↓
[BinaryOperator]4

2. Delete specific tokens:

– [CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1

[DeclRefExpr]1

↓
[DeclRefExpr]4

3. Simplify declaration tokens:

– [DeclStmt]1[VarDecl]1[DeclRefExpr]1[LEVEL_UP]4

↓
[DeclStmt]3 [LEVEL_UP]4

4. Compress in pairs:

– [IntegerLiteral]1[LEVEL_UP]5 [IntegerLiteral]1[LEVEL_UP]2

↓
[IntegerLiteral]2[LEVEL_UP]7

14 / 31



Compression of the string

1. Similar consecutive tokens:
– [BinaryOp]1[BinaryOp]1[BinaryOp]1[BinaryOp]1

↓
[BinaryOperator]4

2. Delete specific tokens:

– [CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1

[DeclRefExpr]1

↓
[DeclRefExpr]4

3. Simplify declaration tokens:

– [DeclStmt]1[VarDecl]1[DeclRefExpr]1[LEVEL_UP]4

↓
[DeclStmt]3 [LEVEL_UP]4

4. Compress in pairs:

– [IntegerLiteral]1[LEVEL_UP]5 [IntegerLiteral]1[LEVEL_UP]2

↓
[IntegerLiteral]2[LEVEL_UP]7

14 / 31



Compression of the string

1. Similar consecutive tokens:
– [BinaryOp]1[BinaryOp]1[BinaryOp]1[BinaryOp]1

↓
[BinaryOperator]4

2. Delete specific tokens:

– [CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1

[DeclRefExpr]1

↓
[DeclRefExpr]4

3. Simplify declaration tokens:

– [DeclStmt]1[VarDecl]1[DeclRefExpr]1[LEVEL_UP]4

↓
[DeclStmt]3 [LEVEL_UP]4

4. Compress in pairs:

– [IntegerLiteral]1[LEVEL_UP]5 [IntegerLiteral]1[LEVEL_UP]2

↓
[IntegerLiteral]2[LEVEL_UP]7

14 / 31



Compression of the string

1. Similar consecutive tokens:
– [BinaryOp]1[BinaryOp]1[BinaryOp]1[BinaryOp]1

↓
[BinaryOperator]4

2. Delete specific tokens:
– [CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1

[DeclRefExpr]1

↓
[DeclRefExpr]4

3. Simplify declaration tokens:

– [DeclStmt]1[VarDecl]1[DeclRefExpr]1[LEVEL_UP]4

↓
[DeclStmt]3 [LEVEL_UP]4

4. Compress in pairs:

– [IntegerLiteral]1[LEVEL_UP]5 [IntegerLiteral]1[LEVEL_UP]2

↓
[IntegerLiteral]2[LEVEL_UP]7

14 / 31



Compression of the string

1. Similar consecutive tokens:
– [BinaryOp]1[BinaryOp]1[BinaryOp]1[BinaryOp]1

↓
[BinaryOperator]4

2. Delete specific tokens:
– [CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1

[DeclRefExpr]1

↓
[DeclRefExpr]4

3. Simplify declaration tokens:

– [DeclStmt]1[VarDecl]1[DeclRefExpr]1[LEVEL_UP]4

↓
[DeclStmt]3 [LEVEL_UP]4

4. Compress in pairs:

– [IntegerLiteral]1[LEVEL_UP]5 [IntegerLiteral]1[LEVEL_UP]2

↓
[IntegerLiteral]2[LEVEL_UP]7

14 / 31



Compression of the string

1. Similar consecutive tokens:
– [BinaryOp]1[BinaryOp]1[BinaryOp]1[BinaryOp]1

↓
[BinaryOperator]4

2. Delete specific tokens:
– [CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1

[DeclRefExpr]1

↓
[DeclRefExpr]4

3. Simplify declaration tokens:
– [DeclStmt]1[VarDecl]1[DeclRefExpr]1[LEVEL_UP]4

↓
[DeclStmt]3 [LEVEL_UP]4

4. Compress in pairs:

– [IntegerLiteral]1[LEVEL_UP]5 [IntegerLiteral]1[LEVEL_UP]2

↓
[IntegerLiteral]2[LEVEL_UP]7

14 / 31



Compression of the string

1. Similar consecutive tokens:
– [BinaryOp]1[BinaryOp]1[BinaryOp]1[BinaryOp]1

↓
[BinaryOperator]4

2. Delete specific tokens:
– [CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1

[DeclRefExpr]1

↓
[DeclRefExpr]4

3. Simplify declaration tokens:
– [DeclStmt]1[VarDecl]1[DeclRefExpr]1[LEVEL_UP]4

↓
[DeclStmt]3 [LEVEL_UP]4

4. Compress in pairs:

– [IntegerLiteral]1[LEVEL_UP]5 [IntegerLiteral]1[LEVEL_UP]2

↓
[IntegerLiteral]2[LEVEL_UP]7

14 / 31



Compression of the string

1. Similar consecutive tokens:
– [BinaryOp]1[BinaryOp]1[BinaryOp]1[BinaryOp]1

↓
[BinaryOperator]4

2. Delete specific tokens:
– [CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1

[DeclRefExpr]1

↓
[DeclRefExpr]4

3. Simplify declaration tokens:
– [DeclStmt]1[VarDecl]1[DeclRefExpr]1[LEVEL_UP]4

↓
[DeclStmt]3 [LEVEL_UP]4

4. Compress in pairs:
– [IntegerLiteral]1[LEVEL_UP]5 [IntegerLiteral]1[LEVEL_UP]2

↓
[IntegerLiteral]2[LEVEL_UP]7

14 / 31



KastX spectrum kernel family
Definitions

Having two strings A and B:

1. The algorithm requires a minimum weight or “cut weight” value
as parameter.

2. The aim is to find the longest matching substrings of A and B,
whose weights are greater than or equal to the cut weight. They
are called valid matching substrings.

3. A valid matching substring can appear more than once in each
string.

4. A valid matching substring must not be a substring of another
valid matching substring in at least one of the original strings.

15 / 31



KastX spectrum kernel family
Definitions

Having two strings A and B:

1. The algorithm requires a minimum weight or “cut weight” value
as parameter.

2. The aim is to find the longest matching substrings of A and B,
whose weights are greater than or equal to the cut weight. They
are called valid matching substrings.

3. A valid matching substring can appear more than once in each
string.

4. A valid matching substring must not be a substring of another
valid matching substring in at least one of the original strings.

15 / 31



KastX spectrum kernel family
Definitions

Having two strings A and B:

1. The algorithm requires a minimum weight or “cut weight” value
as parameter.

2. The aim is to find the longest matching substrings of A and B,
whose weights are greater than or equal to the cut weight. They
are called valid matching substrings.

3. A valid matching substring can appear more than once in each
string.

4. A valid matching substring must not be a substring of another
valid matching substring in at least one of the original strings.

15 / 31



KastX spectrum kernel family
Definitions

Having two strings A and B:

1. The algorithm requires a minimum weight or “cut weight” value
as parameter.

2. The aim is to find the longest matching substrings of A and B,
whose weights are greater than or equal to the cut weight. They
are called valid matching substrings.

3. A valid matching substring can appear more than once in each
string.

4. A valid matching substring must not be a substring of another
valid matching substring in at least one of the original strings.

15 / 31



KastX spectrum kernel family
Definitions

Having two strings A and B:

1. The algorithm requires a minimum weight or “cut weight” value
as parameter.

2. The aim is to find the longest matching substrings of A and B,
whose weights are greater than or equal to the cut weight. They
are called valid matching substrings.

3. A valid matching substring can appear more than once in each
string.

4. A valid matching substring must not be a substring of another
valid matching substring in at least one of the original strings.

15 / 31



KastX spectrum kernel family
An example with cut weight = 4

a) S1 is the largest substring found on both examples.

b) S2 appears once as an independent case.

c) S3 appears twice as an independent case.

16 / 31



KastX spectrum kernel family
An example with cut weight = 4

a) S1 is the largest substring found on both examples.

b) S2 appears once as an independent case.

c) S3 appears twice as an independent case.

16 / 31



KastX spectrum kernel family
An example with cut weight = 4

a) S1 is the largest substring found on both examples.

b) S2 appears once as an independent case.

c) S3 appears twice as an independent case.

16 / 31



Kast1 spectrum kernel
Description

The kast1 spectrum kernel has the following definition:

• Each valid matching substring embeds a new feature for A and
B.
• The similarity value corresponds to the inner product of the new

feature vectors of A and B.
• This kernel uses only the weight of the independent valid

matching substrings.
• If the string does not present an independent occurrence of a

particular valid matching substring, the feature value is set to 1,
to avoid zero values when calculating the inner product.

17 / 31



Kast1 spectrum kernel
Description

The kast1 spectrum kernel has the following definition:
• Each valid matching substring embeds a new feature for A and

B.

• The similarity value corresponds to the inner product of the new
feature vectors of A and B.
• This kernel uses only the weight of the independent valid

matching substrings.
• If the string does not present an independent occurrence of a

particular valid matching substring, the feature value is set to 1,
to avoid zero values when calculating the inner product.

17 / 31



Kast1 spectrum kernel
Description

The kast1 spectrum kernel has the following definition:
• Each valid matching substring embeds a new feature for A and

B.
• The similarity value corresponds to the inner product of the new

feature vectors of A and B.

• This kernel uses only the weight of the independent valid
matching substrings.
• If the string does not present an independent occurrence of a

particular valid matching substring, the feature value is set to 1,
to avoid zero values when calculating the inner product.

17 / 31



Kast1 spectrum kernel
Description

The kast1 spectrum kernel has the following definition:
• Each valid matching substring embeds a new feature for A and

B.
• The similarity value corresponds to the inner product of the new

feature vectors of A and B.
• This kernel uses only the weight of the independent valid

matching substrings.

• If the string does not present an independent occurrence of a
particular valid matching substring, the feature value is set to 1,
to avoid zero values when calculating the inner product.

17 / 31



Kast1 spectrum kernel
Description

The kast1 spectrum kernel has the following definition:
• Each valid matching substring embeds a new feature for A and

B.
• The similarity value corresponds to the inner product of the new

feature vectors of A and B.
• This kernel uses only the weight of the independent valid

matching substrings.
• If the string does not present an independent occurrence of a

particular valid matching substring, the feature value is set to 1,
to avoid zero values when calculating the inner product.

17 / 31



Kast1 spectrum kernel: an example (I)
New feature vector for A

weight_k1w≥4(S1)A = 19 (1)

weight_k1w≥4(S2)A = 6 (2)

weight_k1w≥4(S3)A = 9 (3)

f1w≥4(A) = {19, 6, 9} (4)

18 / 31



Kast1 spectrum kernel: an example (I)
New feature vector for A

weight_k1w≥4(S1)A = 19 (1)

weight_k1w≥4(S2)A = 6 (2)

weight_k1w≥4(S3)A = 9 (3)

f1w≥4(A) = {19, 6, 9} (4)

18 / 31



Kast1 spectrum kernel: an example (I)
New feature vector for A

weight_k1w≥4(S1)A = 19 (1)

weight_k1w≥4(S2)A = 6 (2)

weight_k1w≥4(S3)A = 9 (3)

f1w≥4(A) = {19, 6, 9} (4)

18 / 31



Kast1 spectrum kernel: an example (I)
New feature vector for A

weight_k1w≥4(S1)A = 19 (1)

weight_k1w≥4(S2)A = 6 (2)

weight_k1w≥4(S3)A = 9 (3)

f1w≥4(A) = {19, 6, 9} (4)

18 / 31



Kast1 spectrum kernel: an example (I)
New feature vector for A

weight_k1w≥4(S1)A = 19 (1)

weight_k1w≥4(S2)A = 6 (2)

weight_k1w≥4(S3)A = 9 (3)

f1w≥4(A) = {19, 6, 9} (4)
18 / 31



Kast1 spectrum kernel: an example (II)
New feature vector for B

weight_k1w≥4(S1)B = 17 + 18 = 35 (5)

weight_k1w≥4(S2)B = 1 (6)

weight_k1w≥4(S3)B = 6 (7)

f1w≥4(B) = {35, 1, 6} (8)

19 / 31



Kast1 spectrum kernel: an example (II)
New feature vector for B

weight_k1w≥4(S1)B = 17 + 18 = 35 (5)

weight_k1w≥4(S2)B = 1 (6)

weight_k1w≥4(S3)B = 6 (7)

f1w≥4(B) = {35, 1, 6} (8)

19 / 31



Kast1 spectrum kernel: an example (II)
New feature vector for B

weight_k1w≥4(S1)B = 17 + 18 = 35 (5)

weight_k1w≥4(S2)B = 1 (6)

weight_k1w≥4(S3)B = 6 (7)

f1w≥4(B) = {35, 1, 6} (8)

19 / 31



Kast1 spectrum kernel: an example (II)
New feature vector for B

weight_k1w≥4(S1)B = 17 + 18 = 35 (5)

weight_k1w≥4(S2)B = 1 (6)

weight_k1w≥4(S3)B = 6 (7)

f1w≥4(B) = {35, 1, 6} (8)

19 / 31



Kast1 spectrum kernel: an example (II)
New feature vector for B

weight_k1w≥4(S1)B = 17 + 18 = 35 (5)

weight_k1w≥4(S2)B = 1 (6)

weight_k1w≥4(S3)B = 6 (7)

f1w≥4(B) = {35, 1, 6} (8)
19 / 31



Kast1 spectrum kernel: an example (III)
Similarity calculation

k1w≥4(A,B) = 〈{19, 6, 9}, {35, 1, 6}〉 = 725 (9)

k̄1w≥4(A,B) =
725√

k1w≥4(A,A)× k1w≥4(B,B)
(10)

k̄1w≥4(A,B) =
725

64× 52
(11)

k̄1w≥4(A,B) =
725
3328

(12)

k̄1w≥4(A,B) ≈ 0.2178 (13)

According to this kernel, Strings A and B are approximately 21.78%
similar.

20 / 31



Kast1 spectrum kernel: an example (III)
Similarity calculation

k1w≥4(A,B) = 〈{19, 6, 9}, {35, 1, 6}〉 = 725 (9)

k̄1w≥4(A,B) =
725√

k1w≥4(A,A)× k1w≥4(B,B)
(10)

k̄1w≥4(A,B) =
725

64× 52
(11)

k̄1w≥4(A,B) =
725
3328

(12)

k̄1w≥4(A,B) ≈ 0.2178 (13)

According to this kernel, Strings A and B are approximately 21.78%
similar.

20 / 31



Kast1 spectrum kernel: an example (III)
Similarity calculation

k1w≥4(A,B) = 〈{19, 6, 9}, {35, 1, 6}〉 = 725 (9)

k̄1w≥4(A,B) =
725√

k1w≥4(A,A)× k1w≥4(B,B)
(10)

k̄1w≥4(A,B) =
725

64× 52
(11)

k̄1w≥4(A,B) =
725
3328

(12)

k̄1w≥4(A,B) ≈ 0.2178 (13)

According to this kernel, Strings A and B are approximately 21.78%
similar.

20 / 31



Kast1 spectrum kernel: an example (III)
Similarity calculation

k1w≥4(A,B) = 〈{19, 6, 9}, {35, 1, 6}〉 = 725 (9)

k̄1w≥4(A,B) =
725√

k1w≥4(A,A)× k1w≥4(B,B)
(10)

k̄1w≥4(A,B) =
725

64× 52
(11)

k̄1w≥4(A,B) =
725
3328

(12)

k̄1w≥4(A,B) ≈ 0.2178 (13)

According to this kernel, Strings A and B are approximately 21.78%
similar.

20 / 31



Kast1 spectrum kernel: an example (III)
Similarity calculation

k1w≥4(A,B) = 〈{19, 6, 9}, {35, 1, 6}〉 = 725 (9)

k̄1w≥4(A,B) =
725√

k1w≥4(A,A)× k1w≥4(B,B)
(10)

k̄1w≥4(A,B) =
725

64× 52
(11)

k̄1w≥4(A,B) =
725
3328

(12)

k̄1w≥4(A,B) ≈ 0.2178 (13)

According to this kernel, Strings A and B are approximately 21.78%
similar.

20 / 31



Kast1 spectrum kernel: an example (III)
Similarity calculation

k1w≥4(A,B) = 〈{19, 6, 9}, {35, 1, 6}〉 = 725 (9)

k̄1w≥4(A,B) =
725√

k1w≥4(A,A)× k1w≥4(B,B)
(10)

k̄1w≥4(A,B) =
725

64× 52
(11)

k̄1w≥4(A,B) =
725
3328

(12)

k̄1w≥4(A,B) ≈ 0.2178 (13)

According to this kernel, Strings A and B are approximately 21.78%
similar.

20 / 31



4. Evaluation



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:

• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.

– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.

– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.

– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.

– Bag-of-sentences kernel.
• (B) Sort functions.

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.
– Bubble sort.

– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.
– Bubble sort.
– Insert sort.

– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.
– Bubble sort.
– Insert sort.
– Selection sort.

– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.
– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.

– Merge sort.

22 / 31



Experiment configuration
Code samples (I)

20 functions X 5 versions(Original, Type-1, Type-2, Type-3 and
Type-4 clones) classified as follows:
• (A) Matching functions.

– K-spectrum kernel.
– Blended spectrum.
– Bag-of-characters kernel.
– Bag-of-words kernel.
– Bag-of-sentences kernel.

• (B) Sort functions.
– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

22 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.

– Compact stencil.
– Side stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.

– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.

– Side stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.

– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.
– Side stencil.

– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.

– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.
– Side stencil.
– Edge stencil.

– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.

– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.
– Side stencil.
– Edge stencil.
– Vertex stencil.

– Non-compact stencil 1 layer.
• (D) 2D stencils.

– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.
– Side stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.

– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.
– Side stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.

– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.
– Side stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.
– Compact stencil.

– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.
– Side stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.
– Compact stencil.
– Edge stencil.

– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.
– Side stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.
– Compact stencil.
– Edge stencil.
– Vertex stencil.

– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.
– Side stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.
– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Code samples (II)

• (C) 3D stencils.
– Compact stencil.
– Side stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.

• (D) 2D stencils.
– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

23 / 31



Experiment configuration
Other setups

• The selected cut weight values were the following:
– {20, 21, ..., 2k} : k = 9.

• The clustering algorithm here used was:
– Hierarchical Clustering.

24 / 31



Baseline kernel 1
Blended spectrum kernel

Cut weight = 16.

25 / 31



Baseline kernel 2 (previous work)
Kast spectrum kernel

Cut weight = 64.

26 / 31



Proposed kernel
Kast1 spectrum kernel

Cut weight = 16.

27 / 31



5. Conclusions and Future
Work



Conclusions

• The proposed kast1 spectrum kernel and the kast spectrum
kernel had similar clustering performance.

• They showed a consistent formation of three clusters: matching
functions, sorting functions and stencils (3D and 2D).
• They yielded better results than the blended spectrum kernel as

the clustering showed no misplaced examples.
• This indicates that this novel comparison method can be

promisingly utilized to find similarities in source code snippets.

29 / 31



Conclusions

• The proposed kast1 spectrum kernel and the kast spectrum
kernel had similar clustering performance.
• They showed a consistent formation of three clusters: matching

functions, sorting functions and stencils (3D and 2D).

• They yielded better results than the blended spectrum kernel as
the clustering showed no misplaced examples.
• This indicates that this novel comparison method can be

promisingly utilized to find similarities in source code snippets.

29 / 31



Conclusions

• The proposed kast1 spectrum kernel and the kast spectrum
kernel had similar clustering performance.
• They showed a consistent formation of three clusters: matching

functions, sorting functions and stencils (3D and 2D).
• They yielded better results than the blended spectrum kernel as

the clustering showed no misplaced examples.

• This indicates that this novel comparison method can be
promisingly utilized to find similarities in source code snippets.

29 / 31



Conclusions

• The proposed kast1 spectrum kernel and the kast spectrum
kernel had similar clustering performance.
• They showed a consistent formation of three clusters: matching

functions, sorting functions and stencils (3D and 2D).
• They yielded better results than the blended spectrum kernel as

the clustering showed no misplaced examples.
• This indicates that this novel comparison method can be

promisingly utilized to find similarities in source code snippets.

29 / 31



Future work

• Automatic selection of the cut weight.

• Analysis of the intra-cluster distances between clone types.
• Comparison against a tree kernel applied directly over the

ASTs.
• Study the linear intermediate representation delivered by the

LLVM Compiler Infrastructure.

30 / 31



Future work

• Automatic selection of the cut weight.
• Analysis of the intra-cluster distances between clone types.

• Comparison against a tree kernel applied directly over the
ASTs.
• Study the linear intermediate representation delivered by the

LLVM Compiler Infrastructure.

30 / 31



Future work

• Automatic selection of the cut weight.
• Analysis of the intra-cluster distances between clone types.
• Comparison against a tree kernel applied directly over the

ASTs.

• Study the linear intermediate representation delivered by the
LLVM Compiler Infrastructure.

30 / 31



Future work

• Automatic selection of the cut weight.
• Analysis of the intra-cluster distances between clone types.
• Comparison against a tree kernel applied directly over the

ASTs.
• Study the linear intermediate representation delivered by the

LLVM Compiler Infrastructure.

30 / 31



Thanks!


	Motivation
	Background
	Intermediate representations
	String kernels

	Proposed solution
	Creating strings from ASTs
	Finding similarities with a novel string kernel

	Evaluation
	Experiment configuration
	Blended spectrum kernel
	Kast spectrum kernel
	Kast1 spectrum kernel

	Conclusions and future work

