
An MPI-IO In-Memory Driver for

Non-Volatile Pooled Memory of the Kove® XPD

Julian M. Kunkel, Eugen Betke

German Climate Computing Center

2017-05-22



Introduction MPI-IO Driver Evaluation Conclusion

Group Wissenschaftliches Rechnen (Scientific Computing)

Composed of DKRZ research division and Universität Hamburg research group

Research

Analysis of parallel I/O

I/O & energy tracing tools

Middleware optimization

Alternative I/O interfaces

Data reduction techniques

Cost & energy efficiency

Julian M. Kunkel 2 / 24



Introduction MPI-IO Driver Evaluation Conclusion

1 Introduction
In-Memory Storage

2 MPI-IO Driver
KDSA-API
MPI-IO Driver

3 Evaluation
Test Environment
Results
1. Scaling Clients
2. Scale-out Performance on 14 Nodes
3. Performance Variability: Overview
4. Open/Close Times

4 Conclusion

Julian M. Kunkel 3 / 24



Introduction MPI-IO Driver Evaluation Conclusion

In-Memory Storage

In-memory storage offers high troughput and low latency

The Kove XPD is an example of a scalable in-memory storage system

Kove XPD Specifications [xpdspecs]

Source: Kove XPD L3 datasheet [1]

Capacity 64GB — 1.5TB per 1U unit, mesh connectable for larger capacities
Bandwidth 27+ GB/sec (12 µs latency and 100 ns variance), sustained
IOPS 43+ million (3.0 µs latency and 100 ns variance), sustained
Response Time <2.5 µs, random, consistent, sustainable for any time duration
Data Protection - Multiple modes for de-staging data from RAM onto persistent media

- Integrated instant copying
- Integrated monitoring logic for system health management and UPS

Julian M. Kunkel 4 / 24



Introduction MPI-IO Driver Evaluation Conclusion

Storage Access

The XPD offers various storage access methods

Block device

Can be used as ordinary block device, e.g., with EXT4
Needs (slow) cluster file systems on top for shared access

Remote memory

L4 network cache – pooled memory
Memory allocation functions can be replaced by using LD_PRELOAD.

Direct access

Native I/O library: KDSA-API (Kove Direct Storage Access)
Fastest access to XPDs

But none of these access methods provides a shared storage

Julian M. Kunkel 5 / 24



Introduction MPI-IO Driver Evaluation Conclusion

Contribution

Goals

Provide an MPI-IO implementation for the pooled memory of the XPD

Offering shared and parallel file access

Investigate the performance of the developed MPI-IO driver

See if we can saturate the available network bandwidth
Evaluate the benefit of the approach for applications using NetCDF/HDF5

Approach

Use the KDSA-API to implement an PMPI library to support arbitrary MPI

Julian M. Kunkel 6 / 24



Introduction MPI-IO Driver Evaluation Conclusion

Outline

1 Introduction

2 MPI-IO Driver
KDSA-API
MPI-IO Driver

3 Evaluation

4 Conclusion

Julian M. Kunkel 7 / 24



Introduction MPI-IO Driver Evaluation Conclusion

KDSA-API

Can access XPD as virtual address space

Connect syntax: <local address>/<server>.<link>:<volume ID>
Multiple volumes and client or server links can be aggregated

Send and receive data using write/read calls by utilizing RDMA

Synchronous or asynchronous data transfer

Memory can be pre-registered for use with the Infiniband HCA

Julian M. Kunkel 8 / 24



Introduction MPI-IO Driver Evaluation Conclusion

MPI-IO Driver I

The MPI-IO Driver1

is built on top of the KDSA-API
implements many MPI-IO functions
is implemented as a shared library and usable with any MPI
can be selected at startup of an application using LD_PRELOAD
checks the file name for the prefix “xpd:”

without the prefix, it routes the accesses to the underlying MPI
⇒ files can be selectively stored on XPD volumes

There is no cache on client side (needed)!

1 Repository: http://github.com/JulianKunkel/XPD-MPIIO-driver

Julian M. Kunkel 9 / 24

http://github.com/JulianKunkel/XPD-MPIIO-driver


Introduction MPI-IO Driver Evaluation Conclusion

MPI-IO Driver II

Limitations
The KDSA calls for unregistered memory are used

because memory regions of I/O calls are usually unknown

this implies registration overhead to the IB card

MPI_Open()/close calls establish/destroy Infiniband connections

this implies overhead to these calls

but: offers the freedom to choose the volumes/required parallelism on a file basis

File views are only partially supported (as needed by NetCDF4/HDF5)

Julian M. Kunkel 10 / 24



Introduction MPI-IO Driver Evaluation Conclusion

Outline

1 Introduction

2 MPI-IO Driver

3 Evaluation
Test Environment
Results
1. Scaling Clients
2. Scale-out Performance on 14 Nodes
3. Performance Variability: Overview
4. Open/Close Times

4 Conclusion
Julian M. Kunkel 11 / 24



Introduction MPI-IO Driver Evaluation Conclusion

Test Environment

Cooley

ALCF’s Mira visualization cluster
126 compute nodes
3x XPDs with 14 FDR connections

⇒ Peak: 70+ GiB/s
GPFS storage system

Mistral

DKRZs supercomputer
3000 compute nodes
FDR interconnect
Lustre storage (54 PByte)

Two file systems
Peak transfer rate 370 GiB/s

Cooley XPDs [Kove]

Julian M. Kunkel 12 / 24



Introduction MPI-IO Driver Evaluation Conclusion

Experiments

Benchmarks

IOR

Barriers between the phases are used to synchronize the processes
Patterns: shared file, random and sequential

IO-Model-Test: Measures latencies for 1 thread

Conducted experiments

1 Scaling clients with 14 connections each

2 Scale-out performance on 14 nodes with the number of connections

3 Variability of performance

4 Open/close time

For some experiments: a comparision to Lustre (nearly-exclusive) + GPFS

Julian M. Kunkel 13 / 24



Introduction MPI-IO Driver Evaluation Conclusion

Overview of the Results

About 7500 different experiments

random/sequential I/O
read/write I/O
different blocksizes, NN, PPN, . . .

Observations

Independent from parameters:
read ≈ write
Near network bandwidth

With open/close() time, 10% lower

But files are small < 100 GB
⇒ We report only actual I/O time

Julian M. Kunkel 14 / 24



Introduction MPI-IO Driver Evaluation Conclusion

1. Scaling Clients Varying Node Count, PPN, Block Size

Julian M. Kunkel 15 / 24



Introduction MPI-IO Driver Evaluation Conclusion

Performance Map for Reads

16 KiB and 1 MiB accesses (beware the color scaling)
Julian M. Kunkel 16 / 24



Introduction MPI-IO Driver Evaluation Conclusion

2. Scale-out Performance on 14 Nodes

Constant: 14 compute nodes

Variable: PPN and number of connections

Read performance (write similarly)

(a) Blocksize: 16KiB (b) Blocksize: 100KByte (c) Blocksize: 10MiB

Isolines for multiples of 5000MiB/s are shown

Julian M. Kunkel 17 / 24



Introduction MPI-IO Driver Evaluation Conclusion

3. Performance Variability: Overview

Density of the variability across all conducted experiments
Subtracting (max-min) for each configuration
Three measurements have been made

(a) XPD on Cooley (b) Lustre on Mistral

Julian M. Kunkel 18 / 24



Introduction MPI-IO Driver Evaluation Conclusion

V
a
ri

a
b
ili

ty
1

6
K

iB

(a) sequential read (b) sequential write

(a) random read (b) random write
Julian M. Kunkel 19 / 24



Introduction MPI-IO Driver Evaluation Conclusion

V
a
ri

a
b
ili

ty
1

M
iB

(a) sequential read (b) sequential write

(a) random read (b) random write
Julian M. Kunkel 20 / 24



Introduction MPI-IO Driver Evaluation Conclusion

V
a
ri

a
b
ili

ty
1

0
M

iB

(a) sequential read (b) sequential write

(a) random read (b) random write
Julian M. Kunkel 21 / 24



Introduction MPI-IO Driver Evaluation Conclusion

Mean Performance for the Variability Test

Table shows the mean harmonic performance (performance of mean time)
Individual operations of GPFS and Lustre faster sometimes

Mean is still worse!
Reason: A few very slow operations (barely seen on the figures)

Size Type Read Write
XPD GPFS Lustre XPD GPFS Lustre

16 KiB seq 707.8 659.8 522.0 709.8 533.0 778.0
100k seq 1653.8 1139.2 1082.2 1773.3 611.7 927.7
1 MiB seq 1837.3 1062.5 996.2 1768.2 629.8 965.9

10 MiB seq 3401.7 928.3 994.3 3274.3 742.3 916.9

16 KiB rnd 676.8 1.2 1.5 600.4 71.7 20.6
100k rnd 1538.5 4.7 9.2 1636.1 346.7 80.6
1 MiB rnd 2052.6 29.6 49.2 1967.1 184.6 157.6

10 MiB rnd 3456.6 301.2 277.6 3335.6 430.0 352.1

Variability test: mean performance in MiB/s over the runtime

Julian M. Kunkel 22 / 24



Introduction MPI-IO Driver Evaluation Conclusion

4. Open/Close Times

Analyzing the open/close times for all conducted experiments

(a) XPD on Cooley (b) Lustre on Mistral

MPI-IO opening times including fitting curves for PPN ∈ {1,2,3,5,8,12}

Julian M. Kunkel 23 / 24



Introduction MPI-IO Driver Evaluation Conclusion

Summary

Read performance ≈ write performance

Random I/O ≈ sequential I/O

Scalable performance in terms of client node and number of connections

For small blocksizes: bottlenecks are CPU and network latency

Excellent access time variability

Open/close times reduce mean performance; does not matter for large files

We also did measurements for NetCDF: also good performance

Julian M. Kunkel 24 / 24



References

1 http://kove.net/downloads/Kove-XPD-L3-datasheet.pdf

Julian M. Kunkel 25 / 24

http://kove.net/downloads/Kove-XPD-L3-datasheet.pdf

	Introduction
	In-Memory Storage

	MPI-IO Driver
	KDSA-API
	MPI-IO Driver

	Evaluation
	Test Environment
	Results
	1. Scaling Clients
	2. Scale-out Performance on 14 Nodes
	3. Performance Variability: Overview
	4. Open/Close Times

	Conclusion
	Appendix

