Decoupling the Selection of Compression Algorithms from Required Precision with the Scientific Compression Library (SCIL)

Julian Kunkel, Eugen Betke, Anastasiia Novikova, Armin Schaare

Scientific Computing Department of Informatics University of Hamburg

ISC HPC Project Poster Presentation 2017-06-20

AIMES Project	SCIL	

Outline

1 AIMES Project

2 SCIL

Goals of the AIMES Project

Address key issues of icosahedral earth-system models

- Enhance programmability and performance-portability
- Overcome storage limitations
- Shared benchmark for these models

0		●000	00000
Go	als for Compression		
	Goal: Design of domain-specific c	compression (ratio > 10 : 1)	_

Approach

- I Investigate metrics allowing to define accuracy per variable
- 2 Design user-interfaces for specifying accuracy
- 3 Implement compression schemes exploiting this knowledge
- 4 Develop a methodology for identifying the required accuracy

SCIL: Scientific Compression Interface Library

- Realizes user-interfaces
- Metacompressor providing many algorithms
- Ongoing work: Enable SCIL to select best-fitting algorithm
- https://github.com/JulianKunkel/scil

AIMES Project	SCIL	Results
	0000	

SCIL: Supported User-Space Quantities

Quantities defining the residual (error):

absolute tolerance: compressed can become true value \pm absolute tolerance relative tolerance: percentage the compressed value can deviate from true value relative error finest tolerance: value definining the absolute tolerable error for relative compression for values around 0

significant digits: number of significant decimal digits significant bits: number of significant decimals in bits field conservation: limits the sum (mean) of field's change

Quantities defining the performance behavior: compression throughput decompression throughput

■ in MiB or GiB, or relative to network or storage speed

MES Project	SCIL	
	0000	00000

Architecture of SCIL

- Contains tools to
 - Create random patterns, compress/decompress, add noise, plot
- HDF5 and NetCDF4 integration
- Library offers
 - Automatic algorithm selection (under development)
 - Flexible compression chain:

Example Synthetic Data

Simplex (options 206, 2D: 100x100 points)

Right picture compressed with Sigbits 3bits (ratio 11.3:1)

AIMES Project	SCIL	Results
0	0000	0000

Analyzing Performance of Lossy Compression using SCIL

An initial experiment is conducted with SCIL

Data

- Single precision (1+8+23 bits)
- Synthetic, generated by SCIL's pattern lib.
 - e.g., Random, Steps, Sinus, Simplex
- Data of the variables created by ECHAM
 - The climate model creates up to 123 vars

Experiments

- Single thread, 10 repeats
- Lossless (memcopy and lz4)
- Lossy compression with significant bits (zfp, sigbits, sigbits+lz4)
- Lossy compression with absolute tolerance (zfp, sz, abstol, abstol+lz4)
 - Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of the data maximum value

Julian M. Kunkel

AIMES

Tolerance-Based Results

- Mean compression factor across all scientific files
- Factor 50:1 means space is reduced to 2% of the original size
- Note that ZFP does not always reach the set precision

Often the absolute and precision bit tolerance cannot be met

AIMES Project o			SCIL 0000		Results 00●00
Comparing	; Algorithn	ns for	the Scient	ific Files	
			Through	put [MiB/s]	
	Algorithm	Ratio	Compression	Decompression	

:	zfp-precision	0.299	155	>	252	
Table: P	reserving 9	precision	bits (instead	of 23	from float)	< 0.56

462

227

615

479

0.448

0.228

		Throughput [MiB/s]		
Algorithm	Ratio	Compression	Decompression	
abstol	0.19	260	456	
abstol,lz4	0.062	196	400	
SZ	0.078	81	169	
zfp-abstol	0.239	185	301	

Table: For absolute tolerance with 1% of max value < 0.22

sigbits

sigbits, lz4

AIMES Project	SCIL	Results
		00000

Results for Absolute Tolerance

Comparing algorithms using an absolute tolerance of 1% of the maximum value

AIMES Project	SCIL	Results
0	0000	00000

Acknowledgement

This work was supported in part by the German Research Foundation (DFG) through the Priority Programme 1648 "Software for Exascale Computing" (SPPEXA) (GZ: LU 1353/11-1).

We thank Luis Kornblüh from the Max Planck Institute for Meteorology for providing the ECHAM6 data.

