Big Data Analytics
Lecture BigData Analytics

Julian M. Kunkel
julian.kunkel@googlemail.com

University of Hamburg / German Climate Computing Center (DKRZ)

2017-06-08

Disclaimer: Big Data software is constantly updated, code samples may be outdated.
Outline

1. Big Data Analytics
2. BigData Challenges
3. Gaining Insight with Analytics
4. Use Cases
5. Programming
6. Summary
Scientific Method

Start

Think of Interesting Questions
Why does that pattern occur?

Make Observations
What do I see in nature? This can be from one's own experiences, thoughts, or reading.

Develop General Theories
General theories must be consistent with most or all available data and with other current theories.

Refine, Alter, Expand, or Reject Hypotheses

Gather Data to Test Predictions
Relevant data can come from the literature, new observations, or formal experiments. Thorough testing requires replication to verify results.

Formulate Hypotheses
What are the general causes of the phenomenon I am wondering about?

Develop Testable Predictions
If my hypothesis is correct, then I expect a, b, c,...

Based on: The Scientific Method as an Ongoing Process, ArchonMagnus[22]
Pillars of the Scientific Method

Science

Theory

Experimentation
Pillars of Science: **Modern Perspective**
Idea of Big Data Analytics

Big Data

- Vast amounts of data are available
- Many heterogeneous data sources
- Raw data is of low value (fine grained)

Analytics

- Analyzing data \Rightarrow Insight \Rightarrow value
 - For academia: knowledge
 - For industry: business advantage and money
- Levels of insight – primary abstraction levels of analytics
 - Exploration: study data and identify properties of (subsets) of data
 - Induction/Inference: infer properties of the full population
- Big data tools allow to construct a theory/model and validate it with data
 - Statistics and machine learning provide algorithms and models
 - Visual methods support data exploration and analysis
Example Models

Similarity is a (very) simplistic model and predictor for the world

- Humans use this approach in their cognitive process
- Uses the advantage of BigData

Weather prediction

- You may develop and rely on complex models of physics
- Or use a simple model for a particular day; e.g., expect it to be similar to the weather of the typical day over the last X years
 - Used by humans: rule of thumb for farmers

Preferences of Humans

- Identify a set of people which liked items you like
- Predict you like also the items those people like but haven’t rated
Relevance of Big Data

- Big Data Analytics is emerging
- Relevance increases compared to supercomputing

Google Search Trends, relative searches
Roles in the Big Data Business

Data scientist

Data science is a systematic method dedicated to knowledge discovery via data analysis [1]

- In business, optimize organizational processes for efficiency
- In science, analyze experimental/observational data to derive results

Data engineer

Data engineering is the domain that develops and provides systems for managing and analyzing big data

- Build modular and scalable data platforms for data scientists
- Deploy big data solutions
Typical Skills

Data scientist

- Statistics + (mathematics) background
- Computer science
 - Programming, e.g.: R, (SAS,) Java, Scala, Python
 - Machine learning
- Some domain knowledge for the problem to solve

Data engineer

- Computer science background
 - Databases
 - Software engineering
 - Massively parallel processing
 - Real-time processing
- Languages: C++, Java, (Scala,) Python
- Understand performance factors and limitations of systems
1. Big Data Analytics

2. BigData Challenges

3. Gaining Insight with Analytics

4. Use Cases

5. Programming

6. Summary
BigData Challenges & Characteristics

Source: MarianVesper [4]
Volume: The size of the Data

What is Big Data
Terrabytes to 10s of petabytes

What is not Big Data
A few gigabytes

Examples

- Wikipedia corpus with history ca. 10 TByte
- Wikimedia commons ca. 23 TByte
- Google search index ca. 46 Gigawebpages\(^1\)
- YouTube per year 76 PByte (2012\(^2\))

\(^1\)http://www.worldwidewebsize.com/
\(^2\)https://sumanrs.wordpress.com/2012/04/14/youtube-yearly-costs-for-storagenetworking-estimate/
Velocity: Data Volume per Time

What is Big Data

30 KiB to 30 GiB per second
(902 GiB/year to 902 PiB/year)

What is not Big Data

A never changing data set

Examples

- LHC (Cern) with all experiments about 25 GB/s
- Square Kilometre Array 700 TB/s (in 2018)
- 50k Google searches per s
- Facebook 30 Billion content pieces shared per month

3 http://home.web.cern.ch/about/computing/processing-what-record
4 http://venturebeat.com/2014/10/05/how-big-data-is-fueling-a-new-age-in-space-exploration/
5 http://www.internetlivestats.com/google-search-statistics/
6 https://blog.kissmetrics.com/facebook-statistics/
Data Sources

Enterprise data

- Serves business objectives, well defined
- Customer information
- Transactions, e.g., purchases

Experimental/Observational data (EOD)

- Created by machines from sensors/devices
- Trading systems, satellites
- Microscopes, video streams, smart meters

Social media

- Created by humans
- Messages, posts, blogs, Wikis
Variety: Types of Data

- **Structured data**
 - Like tables with fixed attributes
 - Traditionally handled by relational databases

- **Unstructured data**
 - Usually generated by humans
 - Examples: natural language, voice, Wikipedia, Twitter posts
 - Must be processed into (semi-structured) data to gain value

- **Semi-structured data**
 - Has some structure in tags but it changes with documents
 - Examples: HTML, XML, JSON files, server logs

What is Big Data

- Use data from multiple sources and in multiple forms
- Involve unstructured and semi-structured data
Veracity: Trustworthiness of Data

What is Big Data

- Data involves some uncertainty and ambiguities
- Mistakes can be introduced by humans and machines
- Examples
 - People sharing accounts
 - Like sth. today, dislike it tomorrow
 - Wrong system timestamps

Data Quality is vital!
Analytics and conclusions rely on good data quality
- Garbage data + perfect model => garbage results
- Perfect data + garbage model => garbage results

GIGO paradigm: *Garbage In – Garbage Out*
Value of Data

What is Big Data

- Raw data of Big Data is of low value
 - For example, single observations
- Analytics and theory about the data increases the value
 - Analytics transform big data into smart (valuable) data!
There are many visualizations of the processing and value chain

Source: Andrew Stein [8]
From Big Data to the Data Lake [20]

- With cheap storage costs, people promote the concept of the data lake
- Combines data from many sources and of any type
- Allows for conducting future analysis and not miss any opportunity

Attributes of the data lake

- Collect everything: all time all data: raw sources and processed data
 - Decide during analysis which data is important, e.g., no “schema” until read
- Dive in anywhere: enable users across multiple business units to
 - Refine, explore and enrich data on their terms
- Flexible access: shared infrastructure supports various patterns
 - Batch, interactive, online, search
Data Science vs. Business Intelligence (BI)

Characteristics of BI

- Provides pre-created dashboards for management
 - Repeated visualization of well known analysis steps
- Deals with structured data
- Typically data is generated within the organization
- Central data storage (vs. multiple data silos)
- Handeled well by specialized database techniques

Typical types of questions and insight

- Customer service data: “what business causes customer wait times”
- Sales and marketing data: “which marketing is most effective”
- Operational data: “efficiency of the help desk”
- Employee performance data: “who is most/least productive”
1. Big Data Analytics
2. Big Data Challenges
3. Gaining Insight with Analytics
4. Use Cases
5. Programming
6. Summary
Abstraction Levels of Analytics and the Value of Data

1. Prescriptive analytics *(Empfehlen)*
 - “What should we do and why?”

2. Predictive analytics *(Vorhersagen)*
 - “What will happen?”

3. Diagnostic analytics
 - “What went wrong?”
 - “Why did this happen”

4. Descriptive analytics *(Beschreiben)*
 - “What happened?”

5. Raw (observed) data

For me, descriptive and diagnostic analysis is forensics!
Analytics Abstraction Level

Source: Forrester report. Understanding The Business Intelligence Growth Opportunity. 20-08-2011
Data Analysis Workflow

The traditional approach proceeds in phases:

- **Data discovery**
 - Collect and annotate
 - Create an inventory of data sources and the metadata that describe them.
 - Prepare
 - Enable access to sources and set up access-control rules.
 - Organize
 - Identify syntax, structure, and semantics for each data source.

- **Data integration**
 - Integrate
 - Establish a common data representation of the data. Maintain data provenance.

- **Data exploitation**
 - Analyze
 - Analyze integrated data.
 - Visualize
 - Present analytic results to a decision maker as an interactive application that supports exploration and refinement.
 - Make decisions
 - Determine what actions (if any) to take on the basis of the interpreted results.

Source: Gilbert Miller, Peter Mork From Data to Decisions: A Value Chain for Big Data.

- Analysis tools: machine learning, statistics, interactive visualization
- Limitation: Interactivity by browsing through prepared results
- Indirect feedback between visualization and analysis
Exploratory Data Analysis (EDA) [23]

Definition
The approach of analyzing data sets to **summarize** their main **characteristic**, often with visual methods.

Objectives
- Suggest hypotheses about the causes of observed phenomena
- Identify assumptions about the data to drive statistical inference
- Support selection of appropriate statistical tools and techniques
- Provide a basis for further data collection through surveys or experiments

Methods from EDA can also be used for analyzing model results / outliers
1. Big Data Analytics
2. Big Data Challenges
3. Gaining Insight with Analytics
4. Use Cases
5. Programming
6. Summary
Advertisement for a Big Data Platform

THE BIG PICTURE ON HADOOP

Apache Hadoop is an open source software framework created in 2005. Engineered for Big Data and large-scale processing applications.

WHO USES HADOOP IN THE ENTERPRISE?

- Retail & Wholesale
- Finance
- Education & Government
- Computer Manufacturing
- Business Services
- Manufacturing

Why Use HADOOP?

- Low cost
- Scalability
- Data protection
- Computing power
- Storage flexibility

PROBLEM OR OPPORTUNITY?

- **12%** Problem: Difficulty deploying Hadoop due to skills and immaturity.
- **88%** Opportunity: New application types.

THE FUTURE OF HADOOP

- **61%** of organizations plan to deploy Hadoop or have already deployed it.
- **$50.2B** worldwide sales based on Hadoop technology are forecasted to reach $50.2 billion by 2020.

This infographic is brought to you by StackIQ (www.stackiq.com), makers of stacki - the fastest open source bare metal installer. Download it at www.stackiq.com.

Source: [21]
Use Cases for BigData Analytics

Increase efficiency of processes and systems

- Advertisement: Optimize for target audience
- Product: Acceptance (like/dislike) of buyer, dynamic pricing
- Decrease financial risks: fraud detection, account takeover
- Insurance policies: Modeling of catastrophes
- Recommendation engine: Stimulate purchase/consume
- Systems: Fault prediction and anomaly detection
- Supply chain management

Science

- Epidemiology research: Google searches indicate Flu spread
- Personalized Healthcare: Recommend good treatment
- Physics: Finding the Higgs-Boson, analyze telescope data
- Enabler for social sciences: Analyze people’s mood
Big Data in Industry

<table>
<thead>
<tr>
<th>INDUSTRY</th>
<th>USE CASE</th>
<th>DATA TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Services</td>
<td>New Account Risk Screens</td>
<td>Sensor, Text, Social</td>
</tr>
<tr>
<td></td>
<td>Trading Risk</td>
<td>Sensor</td>
</tr>
<tr>
<td></td>
<td>Insurance Underwriting</td>
<td>Sensor, Text, Social</td>
</tr>
<tr>
<td>Telecom</td>
<td>Call Detail Records (CDR)</td>
<td>Sensor, Text, Social</td>
</tr>
<tr>
<td></td>
<td>Infrastructure Investment</td>
<td>Sensor</td>
</tr>
<tr>
<td></td>
<td>Real-time Bandwidth Allocation</td>
<td>Sensor, Text, Social</td>
</tr>
<tr>
<td>Retail</td>
<td>360° View of the Customer</td>
<td>Sensor, Text</td>
</tr>
<tr>
<td></td>
<td>Localized, Personalized Promotions</td>
<td>Sensor</td>
</tr>
<tr>
<td></td>
<td>Website Optimization</td>
<td>Sensor</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Supply Chain and Logistics</td>
<td>Sensor</td>
</tr>
<tr>
<td></td>
<td>Assembly Line Quality Assurance</td>
<td>Sensor</td>
</tr>
<tr>
<td></td>
<td>Crowd-sourced Quality Assurance</td>
<td>Sensor</td>
</tr>
<tr>
<td>Healthcare</td>
<td>Use Genomic Data in Medial Trials</td>
<td>Sensor</td>
</tr>
<tr>
<td></td>
<td>Monitor Patient Vitals in Real-Time</td>
<td>Sensor</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>Recruit and Retain Patients for Drug Trials</td>
<td>Sensor, Text</td>
</tr>
<tr>
<td></td>
<td>Improve Prescription Adherence</td>
<td>Sensor, Text</td>
</tr>
<tr>
<td>Oil & Gas</td>
<td>Unify Exploration & Production Data</td>
<td>Sensor, Text</td>
</tr>
<tr>
<td></td>
<td>Monitor Rig Safety in Real-Time</td>
<td>Sensor</td>
</tr>
<tr>
<td>Government</td>
<td>ETL Offloaded Response to Federal Budgetary Pressures</td>
<td>Sensor, Text</td>
</tr>
<tr>
<td></td>
<td>Sentiment Analysis for Government Programs</td>
<td>Sensor</td>
</tr>
</tbody>
</table>

Source: [20]
Example Use Case: Deutschland Card [2]

Goals

- Customer bonus card which tracks purchases
- Increase scalability and flexibility
- Previous solution based on OLAP

Big Data Characteristics

- Volume: O(10) TB
- Variety: mostly structured data, schemes are extended steadily
- Velocity: data growth rate O(100) GB / month

Results

- Much better scalability of the solution
- From dashboards to ad-hoc analysis within minutes
Example Use Case: DM [2]

Goals

- Predict required number of employees per day and store
- Prevent staff changes on short-notice

Big Data Characteristics

- Input data: Opening hours, incoming goods, empl. preferences, holidays, weather ...
- Model: NeuroBayes (Bayes + neuronal networks)
- Predictions: Sales, employee planning
- 450,000 predictions per week

Results

- Daily updated sales per store
- Reliable predictions for staff planning
- Customer and employee satisfaction
Example Use Case: OTTO [2]

Goals
Optimize inventory and prevent out-of-stock situations

Big Data Characteristics

- Input data: product characteristics, advertisement
- Volume/Velocity: 135 GB/week, 300 million records
- Model: NeuroBayes (Bayes + neuronal networks)
- 1 billion predictions per year

Results

- Better prognostics of product sales (up to 40%)
- Real time data analytics
Example Use Case: Smarter Cities (by KTH) [2]

Goals

- Improve traffic management in Stockholm
- Prediction of alternative routes

Big Data Characteristics

- Input data: Traffic videos/sensors, weather, GPS
- Volume/Velocity: 250k GPS-data/s + other data sources

Results

- 20% less traffic
- 50% reduction in travel time
- 20% less emissions
Example Facebook Studies

“Insight” from [11] by exploring posts

- Young narcissists tweet more likely. Middle-aged narcissists update their status
- US students post more problematic information than German students
- US Government checks tweets/facebook messages for several reasons
- Human communication graph has an average diameter of 4.74

Manipulation of news feeds [13]

- News feeds have been changed to analysis people’s behavior in subsequent posts
- Paper: “Experimental evidence of massive-scale emotional contagion through social networks”
1. Big Data Analytics
2. Big Data Challenges
3. Gaining Insight with Analytics
4. Use Cases
5. Programming
6. Summary
Programming BigData Analytics

High-level concepts

- SQL and derivatives
- Domain-specific languages (Cypher, PigLatin)

Programming languages

- Java interfaces are widely available but low-level
- Scala language increases productivity over Java
- Python and R have connectors to popular BigData solutions

In the exercises, we’ll learn and use Python and R
Tools for Data Exploration

Mandatory features

- Interactive
- Rich set: visualization, data manipulations, algorithms
- Real-time processing of big data

Requirements

- Usability
- Flexible
- Performance

Tools (excerpt)

- Closed source: SAS, Spotfire, Domo, Tableau
- Open source: R, Python/Jupyter/Bokeh, GoogleVis
- Other open source tools, see [19]
Productivity

Productivity is a very important metric for Big Data tools

Development environments

1. Text editor; workflow: edit, save, (compile), run on a server
 - Notepad, gedit

2. Interactive shell; type code and execute it
 - Python, SQL frontent

3. IDE; optimized workflow of the text editor, may run code on a server
 - NetBeans, Eclipse, VisualStudio

4. Interactive lab notebook; type code and store it together with results
 - Examples: Jupyter, Apache Zeppelin
 - Embedded in GitHub:
 https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/code_listings/03.11-Working-with-Time-Series.ipynb

5. Lab notebook + IDE;
 - Examples: Spyder
Introduction to Python

- Open source
- Position 5 on TIOBE index
- Interpreted language
- Weak type system (errors at runtime)
- Development tools: any editor, interactive shell, Spyder
- Many useful libraries: matplotlib\(^7\), NumPy, SciPy, Pandas
- Note: Use and learn Python 3

Specialties

- Strong text processing
- Simple to use
- Support for object oriented programming
- Indentation is relevant for code blocks

\(^7\)http://matplotlib.org/gallery.html
Introduction to R

- Based on S language for statisticians
- Open source
- Position 19 on TIOBE index (but rising)
- Interpreter with C modules (packages)
- Libraries: Easy installation of packages via CRAN\(^8\)
- Popular language for data analytics
- Development tools: RStudio (or any editor), interactive shell
- Recommended plotting library: ggplot2\(^9\)

Specialties

- Vector/matrix operations. *Note: Loops are slow, so avoid them*
- Table data structure (data frames)

\(^8\)Comprehensive R Archive Network
\(^9\)http://docs.ggplot2.org/current/
Summary

- Big data analytics is a pillar of science
 - Supports building of hypothesis and experimentation
 - Challenges: 5 Vs – Volume, velocity, variety, veracity, value
- Data sources: Enterprise, humans, Exp./Observational data (EOD)
- Types of data: Structured, unstructured and semi-structured
- Roles in big data business: Data scientist and engineer
- Data science != business intelligence
- Analytics: Descriptive, diagnostic; predictive, prescriptive
Bibliography

10. Wikipedia