
Metadata/Small File Benchmarking

Status of the IO-500

Julian M. Kunkel

Deutsches Klimarechenzentrum GmbH (DKRZ)

2017-03-22



Outline

1 Metadata Benchmarks

2 (Self) Cheating on Results

3 MD-REAL-IO

4 Status of the IO-500

5 Summary



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Metadata Benchmarks
Classes of (metadata) benchmarks

Applications would be best to estimate performance but have issues

Difficult to setup, confidential code / data, time consuming to run
Difficult to understand the access pattern and observed performance
How many applications are needed to represent the I/O workload?

Mini-apps

Much simplified versions of the applications

IO-kernels

Only the I/O (evtl. communication) of mini-apps

Trace/Replay

Record application (IO) behavior and replay

Synthetic

Typically designed to stress well-known / relevant access patterns
Workload generators allow to program various patterns

Julian M. Kunkel 3 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Existing Metadata Benchmarks

The following list of benchmarks focuses on small files / object accesses:

Sequential benchmarks

Postmark: randomly chooses list of operations on a working set

fdtree: bash based benchmark

mds-survey (Lustre specific)

MPI parallel benchmarks

MDTest: operates in phases: create, read, delete

metarates: an MDTest with more POSIX calls

MD-REAL-IO: (I will talk about this later)

Parabench: programmable workload generator

FEIGN/SIOX: Trace/Replay
Julian M. Kunkel 4 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Existing Metadata Benchmarks
Cloud storage benchmarks

Mimesis: Trace/Replay: statistical workload generator

1 billion document benchmark

COSBench: workload generator; supports adapters/plugins

The Virtual Instruments Object Storage performance validation

Figure1: Sample screen capture, Source: Virtual Instruments Info Sheet, 2016

Julian M. Kunkel 5 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Challenges Designing (Metadata) Benchmarks

Definition of an appropriate workload according to the benchmark’s goals

Trend: cloud benchmarks move towards workload generators

Supporting various (future) storage architectures; choice of interfaces
POSIX: very flexible making it difficult to define the workload

Is the workload actually useful or is it abuse of semantics (to, e.g., control job flow)?

MPI-IO is too restricted
Object storage and cloud: SWIFT, S3, MongoDB, ...
Data bases?
Trend from cloud computing: plugins/drivers to support various backends

Reproducible results (on the same system)

Re-running the benchmark should retain similar performance results
Degradation of hardware due to production usage?

Julian M. Kunkel 6 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Challenges for Running (Metadata) Benchmarks

Interference with optimizations
Storage systems and on-disk formats are optimized for certain workloads
Caching/pre-fetching can increase performance significantly
Is caching what we want to measure?

Interpretation of the benchmarking results
What can we learn about the system from the results?
Can we transfer results to predict production performance?

Comparability of results between systems
Apple-to-apple comparison?
Workloads have a huge impact of performance
Difficult when using workload generation or trace-replay

Preventing (self) cheating
Mitigation: relating results to hardware capabilities should be easy
We should also prevent vendors to cheat by deploying a “new” optimization

Julian M. Kunkel 7 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

1 Metadata Benchmarks

2 (Self) Cheating on Results

3 MD-REAL-IO

4 Status of the IO-500

5 Summary

Julian M. Kunkel 8 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Pretending Good Performance by (Self) Cheating

Experiences talking to vendors talking years ago

SSDs are unnecessary/do not improve file system performance for metadata

Experiences during our last procurement

When asking for metadata performance
Vendor A: we can easily do millions of IOOPs
We: When using 200 hard disk drives for the metadata server?
We: Could you use our benchmark?

After checking our benchmark, in the offer a realistic value was listed

The cause is simple: using a benchmark for which systems are optimized / cache

Julian M. Kunkel 9 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Measurements for a Mixed Read/Write/Stat Workload

Node local storage, 1000 MByte free memory, 2 processes, 5 repeats

HDD performance is good

With EXT4, SSD and HDD similar

For btrfs, varies between repeats

An indicator for the issue...
Cause: flush timer inside OS is
sometimes triggered

This workload is cached...

Julian M. Kunkel 10 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Measurements for a Mixed Read/Write/Stat Workload

Same setup, larger working set

More realistic?

Julian M. Kunkel 11 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Optimized Bulk-Creates aka md-test

Only creating files; 600,000 objects a 3900 Byte; 1 GByte memory
Fixed working set size 2 GByte partitioned across processors

The working set should be enough to
show true HDD performance

EXT4 still optimizes bulk imports well

Vendor statements: SSD may improve
performance by 2x ...

Which file system would a vendor use?

Which storage media would he sell?

Actually performance reduces only
slightly increasing the working set

Julian M. Kunkel 12 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Adjusting the Workload to Prevent Caching

Same experiment/working set, adjusted workload/op order to prevent caching

Some aggregation can still be done

Write behind / HDD cache
improves performance for 1 proc

SSD and HDD behave realistic

Julian M. Kunkel 13 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Towards Realistic Values

Know the hardware characteristics

With 7ms avg. latency, 150 IOOPs/s per (metadata) HDD
Coordination mechanism of the file system will reduce this value
How much cache is available?

Know the semantics

When are modifications visible to other clients or become durable?
What information could be potentially be cached somewhere?

Define a workload that can be scaled to exceed any cache

Scale the workload down to see how well the system optimizes / caches
⇒ best-case

Scale the workload up to exhibit hardware behavior
Make sure in the tender that you can adjust the workload for acceptance

Julian M. Kunkel 14 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

1 Metadata Benchmarks

2 (Self) Cheating on Results

3 MD-REAL-IO

4 Status of the IO-500

5 Summary

Julian M. Kunkel 15 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

MD-REAL-IO

An open source benchmark
https://github.com/JulianKunkel/md-real-io

Plugins for POSIX, MPI-IO, Postgres, MongoDB, S3

Operates on shared “directories” / objects

Phases:

Precreate a working set (optional)
Benchmark

stat, open, read, close, unlink a single object from the working set
open, write, close a new object ⇒ the working set stays the same throughout the test

Cleanup (optional, one can run the test repeatedly over the working set)

Interpretation:

Multiple FIFO producer/consumer systems processing small data
Interactive usage from many users on a HPC system

Julian M. Kunkel 16 / 25

https://github.com/JulianKunkel/md-real-io


Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Results

The mixed workload shown before uses MD-REAL-IO

Realistic working set: runtime on Mistral 12 minutes

Creating a working set can take more time but a small set yields nearly
same performance results

The working set is 3,000,000 objects, 11 GiB

Performance on our last-generation Blizzard supercomputer: 250 objects/s
(x 8 ops/iteration)

Mistral using a single metadata server (we have 5+7 servers)

Phase 1 (in production): 1200 iter/s, 9 MiB/s
Phase 2 (nearly empty): 7000 iter/s, 53 MiB/s

Earth-Simulator: 1880 iter/s, 14 MiB/s

Julian M. Kunkel 17 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

1 Metadata Benchmarks

2 (Self) Cheating on Results

3 MD-REAL-IO

4 Status of the IO-500

5 Summary

Julian M. Kunkel 18 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Status of the IO-500

Goal: the development of I/O benchmarks for tracking I/O performance

History

Dec. 2015: The High-Performance Storage list has been created

Contains a trivial approach to overcome obstacles

June 2016: Talks from Lofstead, Kunkel about benchmarking during ISC BoF

Nov. 2016: joint BoF from Kunkel, Lofstead and Bent during SC

Nov. 2016: Creation of a mailing list for subsequent discussion

There have been discussions about the approach, benchmarks

April 2017: Voting about (initial) benchmarks

Mid 2017: Identify benchmarking rules, ask Top500 sites to run benchmarks

Nov. 2017: Show results during SC in a BoF

Julian M. Kunkel 19 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Challenges When Creating a Benchmark

Storage systems are heterogeneous

Storage hardware: SSDs, HDDs, NVRAM
Availability of optimizations for random and sequential workloads
High-level concepts, e.g., staging (K Computer), burst buffers

Representativeness of a single metric / benchmark

Workloads are very diverse, what do we want to measure?
With a fitting benchmark systems extract close to peak performance
With another benchmark only 1/100 th of performance

Runtime for executing a benchmark

Executing a specific I/O benchmarks may take quite some time
Are you willing to pay for it just to be included on a storage list?

Julian M. Kunkel 20 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Compatible Approach of the High-Performance Storage List

Strategy

Community-managed list tracking many (theoretic) characteristics

Mitigating the obstacles

Storage systems are heterogeneous

Communicate a system model that fits most use cases

Representativeness of a single metric / benchmark

Rely mostly on theoretic values
Allow users to utilize any benchmark/app to determine sustained performance

Runtime for executing a benchmark

Optional values: a site can publish computers with a subset of values
No overhead, since users can use their own benchmark

Julian M. Kunkel 21 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Collected Information

Peak Performance

Theoretical value based on hardware limits

e.g. network (server) throughput, SATA limits

Best performance of one server x number of servers.

Describe in the text how the peak is computed

Sustained Performance

Actually observed performance with an application or benchmark

You can use any benchmark and measurement protocol

Just make sure you are not measuring cache effects

Describe in the text how the value has been measured

Julian M. Kunkel 22 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Back to the IO-500

Requirements of the benchmarking

Representative: for optimized or naive workloads

Describe the natural requirements for users
IO-easy: upper bound for optimized IO-heavy workloads
IO-hard: expected performance for non-optimized applications
MD-easy, MD-hard: likewise but cover small-objects/metadata

Inclusive: cover various storage technology and non-POSIX APIs

At best: useful for HPC and Big Data workloads

Trustworthy: representative results and prevent cheating

Cheap: easy to run and short benchmarking time (in the order of minutes)

Julian M. Kunkel 23 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

IO-500

Strategy

Build on (knowledge of) existing benchmarks

IOR
MD*

Plugin systems should allow for alternative storage technology

Initially report one (two) metrics per benchmark

Decide later about one representative number
A single number should favor balanced (useful) systems
Potentially storage capacity should also be part of this metrics

Julian M. Kunkel 24 / 25



Metadata Benchmarks (Self) Cheating on Results MD-REAL-IO Status of the IO-500 Summary

Summary

Existing benchmarks: mini-apps/kernels, trace-replay, synthetic

Results from application alike benchmarks are difficult to assess

Many existing tools cannot solve MD benchmarking challenges

Bulk operations on independent data sets can be well optimized

A benchmark should

Reveal optimized / caching and true hardware performance
Be representative, inclusive, trustworthy and cheap to run

https://www.vi4io.org
See https://www.vi4io.org/listinfo for the IO-500

You are welcome to participate in the VI4IO and the IO-500 efforts

Julian M. Kunkel 25 / 25

https://www.vi4io.org
https://www.vi4io.org/listinfo

	Metadata Benchmarks
	Existing Benchmarks
	Challenges

	(Self) Cheating on Results
	Overview

	MD-REAL-IO
	Introduction

	Status of the IO-500
	Intro

	Summary

