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Goals

Address key issues of icosahedral earth-system models

Enhance programmability and performance-portability
Overcome storage limitations
Shared benchmark for these models

Covered models

ICON DYNAMICO NICAM
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WP1: Towards Higher-Level Code Design

Recap: Goals of the WP

Bypass shortcomings of general-purpose languages
Offer performance-portability
Enhance source repositories maintainability
Get rid of complexity in optimized-code development
Enhance code readability and scientists productivity

Extend modelling programming language
Based on domain science concepts
Free of lower level details (e.g., architecture, memory layout)
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Approach
Foster separation of concern

Domain scientists develop domain logic in source code
Scientific programmers write hardware configurations

Source code written with extended language
Closer to domain scientists logic
Scientists do not need to learn optimizations
Write code once, get performance for various configurations

Hardware configurations define software performance
Written by programmers with more experience in platform
Comprise information on target run environment

ICONICONICONICON

Dialects

DYNAMICODYNAMICO NICAMNICAM

Meta-DSLMeta-DSL

......

back-ends

Domain science Scientific programmer

GRIDToolsGRIDTools

Computer science

compilers ...compilers ...

DSL tools &
infrastructure

DSL tools &
infrastructure

CPUCPU

OpenACCOpenACC

PhysisPhysis

existing tools

Tools
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DSL Development

Co-design with scientists to develop DSL constructs
Current version represents several iterations
GGDML:General grid definition and manipulation language
Grid definition
Grid-bound variable declaration
Grid-bound variable access/update
Stencil operations

Hides memory locations and access details, data iteration
Abstract higher concepts of grids, hiding connectivity details
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Fortran vs. GGDML Code Example

DO l=ll_begin , ll_end
!DIR$ SIMD

DO ij=ij_begin , ij_end
berni (ij ,l) = .5*( geopot (ij ,l)+ geopot (ij ,l+1)) +

1/(4* Ai(ij)) *
(le(ij+ u_right )*de(ij+ u_right )*u(ij+u_right ,l)**2 &
+le(ij+ u_rup ) *de(ij+ u_rup ) *u(ij+u_rup ,l)**2 &
+le(ij+ u_lup ) *de(ij+ u_lup ) *u(ij+u_lup ,l)**2 &
+le(ij+ u_left ) *de(ij+ u_left ) *u(ij+u_left ,l)**2 &
+le(ij+ u_ldown )*de(ij+ u_ldown )*u(ij+u_ldown ,l)**2 &
+le(ij+ u_rdown )*de(ij+ u_rdown )*u(ij+u_rdown ,l)**2 )

ENDDO
ENDDO

GGDML version of the code above

FOREACH cell IN grid
berni ( cell ) = .5*( geopot ( cell )+ geopot ( cell % above )) +

1/(4* Ai( cell )) * REDUCE (+,N, le( cell % neighbour (N))*
de( cell % neighbour (N))* u( cell % neighbour (N))**2)

END FOREACH
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Status of Tools & Performance Analysis Experiments

Initial tools developed for
Source-to-source translation
Flexible: adjustable DSLs
Performance analysis
Integration into build systems

Explored opt. of mem. layout
3D and 1D transformation
Hilbert filling curves & HEVI
With various compilers

Intel, GCC, CLang
Best layout depends on compiler!

NICAM-DC ported to GridTools
Potential back-end for GGDML

Hybrid Fortran for ASUCA weather
Code generation of CUDA
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GGDML Impact on the Source Code

The DSL reduces development and maintenance effort

LOC statistics
lines (LOC) words characters

Model, kernel before DSL with DSL before DSL with DSL before DSL with DSL
ICON 1 13 7 238 174 317 258
ICON 2 53 24 163 83 2002 916
NICAM 1 7 4 40 27 76 86
NICAM 2 90 11 344 53 1487 363
DYNAMICO 1 7 4 96 73 137 150
DYNAMICO 2 13 5 30 20 402 218
total 183 55 911 430 4421 1991
relative size with dsl 30% 47% 45%
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Predicting saving applying the DSL to 300k code of ICON
100k infrastructure (does not change with the DSL)
Remaining code reduced according to our test kernels
COCOMO estimations

Software project Version Effort
Applied

Dev. Time
(months)

People
require

dev. costs
(M€)

Semi-detached 2462 38.5 64 12.3
DSL 1133 29.3 39 5.7

Organic 1295 38.1 34 6.5
DSL 625 28.9 22 3.1
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WP2: Massive I/O

Recap: Goals of the WP2

Optimization of I/O middleware for icosahedral data
Throughput, metadata handling

Design of domain-specific compression (ratio > 10 : 1)
Investigate metrics allowing to define accuracy per variable
Design user-interfaces for specifying accuracy
Develop a methodology for identifying the required accuracy
Implement compression schemes exploiting this knowledge
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WP2: Supported Quantities

Quantities defining the residual (error):
absolute tolerance: compressed can become true value ± absolute tolerance
relative tolerance: percentage the compressed value can deviate from true value
relative error finest tolerance: value definining the absolute tolerable error for relative

compression for values around 0
significant digits: number of significant decimal digits
significant bits: number of significant decimals in bits
field conservation: limits the sum (mean) of field’s change

Quantities defining the performance behavior:
absolute throughput: in MiB or GiB, or relative to network or storage speed
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Architecture of SCIL

Contains tools to
Create random patterns, compress/decompress, add noise, plot

HDF5 and NetCDF4 integration; tools support NetCDF3, CSV
Library with

Automatic algorithm selection (under development)
Flexible compression chain:

Array of
Type-To-Type
Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compressed
data

process data process data

float float int any any

data

Julian M. Kunkel 11 / 20



Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP2: Example Synthetic Data

Simplex (options 206, 2D: 100x100 points)

Right picture compressed with Sigbits 3bits (ratio 11.3:1)
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Analyzing Performance of Lossy Compression using SCIL
An initial experiment is conducted with SCIL

Data

Single precision (1+8+23 bits)
Synthetic, generated by SCIL’s pattern lib.

e.g., Random, Steps, Sinus, Simplex
Data of the variables created by ECHAM

The climate model creates up to 123 vars

Experiments

Single thread, 10 repeats
Lossless (memcopy and lz4)
Lossy compression with significant bits (zfp, sigbits, sigbits+lz4)

Lossy compression with absolute tolerance (zfp, sz, abstol, abstol+lz4)
Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of the data maximum value
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WP2: Tolerance-Based Results

Mean compression factor across all scientific files
Factor 50:1 means space is reduced to 2% of the original size
Note that SZ and ZFP do not always reach the set precision

Often the absolute and precision bit tolerance cannot be met
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WP2: Comparing Algorithms for the Scientific Files

Throughput [MiB/s]
Algorithm Ratio Compr. Decomp.
sigbits 0.45 464.4 620.7
sigbits,lz4 0.23 401.6 585.2
zfp 0.30 194.8 418.3

Table: Preserving 9 precision bits (instead of 23 from float) ≤ 0.56

Throughput [MiB/s]
Algorithm Ratio Compr. Decomp.
abstol 0.22 269.3 461.7
abstol,lz4 0.08 253.4 446.8
sz 0.08 66.0 127.4
zfp 0.24 263.9 492.9

Table: For absolute tolerance with 1% of max value < 0.22
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WP2: Results for Absolute Tolerance

Comparing algorithms using an absolute tolerance of 1% of the maximum value
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WP 3: Evaluation

Evaluating the DSL and domain-specific I/O advancements
Providing a common benchmark package for all models
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Kernel Extraction

Extracted kernels (e.g. from NICAM)
2-D(horizontal) diffusion: simple stencil
1-D(vertical) tridiagonal matrix solver: with (i*j,k) array, recurrence
k-axis
3-D divergence damping: simple but large memory footprint
2-D(horizontal) flux calculation with remapping: large memory footprint
2-D(horizontal) flux limiter for tracer transport: complex, max()/min()
1-D(vertical) flux limiter for tracer transport: complex, max()/min()

Setup routine for the coefficients of the stencil operators
Communication kernel
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Summary

AIMES covers programmability issues on the high-level
DSL-extensions enrich existing languages
Fosters separation of concerns, increase performance portability
We have reached a first concensus between scientists
Will work on further examples and (next) revision for the DSL
An initial prototype has been developed
Several backends have been explored

AIMES addresses domain-specific lossy compression
(Help) scientists to define the variable accuracy
Exploit this knowledge in the compression scheme
Novel schemes compete with exististing algorithms

The choosing algorithm should always pick the best
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Next Steps

Bring together individual work on DSL backends
GridTools is a good candidate for a backend

Refine project plan for next 12 month
Explore use of further potential, e.g., YASK
Provide shared DSL conventions and survey more scientists
Extract and convert mini-apps of models to DSL
Finalize SCIL API and interfaces to NetCDF/HDF5
Integrate algorithm covering all accuracy quantities
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Backup

Backup
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Partners

Differences among three icosahedral atmospheric models

Horizontal grid system
NICAM: co-located, semi-structured
DYNAMICO: staggered, semi-structured
ICON: staggered, unstructured

semi-structured means. . . ”structured for stencil operation,
unstructured for communication topology”
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Partners and Expertise

Funded partners

Thomas Ludwig (Universität Hamburg)
I/O middleware, compression, ICON DSL
Thomas Dubos (Institut Pierre Simon Laplace)
Application I/O servers, compression, DYNAMICO
Naoya Maruyama (RIKEN)
DSL (Physis), GPUs, NICAM
Takayuki Aoki (Tokio Institute of Technology)
DSL (HybridFortran), language extension, peta-scale apps
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Cooperation Partners

DKRZ (I/O, DSL)
DWD (ICON, DSL, I/O)
University of Exeter (Math. aspects in the DSL)
CSCS (GPU/ICON, GRIDTool, compression)
Intel (DSL-backend optimization for XeonPhi, CPU)
NVIDIA (DSL-backend optimization for GPU)
The HDF Group (I/O, unstructured data, compression)
NCAR (MPAS developers, another icosahedral model)
Bull
Cray

Information exchange, participate in workshops, [hardware access]
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