
Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Advanced Computation and I/O Methods for
Earth-System Simulations

Status update

Julian M. Kunkel, Thomas Ludwig, Thomas Dubos, Naoya
Maruyama, Takayuki Aoki, Günther Zängl, Hisashi Yashiro,

Ryuji Yoshida, Hirofumi Tomita, Masaki Satoh, Yann
Meurdesoif, Nabeeh Jum’ah, Anastasiia Novikova

Scientific Computing
Department of Informatics
University of Hamburg

2017-03-21

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Goals

Address key issues of icosahedral earth-system models

Enhance programmability and performance-portability
Overcome storage limitations
Shared benchmark for these models

Covered models

ICON DYNAMICO NICAM

Julian M. Kunkel 2 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP1: Towards Higher-Level Code Design

Recap: Goals of the WP

Bypass shortcomings of general-purpose languages
Offer performance-portability
Enhance source repositories maintainability
Get rid of complexity in optimized-code development
Enhance code readability and scientists productivity

Extend modelling programming language
Based on domain science concepts
Free of lower level details (e.g., architecture, memory layout)

Julian M. Kunkel 3 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Approach
Foster separation of concern

Domain scientists develop domain logic in source code
Scientific programmers write hardware configurations

Source code written with extended language
Closer to domain scientists logic
Scientists do not need to learn optimizations
Write code once, get performance for various configurations

Hardware configurations define software performance
Written by programmers with more experience in platform
Comprise information on target run environment

ICONICONICONICON

Dialects

DYNAMICODYNAMICO NICAMNICAM

Meta-DSLMeta-DSL

......

back-ends

Domain science Scientific programmer

GRIDToolsGRIDTools

Computer science

compilers ...compilers ...

DSL tools &
infrastructure

DSL tools &
infrastructure

CPUCPU

OpenACCOpenACC

PhysisPhysis

existing tools

Tools

Julian M. Kunkel 4 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

DSL Development

Co-design with scientists to develop DSL constructs
Current version represents several iterations
GGDML:General grid definition and manipulation language
Grid definition
Grid-bound variable declaration
Grid-bound variable access/update
Stencil operations

Hides memory locations and access details, data iteration
Abstract higher concepts of grids, hiding connectivity details

Julian M. Kunkel 5 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Fortran vs. GGDML Code Example

DO l=ll_begin , ll_end
!DIR$ SIMD

DO ij=ij_begin , ij_end
berni (ij ,l) = .5*(geopot (ij ,l)+ geopot (ij ,l+1)) +

1/(4* Ai(ij)) *
(le(ij+ u_right)*de(ij+ u_right)*u(ij+u_right ,l)**2 &
+le(ij+ u_rup) *de(ij+ u_rup) *u(ij+u_rup ,l)**2 &
+le(ij+ u_lup) *de(ij+ u_lup) *u(ij+u_lup ,l)**2 &
+le(ij+ u_left) *de(ij+ u_left) *u(ij+u_left ,l)**2 &
+le(ij+ u_ldown)*de(ij+ u_ldown)*u(ij+u_ldown ,l)**2 &
+le(ij+ u_rdown)*de(ij+ u_rdown)*u(ij+u_rdown ,l)**2)

ENDDO
ENDDO

GGDML version of the code above

FOREACH cell IN grid
berni (cell) = .5*(geopot (cell)+ geopot (cell % above)) +

1/(4* Ai(cell)) * REDUCE (+,N, le(cell % neighbour (N))*
de(cell % neighbour (N))* u(cell % neighbour (N))**2)

END FOREACH

Julian M. Kunkel 6 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Status of Tools & Performance Analysis Experiments

Initial tools developed for
Source-to-source translation
Flexible: adjustable DSLs
Performance analysis
Integration into build systems

Explored opt. of mem. layout
3D and 1D transformation
Hilbert filling curves & HEVI
With various compilers

Intel, GCC, CLang
Best layout depends on compiler!

NICAM-DC ported to GridTools
Potential back-end for GGDML

Hybrid Fortran for ASUCA weather
Code generation of CUDA

Julian M. Kunkel 7 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

GGDML Impact on the Source Code

The DSL reduces development and maintenance effort

LOC statistics
lines (LOC) words characters

Model, kernel before DSL with DSL before DSL with DSL before DSL with DSL
ICON 1 13 7 238 174 317 258
ICON 2 53 24 163 83 2002 916
NICAM 1 7 4 40 27 76 86
NICAM 2 90 11 344 53 1487 363
DYNAMICO 1 7 4 96 73 137 150
DYNAMICO 2 13 5 30 20 402 218
total 183 55 911 430 4421 1991
relative size with dsl 30% 47% 45%

ICON
1
ICON

2
NICA

M 1
NICA

M 2
DYN.

1
DYN.

2

0

20

40

60

80

Lin
es

existing code
with GGDML

Predicting saving applying the DSL to 300k code of ICON
100k infrastructure (does not change with the DSL)
Remaining code reduced according to our test kernels
COCOMO estimations

Software project Version Effort
Applied

Dev. Time
(months)

People
require

dev. costs
(M€)

Semi-detached 2462 38.5 64 12.3
DSL 1133 29.3 39 5.7

Organic 1295 38.1 34 6.5
DSL 625 28.9 22 3.1

Julian M. Kunkel 8 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP2: Massive I/O

Recap: Goals of the WP2

Optimization of I/O middleware for icosahedral data
Throughput, metadata handling

Design of domain-specific compression (ratio > 10 : 1)
Investigate metrics allowing to define accuracy per variable
Design user-interfaces for specifying accuracy
Develop a methodology for identifying the required accuracy
Implement compression schemes exploiting this knowledge

Julian M. Kunkel 9 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP2: Supported Quantities

Quantities defining the residual (error):
absolute tolerance: compressed can become true value ± absolute tolerance
relative tolerance: percentage the compressed value can deviate from true value
relative error finest tolerance: value definining the absolute tolerable error for relative

compression for values around 0
significant digits: number of significant decimal digits
significant bits: number of significant decimals in bits
field conservation: limits the sum (mean) of field’s change

Quantities defining the performance behavior:
absolute throughput: in MiB or GiB, or relative to network or storage speed

Julian M. Kunkel 10 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Architecture of SCIL

Contains tools to
Create random patterns, compress/decompress, add noise, plot

HDF5 and NetCDF4 integration; tools support NetCDF3, CSV
Library with

Automatic algorithm selection (under development)
Flexible compression chain:

Array of
Type-To-Type
Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compressed
data

process data process data

float float int any any

data

Julian M. Kunkel 11 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP2: Example Synthetic Data

Simplex (options 206, 2D: 100x100 points)

Right picture compressed with Sigbits 3bits (ratio 11.3:1)

Julian M. Kunkel 12 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Analyzing Performance of Lossy Compression using SCIL
An initial experiment is conducted with SCIL

Data

Single precision (1+8+23 bits)
Synthetic, generated by SCIL’s pattern lib.

e.g., Random, Steps, Sinus, Simplex
Data of the variables created by ECHAM

The climate model creates up to 123 vars

Experiments

Single thread, 10 repeats
Lossless (memcopy and lz4)
Lossy compression with significant bits (zfp, sigbits, sigbits+lz4)

Lossy compression with absolute tolerance (zfp, sz, abstol, abstol+lz4)
Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of the data maximum value

Julian M. Kunkel 13 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP2: Tolerance-Based Results

Mean compression factor across all scientific files
Factor 50:1 means space is reduced to 2% of the original size
Note that SZ and ZFP do not always reach the set precision

Often the absolute and precision bit tolerance cannot be met

Julian M. Kunkel 14 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP2: Comparing Algorithms for the Scientific Files

Throughput [MiB/s]
Algorithm Ratio Compr. Decomp.
sigbits 0.45 464.4 620.7
sigbits,lz4 0.23 401.6 585.2
zfp 0.30 194.8 418.3

Table: Preserving 9 precision bits (instead of 23 from float) ≤ 0.56

Throughput [MiB/s]
Algorithm Ratio Compr. Decomp.
abstol 0.22 269.3 461.7
abstol,lz4 0.08 253.4 446.8
sz 0.08 66.0 127.4
zfp 0.24 263.9 492.9

Table: For absolute tolerance with 1% of max value < 0.22

Julian M. Kunkel 15 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP2: Results for Absolute Tolerance

Comparing algorithms using an absolute tolerance of 1% of the maximum value

Julian M. Kunkel 16 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP 3: Evaluation

Evaluating the DSL and domain-specific I/O advancements
Providing a common benchmark package for all models

Julian M. Kunkel 17 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Kernel Extraction

Extracted kernels (e.g. from NICAM)
2-D(horizontal) diffusion: simple stencil
1-D(vertical) tridiagonal matrix solver: with (i*j,k) array, recurrence
k-axis
3-D divergence damping: simple but large memory footprint
2-D(horizontal) flux calculation with remapping: large memory footprint
2-D(horizontal) flux limiter for tracer transport: complex, max()/min()
1-D(vertical) flux limiter for tracer transport: complex, max()/min()

Setup routine for the coefficients of the stencil operators
Communication kernel

Julian M. Kunkel 18 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Summary

AIMES covers programmability issues on the high-level
DSL-extensions enrich existing languages
Fosters separation of concerns, increase performance portability
We have reached a first concensus between scientists
Will work on further examples and (next) revision for the DSL
An initial prototype has been developed
Several backends have been explored

AIMES addresses domain-specific lossy compression
(Help) scientists to define the variable accuracy
Exploit this knowledge in the compression scheme
Novel schemes compete with exististing algorithms

The choosing algorithm should always pick the best

Julian M. Kunkel 19 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Next Steps

Bring together individual work on DSL backends
GridTools is a good candidate for a backend

Refine project plan for next 12 month
Explore use of further potential, e.g., YASK
Provide shared DSL conventions and survey more scientists
Extract and convert mini-apps of models to DSL
Finalize SCIL API and interfaces to NetCDF/HDF5
Integrate algorithm covering all accuracy quantities

Julian M. Kunkel 20 / 20

Partners

Backup

Backup

Julian M. Kunkel 21 / 20

Partners

Differences among three icosahedral atmospheric models

Horizontal grid system
NICAM: co-located, semi-structured
DYNAMICO: staggered, semi-structured
ICON: staggered, unstructured

semi-structured means. . . ”structured for stencil operation,
unstructured for communication topology”

Julian M. Kunkel 22 / 20

Partners

Partners and Expertise

Funded partners

Thomas Ludwig (Universität Hamburg)
I/O middleware, compression, ICON DSL
Thomas Dubos (Institut Pierre Simon Laplace)
Application I/O servers, compression, DYNAMICO
Naoya Maruyama (RIKEN)
DSL (Physis), GPUs, NICAM
Takayuki Aoki (Tokio Institute of Technology)
DSL (HybridFortran), language extension, peta-scale apps

Julian M. Kunkel 23 / 20

Partners

Cooperation Partners

DKRZ (I/O, DSL)
DWD (ICON, DSL, I/O)
University of Exeter (Math. aspects in the DSL)
CSCS (GPU/ICON, GRIDTool, compression)
Intel (DSL-backend optimization for XeonPhi, CPU)
NVIDIA (DSL-backend optimization for GPU)
The HDF Group (I/O, unstructured data, compression)
NCAR (MPAS developers, another icosahedral model)
Bull
Cray

Information exchange, participate in workshops, [hardware access]

Julian M. Kunkel 24 / 20

	Goals
	Overview

	Towards higer-level code design
	Goals

	Massive I/O
	Objectives

	Evaluation
	Intro

	Summary & Outlook
	Summary
	Next steps

	Appendix
	Partners
	Overview

