Additional I/O Considerations

Julian M. Kunkel

kunkel@dkrz.de

German Climate Computing Center (DKRZ), Research Group/Scientific Computing (WR)

04-07-2016

- 2 Mistral's I/O Performance
- 3 Related and Synergistic-Activities

I/O Architecture (Phase 1)

31 ClusterStor 9000 Scalable Storage Units (SSUs)

- SSU: Active/Active failover server pair
- Single Object Storage Server (OSS)
 - 1 FDR uplink
 - GridRaid: (Object Storage Target (OST))
 - 41 HDDs, de-clustered RAID6 with 8+2(+2 spare blocks)
 - 1 SSD for the Log/Journal
 - 6 TByte disks
- 31 Extension units (JBODs)
 - Do not provide network connections
 - Storage by an extension is managed by the connected SSU
- Multiple metadata servers
 - Root MDS + 4 DNE MDS
 - Active/Active failover (DNEs, Root MDS with Mgmt)
 - DNE phase 1: Assign responsible MDS per directory

I/O Architecture (Phase 2)

Additional file system (Now two file systems in total)

- Mounted on all compute nodes
- Characteristics: 11 k disks, 52 PB storage
- 34 ClusterStor L300 Scalable Storage Units (SSUs)
- 34 Extension units (JBODs)
- Storage hardware
 - Seagate Enterprise Capacity V5 (8 TB) disks
- Multiple metadata servers
 - Root MDS + 7 DNE MDS

Parallel File System

Lustre 2.5 (Seagate edition, some backports from 2.7+)

Filesystem

- We have two file systems: /mnt/lustre0[1,2]
- Symlinks: /work, /scratch, /home, ...
- For mv, each metadata server behaves like a file system

Assignment of MDTs to Directories

- In the current version, directories must be assigned to MDTs
 - /home/* on MDT0
 - /work/[projects] are distributed across MDT1-4
 - /scratch/[a,b,g,k,m,u] are distributed across MDT1-4
- Data transfer between MDTs is currently slow (mv becomes cp)
- We will transfer some projects to the phase 2 file system

Peak Performance

Phase 1 + 2

- 65 SSUs · (2 OSS/SSU + 2 JBODs/SSU)
- 1 Infiniband FDR-14: 6 GiB/s \Rightarrow 780 GiB/s
- 1 ClusterStor9000 (CPU + 6 GBit SAS): 5.4 GiB/s
- L300 yield IB speed, still we consider 5.4 GiB/s ⇒ aggregated performance **704 GiB/s**
- Phase 2: obd-filter survey demonstrates that 480 GB/s and 580 GB/s can be delivered

Mistral's I/O Performance

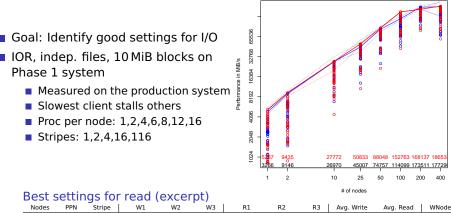
Related and Synergistic-Activities 000000000

Performance Results from Acceptance Tests

- Throughput in GB/s (% to peak) measured with IOR
 - Buffer size 2000000 (unaligned) on 42 OSS (Phase 1) and 64 (P 2)
 - In the phase 2 testing, the RAID of at least one OSS is rebuilding

	Pha	se 1	Phase 2			
Туре	Read	Write	Read	Write		
POSIX, independent ¹	160 (70%)	157 (69%)	215 (62%)	290 (84%)		
MPI-IO, shared	52 (23%)	41 (18%)	65 (19%)	122 (35%)		
PNetCDF, shared	81 (36%)	38 (17%)	63 (18%)	66 (19%)		
HDF5, shared	23 (10%)	24 (11%)	62 (18%)	68 (20%)		
POSIX, single stream	1.1 (5%)	1.05 (5%)	0.98 (5%)	1.08 (5%)		

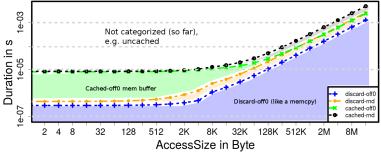
Metadata measured with Parabench


- Phase 1: 80 kOPs/s
 - 25 kOP/s for root MDS; 15 kOP/s for DNEs
- Phase 2: 210 kOPs/s
 - 25 kOP/s for root MDS; 30-35 kOP/s for DNEs

¹1 stripe per file

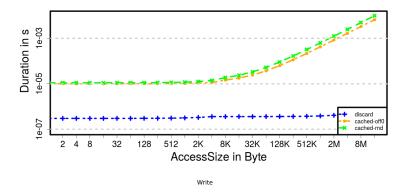
Mistral's I/O Performance

Related and Synergistic-Activities 000000000


Performance with Variable Lustre Settings

Nodes	PPN	Stripe	W1	W2	W3	R1	R2	R3	Avg. Write	Avg. Read	WNode F
1	6	1	3636	3685	1034	4448	5106	5016	2785	4857	2785
2	6	1	6988	4055	6807	8864	9077	9585	5950	9175	2975
10	16	2	16135	24697	17372	27717	27804	27181	19401	27567	1940

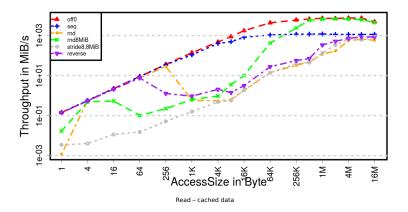
I/O Duration with Variable Block Granularity


- Performance of a single thread with sequential access
- Two configurations: discard (/dev/zero or null) or cached
- Two memory layouts: random (rnd) or re-use of a buffer (off0)

Read

Related and Synergistic-Activities 000000000

I/O Duration with Variable Block Granularity

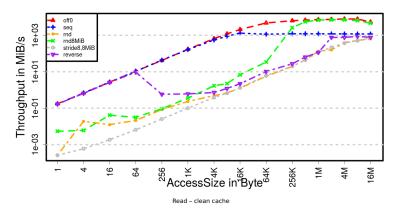


- Memory layout has a minor impact on performance
- \Rightarrow In the following, we'll analyze only accesses from one buffer

Mistral's I/O Performance

Related and Synergistic-Activities 000000000

Throughput with Variable Granularity



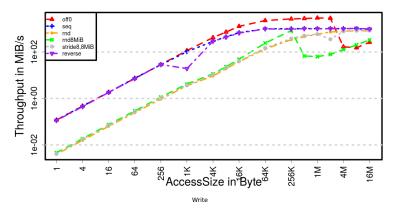
- Caching (of larger files, here 10 GiB) does not work
- Sequential read with 16 KiB already achieves great throughput
- Reverse and random reads suffer with a small granularity

Mistral's I/O Performance

Related and Synergistic-Activities

Throughput with Variable Granularity

- Read cache is not used
 - Except for accesses below 256 bytes (compare to the prev. fig.)

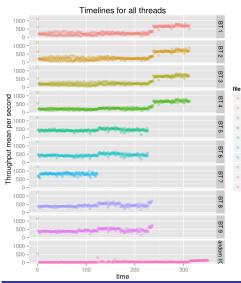

Potential Solution to Caching: FUSE

- Utilizes page cache
- Measurements: 4k reads: 100k ops on Lustre, 3 M with FUSE
- FUSE3 client implemented that allows to re-mount subtree
- Not cache-coherent, but does not matter for certain workloads
 - /sw (loading Python modules takes seconds)
 - configure/compilation
- Implementation complete, we have to check it on test system...

Mistral's I/O Performance

Related and Synergistic-Activities 000000000

Throughput with Variable Granularity



- Writes of 64 KiB achieve already great performance
- Reverse file access does not matter
- Abnormal slow behavior when overwriting data with large accesses (off0, rnd8MiB)

Mistral's I/O Performance

Related and Synergistic-Activities 000000000

(Unfair) Sharing of Performance

- Storage == shared resource
- Independent file I/O on one OST
- Running 9 seq. writers concurrently (10 MiB blocks)
- BT1 One random writer (1 MiB blocks)
 - Each client accesses 1 stripe
 - Each client runs on its own node
 - Observations
 - BT: 3 performance classes
 - RND without background threads: 220 MiB/s
 - RND with 9 threads: 6 MiB/s
 - Slow I/O dominated by well-formed I/O
 - Reason: IB routing

BT 2

BT 3

BT 4

BT 5

BT 6

BT 7

BT 8

BT 9

random I/O

Lustre I/O Statistics

- Statistics on the client help understand behavior (a bit)
- /proc/fs/lustre/llite/lustre01-*/stats
- /proc/fs/lustre/llite/lustre01-*/read_ahead_stats

Тур	Lay- out		numa_ local	hits	misses	intr	softirq	read b_avg	read calls	write b_avg	write calls		osc_read calls	osc_write avg	osc_write calls	Perf. in MiB/s
WD	off0	256K	263K	0	0	0.9-1K	1.8-2K	201	3	40K	5	0	0	32K	0-6	1.1T
WC	off0	256K	264K	0	0	2.8-3.3K	6.1-7.1K	201	3	262K	10005	0	0	256K	1.1	2.6G
WC	seq	256K	940K	0	0	16-18K	26-30K	201	3	262K	10005	0	0	4M	625	1G
	rnd	256K	937K	0	0	125K	34K	201	3	262K	10005	4096	19K	3.9M	673.6	341M
WС	rev	256K	942K	0	0	23K	28-77K	201	3	262K	10005	0	0	4M	626	963M
R D	off0	256K	263K	0	0	1.1-1.4K	2.4-3K	201	3	40K	5	0	0	42K	0.4	14G
RC	off0	256K	264K	63	1	1.4-1.9K	2.9-3.9k	256K	10003	40K	5	256K	1	0	0	5.9G
RC	seq	256K		640K	3	25-60k	28-111K	256K	10003	57K	5	1M	2543	80K	0.4	1.1G
R C	rnd	256K	1559K	615K	16K	136-142k	43k-65k	256K	10003	58K	5	241K	20K	180K	4	33M
R C	rev	256K		629K	10K	70-77K	23-47K	256K	10003	58K	5	256K	9976	104K	0-3	56M
RU	off0		264K	63	5	1.5-2k	2.9-3.9k	256K	10003	40K	5	64K	5	0	0	6.2G
RU	seq	256K	946K	640K	6	25-42k	32-74k	256K	10003	57K	5	1M	2546	0	0	1.2G
Run	s wit	h acce	ssSize	of 1M	iB and a	a 1 TB file,	caching	on the	client is	not pos	sible. For	seq. 1M	repeats	are perfoi	med, for I	andom 10k:
W	seq	1M	259M	0	1.3	8-12M	14-23M	201	3	1M	1000013	0-8K	0-4	. 4M	250K	1007
W	rnd	1M	2.9M	0	0-3	161K	114K	201	3	1M	10006	4097	20K	3.2M	3309	104
R	seq	1M	257M	255M	2	16-22M	28-38M	1M		2.5M	12	1M	1000K	3M	10	1109
R	rnd	1M	5M	2M	9753		157-161K	1M	10003	60K	5	836K	24K	100K	3	55
Accessing 1TB file with 20 threads, aggregated statistics, but performance is reported per thread:																
W	seq	1M	260M	0-1	0-3	12M	23M		58	1M	990K		1-3	4.1M	254K	250
W	rnd	1M	246M	0	0	18M	13M	201	58	1M	960K	4096	1.8M	3.1M	320K	138
R	seq	1M	254M		480K	9.8M	12M	1M			0.2-1.2K	1.6M	630K	717K	41	168
R	rnd	1M	481M	240M	900K	20M	16M	1M	950K	20-23K	0.2-1.2K	832K	2.3M	523K	36	47

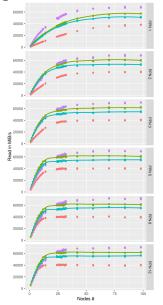
Deltas of the statistics from /proc for runs with access granularity of 256 KiB and 1 MiB (mem-layout is always off0). In the type column, D stands for discard, C for cached and U for uncached. 1TB files do not fit into the page cache.

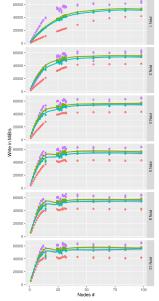
Outline

1 Mistral's Storage System

- 2 Mistral's I/O Performance
- 3 Related and Synergistic-Activities

In-Memory Storage

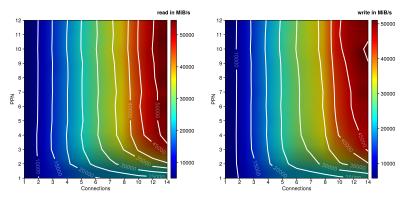

- Kove XPD
 - Offers various interfaces to access data
 - KDSA, malloc, mmap, block device
 - Use case: burst buffer, in-situ, memory-extension?
 - Memory-extension: HLRE4 at DKRZ, only buy one type of system (2 GiB Mem/Core)?
 - Rest could be dynamically provisioned, i.e. at runtime assign (shared) memory !
 - I would love to see a discussion between DKRZ, Bull and Kove ²
- Benchmarking of Kove XPD
 - In memory I/O
 - Persists data onto 24 HDDs
 - Takes 10 min to synchronize system (under full load)
- Three devices with 6+4+4 = 14 IB links
 - Peak performance: 70 GiB/s
- Created an MPI-IO wrapper to their KDSA library
- Benchmarked random I/O with IOR
 - Sequential behaves similarly (!)


²john.overton@kove.net

Mistral's I/O Performance

Related and Synergistic-Activities

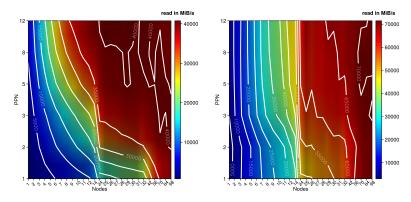
Varying Client Node Count, PPN, Block Size



Mistral's I/O Performance

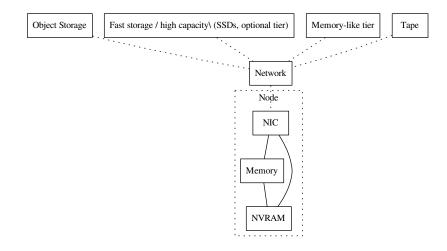
Related and Synergistic-Activities

Varying Number of Connections


- 100 KB accesses
- 14 nodes

Mistral's I/O Performance

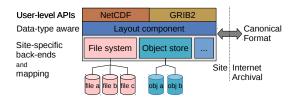
Related and Synergistic-Activities


Performance Map for Reads

16 KiB and 1 MiB accesses (beware the color scaling)

Mistral's I/O Performance

Future Storage


Storage in ESiWACE

H2020 project: ESiWACE Center of Excellence

Work package 4

Partners: DKRZ, STFC, ECMWF, CMCC, Seagate, (HDFGroup)

- 1 Modelling costs for storage methods and understanding these
- 2 Modelling tape archives and costs
- **3** Focus: Flexible disk storage layouts for earth system data
 - Reduce penalties of "shared" file access
 - Site-specific data mapping but simplify import/export
 - Allow access to the same data from multiple high-level APIs

Current Approach within ESiWACE/WP4

- We started to implement a HDF5 in-memory VOL
- First tests with a NetCDF benchmark are functional
- We will extend the current prototype to test various backends
 - Store scientific metadata in (non-)SQL DBs
 - Utilize backends for data only
 - DDN (WOS/IME to follow), Seagate, file system
- We will work on models for our next systems

Other projects

Intel Parallel Computing Center (for Lustre)

- Implementation of client-server compression
- Will also improve Lustre throughput for uncompressed I/O
- Testing of client-side extensions on Mistral planned!

AIMES

- DSL & I/O for ICO models
- User-defined/workflow oriented lossy compression
- Little bit of optimization for HDF5/NetCDF

Summary

- Lustre performance behavior is suboptimal (not limited to Seagate's edition)
 - Pending features will improve the situation (e.g. dynamic striping)
- Next system at DKRZ
 - Let us try to go away from parallel file systems (and POSIX)
 - I hope we get away from Lustre (with its tight kernel integration)
- There are quite some activities ongoing within our research group
- Options to evolve the relationship in terms of I/O activities
 - Modelling of (performance and costs) of future systems
 - Improving scientific file formats

My 5 Cents

Appendix

- Scientific productivity is the goal
- Future systems will change the way we use them for HPC
- We will be able to run legacy applications
 - Maybe at 5% what is possible with novel workflows
- Managing and accessing I/O will definitely change
 - Too many prototypes are already in production and more to come
- Standards across data centers are needed
 - Consortia to define and implement (storage, montioring etc.) APIs
- Need for separation of concern between domain scientists, scientific programmer, system architect and computer science
 - Increase the abstraction level, decouple code

Laboratory for I/O Investigation

Virtual Lab: Conduct what if analysis

- Design new optimizations
- Apply optimization to application w/o changing them
- Compute best-cases and estimate if changes pay off

So far: Flexible Event Imitation Engine for Parallel Workloads (feign)

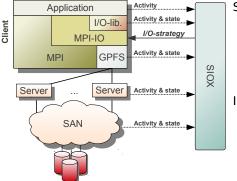
- Helper functions: to pre-create environment, to analyze, ...
- A handful of mutators to alter behavior
- Adaption of SIOX is ongoing to allow on-line experimentation

Appendix

Appendix 0000

Additional Research @ WR

Compression of scientific data


- Lossless (1.5:1 to 2.5:1)
- Lossy: rate 12:1 to 50:1³
- Interfaces for specifying tolerable loss
- Domain-specific languages
 - Retain code-structure
 - Improve readability
 - Intelligent re-structuring of code at compile time
- Alternative interfaces, usage of object storage
- Monitoring
- We push (computer science) standards towards the needs of scientists

 $^{{}^3} Wavelet {\tt Compression Technique for High-Resolution {\tt Global Model Data on an I cosahedral Grid, Wanget.al, 2015}$

```
Appendix
```

Scalable I/O for Extreme Performance (SIOX)

Started as collaborative project between UHH, ZIH and HLRS

SIOX aims to

- collect and analyse
 - activity patterns and
 - performance metrics
- system-wide

In order to

- assess system performance
- Iocate and diagnose problem
- learn optimizations

Appendix

SIOX Ongoing Work

Automatic assessing the quality of the I/O

```
Your Read I/O consisted of:
200 calls/100 MiB
10 calls/10 MiB were cached in the system's page cache
10 calls/20 MiB were cached on the server's cache
100 calls/40 MiB were dominated by average disk seek time (0.4
...
5 calls/100 KiB were unexpected slow (1.5s time loss)
```

Follow up Project

- Together with our partners we submitted a follow up project
- To increase scalability and assessment capability