## Lustre at DKRZ

## Julian M. Kunkel

kunkel@dkrz.de

German Climate Computing Center (DKRZ)

21-06-2016



- The Mistral supercomputer was shipped with Lustre
  - 3 PFLOP/s system
  - 52 PB Lustre storage
  - Roughly 6 M EURO
- System was procured in two phases
  - 2015: Phase 1 with 30 PB storage
  - 2016 (in production soon): Phase 2 with 22 PB storage
- Other systems/services at DKRZ use Mistral's Lustre storage
- Interesting aspects
  - RobinHood for QoS and policy management
  - Lustre 2.5 Seagate edition
- University of Hamburg is IPCC for Lustre
  - Researching file-system compression

# I/O Architecture (Phase 1)

- 31 ClusterStor 9000 Scalable Storage Units (SSUs)
  - SSU: Active/Active failover server pair
- Single Object Storage Server (OSS)
  - 1 FDR uplink
  - GridRaid: (Object Storage Target (OST))
    - 41 HDDs, de-clustered RAID6 with 8+2(+2 spare blocks)
    - 1 SSD for the Log/Journal
  - 6 TByte disks
- 31 Extension units (JBODs)
  - Do not provide network connections
  - Storage by an extension is managed by the connected SSU
- Multiple metadata servers
  - Root MDS + 4 DNE MDS
  - Active/Active failover (DNEs, Root MDS with Mgmt)
  - DNE phase 1: Assign responsible MDS per directory

# I/O Architecture (Phase 2)

- Additional file system (Now two file systems in total)
  - Mounted on all compute nodes
  - Characteristics: 11 k disks, 52 PB storage
- 34 ClusterStor L300 Scalable Storage Units (SSUs)
- 34 Extension units (JBODs)
- Storage hardware
  - Seagate Enterprise Capacity V5 (8 TB) disks
- Multiple metadata servers
  - Root MDS + 7 DNE MDS

# Parallel File System

Lustre 2.5 (Seagate edition, some backports from 2.7+)

### Filesystem

- We have two file systems: /mnt/lustre0[1,2]
- Symlinks: /work, /scratch, /home, ...
- For mv, each metadata server behaves like a file system

#### Assignment of MDTs to Directories

- In the current version, directories must be assigned to MDTs
  - /home/\* on MDT0
  - /work/[projects] are distributed across MDT1-4
  - /scratch/[a,b,g,k,m,u] are distributed across MDT1-4
- Data transfer between MDTs is currently slow (mv becomes cp)
- We will transfer some projects to the phase 2 file system
  - New projects will be created on the phase 2 system

## Peak Performance

#### Phase 1 + 2

- 65 SSUs · (2 OSS/SSU + 2 JBODs/SSU)
- 1 Infiniband FDR-14: 6 GiB/s  $\Rightarrow$  780 GiB/s
- 1 ClusterStor9000 (CPU + 6 GBit SAS): 5.4 GiB/s
- L300 yield IB speed, still we consider 5.4 GiB/s ⇒ aggregated performance 704 GiB/s
- Phase 2: obd-filter survey demonstrates that 480 GB/s and 580 GB/s can be delivered

# Performance Results from Acceptance Tests

- Throughput in GB/s (% to peak) measured with IOR
  - Buffer size 2000000 (unaligned) on 42 OSS (Phase 1) and 64 (P 2)
  - In the phase 2 testing, the RAID of at least one OSS is rebuilding

|                                 | Phase 1   |           | Phase 2   |           |
|---------------------------------|-----------|-----------|-----------|-----------|
| Type                            | Read      | Write     | Read      | Write     |
| POSIX, independent <sup>1</sup> | 160 (70%) | 157 (69%) | 215 (62%) | 290 (84%) |
| MPI-IO, shared                  | 52 (23%)  | 41 (18%)  | 65 (19%)  | 122 (35%) |
| PNetCDF, shared                 | 81 (36%)  | 38 (17%)  | 63 (18%)  | 66 (19%)  |
| HDF5,shared                     | 23 (10%)  | 24 (11%)  | 62 (18%)  | 68 (20%)  |
| POSIX, single stream            | 1.1 (5%)  | 1.05 (5%) | 0.98 (5%) | 1.08 (5%) |

- Metadata measured with Parabench
  - Phase 1: 80 kOPs/s
    - 25 kOP/s for root MDS; 15 kOP/s for DNEs
  - Phase 2: 210 kOPs/s
    - 25 kOP/s for root MDS; 30-35 kOP/s for DNEs

<sup>&</sup>lt;sup>1</sup>1 stripe per file

## Issues With Lustre

- Management tools have potential to be improved
  - RobinHood
  - Performance analysis
- Compatibility of Lustre clients
- DNE: data movement instead of metadata
- Defining the number of stripes (instead of automatically)
- But the situation improved over the last years