AIMES Kickoff Meeting

Julian M. Kunkel

Scientific Computing
Department of Informatics
University of Hamburg

2016-01-27
Agenda

8:30 Welcome: Julian
8:40 Modell overview
 8:40 NICAM: Yashiro
 9:10 ICON: Günther Zängl
 9:40 DYNAMICO: Thomas Dubos
10:10 Coffee break (and selection of lunch)
10:40 Work packages (ongoing work, issues, 2016)
 10:40 WP1 DSL: Julian
 11:20 WP2 I/O: Thomas Dubos
 12:00 WP3 Evaluation: Yashiro
12:40 We have ordered lunch to this place
 WP4 (Administratives): Julian
13:00 Final discussions: all
13:45 End
Goals of this Meeting

- Clarify project content (and adjust it if necessary)
- Clarify (re-discuss) responsibilities and means for collaboration
- Discuss and identify joint strategy to achieve the project goals
 - Ensure that we have a plan to implement the goals
 - Especially for 2016
Work-Package Overview

WP1: Higher-level code design

WP2: Massive I/O

WP3: Evaluation

WP4: Management
<table>
<thead>
<tr>
<th>Milestones</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP1: HL code-design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 DYNAMICO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 ICON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 NICAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 DSL concepts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 S2S tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP2: Massive I/O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Opt. formats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Data reduct.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 API</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Var. accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 Lossy comp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP3: Evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Survey/Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Extract kernels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Mini-apps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Ev. mini-IGCMs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 Est. benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6 I/O full models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP4: Proj. coord.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Proj. Mgmt.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 Quality A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4 Dissemination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 Comm. others</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WP1: Towards Higher-Level Code Design & Related Recent Work of UHAM

Julian M. Kunkel

Scientific Computing
Department of Informatics
University of Hamburg

2016-01-27
Outline

1. Objectives

2. Recent Progress

3. Work Plan
Objectives: WP 1 Towards higher-level code design

- Separation of concerns: Domain science, scientific programmer, CS
 - High level of abstraction, close to application domain
 - Independence of hardware-specific features, e.g. memory-layout
 - Convertible into existing languages and DSLs
WP 1: Tasks & Strategy

- Develop and reformulate key parts of models into DSL-dialects
 - 1.1 DYNAMICO
 - 1.2 ICON
 - 1.3 NICAM
- 1.4 Design a common DSL concepts for all ICO models
 - Identify chances for common convention
 - But still allow for individual adjustments/formulations
- 1.5 Develop a source-to-source translation tool and mappings
 - Lightweight to allow scientists not to worry about maintenance
 - Language can be adjusted for individual models / groups
Risks and Mitigation Strategies

- Unavailability of runnable model test-code (WP 3)
 - We need to start ASAP to exchange code!

- Little uptake of the DSL concepts by the users
 - We need to involve the user communities
 - Can we identify a small number of key users to discuss DSL concepts/changed code?
 - Start with an incremental approach for the development

- Developed tool is not versatile
 - Create a repository of source/target examples (specimen repo)
 - Could be architecture-specific optimizations or target libraries (e.g. GridTools, ...)

- Abstraction does not allow architecture-specific optimizations (or into other target back-ends)
 - Test-driven development on specimen
 - Co-design between language wishlist and tool development
Prototypical Work for ICON

Dialect for ICON

```
Subset :: p_patch
Edge :: edge
REAL(wp), Var1DCell :: z_thermal_exp

foreach cell in p_patch (elevation rl_start to rl_end)
    z_thermal_exp(cell) = z_thermal_exp(cell) + &
    cvd_o_rd * p_nh%diag%ddt_exner_phy(cell) / &
    (p_nh%prog(nnnow)%exner(cell)* p_nh%metrics%inv_ddqz_z_full(cell))
end foreach
```

Original code == Translated code for CPUs

```
TYPE(t_patch), TARGET, INTENT(IN) :: p_patch
REAL(wp):: z_thermal_exp (nproma,p_patch%nbblksc)
i_startblk = p_patch%cells%start_block(rl_start)
i_endblk = p_patch%cells%end_block(rl_end)
DO jb = i_startblk, i_endblk
    CALL get_indices_c(p_patch, jb, i_startblk, i_endblk,&
                       i_startidx, i_endidx, rl_start, rl_end)
    DO jk = 1, nlev
        DO jc = i_startidx, i_endidx
            z_thermal_exp(jc,jb) = z_thermal_exp(jc,jb) + &
            cvd_o_rd * p_nh%diag%ddt_exner_phy(jc,jk,jb)/ &
            (p_nh%prog(nnnow)%exner(jc,jk,jb)* &
             p_nh%metrics%inv_ddqz_z_full(jc,jk,jb))
        ENDDO
    ENDDO
ENDDO
```

Julian M. Kunkel
Ongoing Work: Bachelor’s Thesis

- Investigate high-level code modifications
 - Pull-up and push down of (if) conditions
 - Loop fusioning
 - Function merging (inlining)
 - Build a DAG for dependencies (could be exploited in other frameworks)

Goals: semi-automatically optimize loop structures for blocking

Run `dot -Tpdf -o original.pdf original.dot`

Or invoke \LaTeX{} with the `-shell-escape` option to typeset the changes.
Work Plan

Deliverables

- D1.1 Report: Model-specific dialect formulations – M15
- D1.2 Report and whitepaper: DSL concepts for icosahedral models — M24
- D1.3 Report and code: Advanced source-to-source translation tools — M36

Dependencies on other WPs/tasks

- T 3.2: Extract simple kernels from climate models
- T 3.1: (Survey and) selection of test cases
Proposed Strategy for 2016

Proposed approach: Incremental refinement of prototypes

- Build a first prototype with some features quickly
- Start the discussion with users having the prototype results
- Maintain a repository with source/target representations

2016

- M4: for each model some kernels and testcases are available
- M5: have a first design document for source-to-source tool
- M6: identified (first) user issues with code and wishlist
- M7: discussion between wishlist and tool development
- M10: prototype tool to translate DSLized code into original
- M12: Paper i.e. “Potential of DSLs for Icosahedral Models”
Discussion time...
Related Work for WP2
Related Work for WP2

Ongoing

- Analysis of lossless compression on Mistral
 - Compression ratio of 2:1 with LZMA
- API and library for lossy compression started
 - We expect a compression ratio of > 10:1

Previous work

- Studies of compression ratio in e.g. ICOMEX
Analysis of Lossless Compression on DKRZ’ Mistral

- Compression of LZMA, ZIP, SZIP, BZIP2 on production data
- Selected a representative random sample
 - 35.4 TiB, 200k files of 13 PB, 280 M (0.27%, 0.75%)
- Analyzed compression ratio

Relative size of the compressed file vs. files scanned

![Graph showing relative size of compressed files vs. files scanned]

Figure: Left avg. across file number., right avg. over the data volume
Mean compression ratio is 2.5:1 (0.5 rel. size)

Questions:
- What is the mean compression across all files?
- What is the mean compression over the capacity/size?

<table>
<thead>
<tr>
<th>Type</th>
<th>File #</th>
<th>Size in GiB</th>
<th>Compr. file</th>
<th>Compr. size</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>118366</td>
<td>16578.79</td>
<td>0.386</td>
<td>0.583</td>
</tr>
<tr>
<td>netCDF2</td>
<td>15117</td>
<td>4703.55</td>
<td>0.378</td>
<td>0.385</td>
</tr>
<tr>
<td>netCDF</td>
<td>41596</td>
<td>5567.41</td>
<td>0.414</td>
<td>0.412</td>
</tr>
<tr>
<td>netCDF4 classic</td>
<td>3081</td>
<td>258.51</td>
<td>0.838</td>
<td>0.789</td>
</tr>
<tr>
<td>netCDF4</td>
<td>2683</td>
<td>1204.19</td>
<td>0.801</td>
<td>0.482</td>
</tr>
<tr>
<td>GRIB</td>
<td>15453</td>
<td>6708.00</td>
<td>0.526</td>
<td>0.468</td>
</tr>
<tr>
<td>GRIB2</td>
<td>158</td>
<td>0.84</td>
<td>0.836</td>
<td>0.844</td>
</tr>
<tr>
<td>IEG</td>
<td>7463</td>
<td>504.14</td>
<td>0.615</td>
<td>0.559</td>
</tr>
<tr>
<td>SERVICE</td>
<td>1398</td>
<td>148.90</td>
<td>0.159</td>
<td>0.267</td>
</tr>
<tr>
<td>EXTRA</td>
<td>2018</td>
<td>593.80</td>
<td>0.319</td>
<td>0.377</td>
</tr>
</tbody>
</table>
SCIL: Scientific Compression Interface Library

- Ongoing work, started in an software lab (with Armin Schaare)
- C-Library for lossy compression of (dp) floating point
- User provides required precision
 - Relative error tolerance
 - Absolute error tolerance
 - Significant digits
- SCIL chooses the algorithm which meets these demands
- Likely, that we’ll have performance constraints, too
- We can integrate such a library into e.g. HDF5
SCIL: Example Usage

```c
scil_hints hints;
hints.absolute_tolerance = 1.0;
hints.significant_digits = 3;

scil_context * ctx;

ret = scil_create_compression_context(& ctx, & hints);
size_t comp_size;
char * comp_data = malloc(data_size +
    SCIL_BLOCK_HEADER_MAX_SIZE);
ret = scil_compress(ctx, comp_data, & comp_size,
    input_data, input_length);

// do sth. with comp_data

size_t orig_data_size;
char * orig_data = malloc(max_data_size);
ret = scil_decompress(orig_data, & orig_data_size,
    comp_data, comp_size);
```
Remember: Lossy Compression Study in ICOMEX

Study of GRIB2, GRIB2 + JPEG2000, GRIB2 + LZMA, APAX

- APAX: Cooperation with SAMPLIFY (now out of business)

GRIB2 Compression Scheme

- Choose the number of bits (accuracy)
- Identify Min/Max of FP values
- Quantize values to $h = (\text{max} - \text{min})/2^{\text{bits}}$
- Encode value v as integer i
 $$\hat{v} = \text{min} + i \cdot h$$
Analyzing 200+ Output Variables of ECHAM

Figure: Relative compression size of variables sorted by GRIB2/LZMA

Consequence: One lossy compression scheme is not sufficient