
SIOX: A Flexible Approach

Julian Kunkel Jakob Lüttgau1

German Climate Computing Center

Analyzing Parallel I/O BoF
SC 2015

1University of Hamburg

Outline

1 Introduction

2 The Modular Architecture of SIOX

3 Analysis and Visualization of I/O

4 Experiments

5 News and Ongoing R&D

6 Outlook & Summary

Julian M. Kunkel SIOX: A �exible approach 2 / 18

Introduction

Project Goals

MPI

MPI-IO

Application

I/O-lib.

GPFS

C
lie

n
t

...ServerServer ServerServer

Activity & state

Activity & state

Activity & state

Activity & state

I/O-strategy

SAN

S
IO
X

Activity

SIOX is a �exible prototype for

collecting and analyzing

activity patterns and
performance metrics

in order to

assess system performance

locate and diagnose problem

learn & apply

optimizations

intelligently steer monitoring

Julian M. Kunkel SIOX: A �exible approach 3 / 18

The Modular Architecture of SIOX Instrumentation

Extensibility for Alternate APIs

Work�ow
1 Annotate a header �le
2 Tool siox-wrapper-generator creates intercepting libraries

Run-time instrumentation with LD_PRELOAD
Compile-time instrumentation using ld �wrap

3 siox-inst tool simpli�es instrumentation

Header annotations for MPI_File_write_at()
//@activity

//@activity_link_size fh

//@activity_attribute filePosition offset

//@splice_before ''int intSize; MPI_Type_size(datatype, &intSize);

uint64_t size=(uint64_t)intSize*(uint64_t)count;''

//@activity_attribute bytesToWrite size

//@error ''ret!=MPI_SUCCESS'' ret

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void * buf, int count,

MPI_Datatype datatype, MPI_Status * status);

Julian M. Kunkel SIOX: A �exible approach 4 / 18

The Modular Architecture of SIOX Instrumentation

Modularity of SIOX

The SIOX architecture is �exible and developed in C++ components

License: LGPL, vendor friendly

Upon start-up of (instrumented) applications, modules are loaded

Con�guration �le de�nes modules and options

Choose advantageous plug-ins
Regulate overhead

For debugging, reports are output at application termination

SIOX may gather statistics of (application) behavior / activity
Provide (internal) module statistics

Julian M. Kunkel SIOX: A �exible approach 5 / 18

The Modular Architecture of SIOX Instrumentation

Example Work�ow (many are possible)

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

5) SIOX
Knowledge Base

holds analyses
and optimizations

monitoring
data

extract,
transform
and load
process

(off-line)

machine
learning

algorithms
(off-line)

Compute node / file system server

m : 1

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Monitoring Path

Knowledge Path

patterns,
optimizations
and system-
information

updates of
systeminfo,
plugindata

Data gathered is stored via the monitoring path.

Components receive the knowledge gleaned via the knowledge path.

Julian M. Kunkel SIOX: A �exible approach 6 / 18

The Modular Architecture of SIOX Modules

Module Interactions of an Example Con�guration

Julian M. Kunkel SIOX: A �exible approach 7 / 18

The Modular Architecture of SIOX Modules

Features of the Working Prototype

Monitoring
Application (activity) behavior
Ontology and system information
Data can be stored in �les or Postgres database
Trace reader

Daemon
Applications forward activities to the daemon
Node statistics are captured
Energy consumption (RAPL) can be captured

Activity plug-ins
GenericHistory plug-in tracks performance, proposes MPI hints
Fadvise (ReadAhead) injector
FileSurveyor prototype � Darshan-like

Reasoner component (with simple decision engine)
Intelligent monitoring: trigger monitoring on abnormal behavior

Reporting of statistics on console or �le (independent and MPI-aware)

Julian M. Kunkel SIOX: A �exible approach 8 / 18

Analysis and Visualization of I/O Trace Reader

Trace Reader

Concepts

Supports di�erent �le and database back-ends

Plug-in based

Text output
Time-o�set plots for �les

Example text output created by the trace-reader
0.0006299 ID1 POSIX open(POSIX/descriptor/filename="testfile",

POSIX/descriptor/filehandle=4) = 0

0.0036336 ID2 POSIX write(POSIX/quantity/BytesToWrite=10240,

POSIX/quantity/BytesWritten=10240, POSIX/descriptor/filehandle=4,

POSIX/file/position=10229760) = 0 ID1

0.0283800 ID3 POSIX close(POSIX/descriptor/filehandle=4) = 0 ID1

Julian M. Kunkel SIOX: A �exible approach 9 / 18

Analysis and Visualization of I/O Trace Reader

Trace Reader Plug-in: AccessInfoPlotter

Plot for each �le and rank information about accessed data

Example: non-contiguous MPI I/O by 2 processes to a shared �le

Reveal underlying POSIX access pattern
Read-Modify-Write cycle of data-sieving

(a) Rank 0 (b) Rank 1

Julian M. Kunkel SIOX: A �exible approach 10 / 18

Analysis and Visualization of I/O Reporting

Reporting: FileSurveyor

Easy to collect and track relevant application statistics
FileSurveyor prototype collects POSIX/MPI access statistics
Only 1000 LoC
... Yes we'll pretty print things at some point ...

[...] "(Aggregated over all files)"/Accesses = (40964,40964,40964)
...
[...] "/mnt/lustre/file.dat"/Accesses = (40964,40964,40964)
[...] "/mnt/lustre/file.dat"/Accesses/Reading/Random, long seek = (20481.8,20480,20482)
[...] "/mnt/lustre/file.dat"/Accesses/Reading/Random, short seek = (0,0,0)
[...] "/mnt/lustre/file.dat"/Accesses/Reading/Sequential = (0.2,0,2)
[...] "/mnt/lustre/file.dat"/Bytes = (8.38861e+09,8.38861e+09,8.38861e+09)
[...] "/mnt/lustre/file.dat"/Bytes/Read per access = (204780,204780,204780)
[...] "/mnt/lustre/file.dat"/Bytes/Total read = (4.1943e+09,4.1943e+09,4.1943e+09)
[...] "/mnt/lustre/file.dat"/Seek Distance/Average writing = (1.0238e+06,1.0238e+06,1.02382e+06)
[...] "/mnt/lustre/file.dat"/Time/Total for opening = (3.9504e+08,3.66264e+08,4.38975e+08)
[...] "/mnt/lustre/file.dat"/Time/Total for reading = (1.47169e+11,1.0968e+11,1.76617e+11)
[...] "/mnt/lustre/file.dat"/Time/Total for writing = (1.08783e+12,1.03317e+12,1.16192e+12)
[...] "/mnt/lustre/file.dat"/Time/Total for closing = (1.0856e+11,6.11782e+10,1.46834e+11)
[...] "/mnt/lustre/file.dat"/Time/Total surveyed = (1.34568e+12,1.34568e+12,1.3457e+12)

Example report created by FileSurveyor and aggregated by MPIReporter (shortened
excerpt). The number format is (average, minimum, maximum).

Julian M. Kunkel SIOX: A �exible approach 11 / 18

Experiments Parabench I/O Benchmark

MPI 4-levels-of-Access

Each process accesses 10240 blocks of 100KiB
Several hint sets are evaluated

write ind-ctg read ind-ctg write coll-ctg read coll-ctg write ind-nc read ind-nc write coll-nc read coll-nc
0

100

200

300

400

500

600

700

No hints Hints Hints, MPI instr. using ld –wrap Hints, POSIX & MPI instr. with LD_PRELOAD

T
h

ro
u

g
h

p
u

t i
n

 M
iB

/s

Performance comparison of the 4-levels-of-access on our Lustre �le system. The hints
increase the collective bu�er size to 200MB and disable data sieving.

Observations

GenericHistory could inject the hints automatically for ind-nc cases

Overhead in read coll-ctg due to instrumentation of network!

Julian M. Kunkel SIOX: A �exible approach 12 / 18

Experiments Injection of �I/O-Hints�

Optimization Plug-in: Read-Ahead with Fadvise

Plug-in injects posix_fadvise() for strided access

vs. no prefetching vs. in code embedded execution

Compute �Benchmark� reads data, then sleeps

100µs and 10ms for 20KiB and 1000KiB stride, respectively

Results

Experiment 20KiB stride 1000KiB stride

Regular execution 97.1µs 7855.7µs

Embedded fadvise 38.7µs 45.1µs

SIOX fadvise read-ahead 52.1µs 95.4µs

Time needed to read one 1KiB data block in a strided access pattern.

Julian M. Kunkel SIOX: A �exible approach 13 / 18

News and Ongoing R&D

Changing I/O Behavior on the Fly

Motivation

What is the bene�t of implementing an I/O optimization in the code?

Traditional methodology: (estimate), implement, evaluate
⇒ Time consuming!

Alternative strategies

Trace and record application I/O, then alter and replay I/O

Intercept I/O and manipulate directly

Pro/Cons

+ Implement an optimization once, test/run with many applications

- Looses some performance due to interception

Julian M. Kunkel SIOX: A �exible approach 14 / 18

News and Ongoing R&D

Modi�cations to SIOX

The proposed strategies have been implemented (for a subset of
POSIX)

We extracted the execution of calls from the monitoring path

Now, a playback plugin executes calls
The same plugins can be used in trace/replay scenarios

+ This also reduced the complexity of the interception layer

Modi�cation during trace-replay and online-playback

SIOX

async

MUX

sync

Activity

System/

Library

Plugin

open

read

read

...

close

Trace

ReplayerPlugin

Wrapper

open

read

read

...

close

SIOX

async

MUX

sync

WrapperApplication

Replayer

Activity

System/

Library

Trace Modifiiers / ...

Julian M. Kunkel SIOX: A �exible approach 15 / 18

Outlook & Summary

Ongoing Works

Apply SIOX to more applications on DKRZ's Mistral supercomputer

1.4 (phase 1), 3 PetaFlop/s
45 PetaByte storage

Improve intelligence

Information about predicted storage class (e.g. cached, uncached)
Performance predictors for anomaly detection
Machine learning plug-ins
Online optimization
System-wide reasoning logic

Stretch monitoring annotations to also create replay plugins

Act as source for DKRZ system-wide monitoring system

Will integrate statistics e.g. knowledge/assessments for jobs
Optional to run applications with SIOX

Julian M. Kunkel SIOX: A �exible approach 16 / 18

Outlook & Summary

Assessing Storage Class and Performance

Simpli�ed output of an application run could be

Read I/O

Total: 200 calls/100 MiB in 5.1s

These operations are presumably in the following classes:

Cached in the page cache: 10 calls/10 MiB

Cached on the server's cache: 10 calls/20 MiB

Average disk seek time: 100 calls/40 MiB (0.4s time loss)

Unexpected slow: 5 calls/100 KiB (1.5s time loss)

Julian M. Kunkel SIOX: A �exible approach 17 / 18

Outlook & Summary

Summary

SIOX aims to capture and optimize I/O

We can change behavior without modifying code!

Design the optimization once, apply on many applications
Useful to evaluate strategies without implementing them (again)

The goal of SIOX is a modular and open system

Julian M. Kunkel SIOX: A �exible approach 18 / 18

A complete environment for testing alternative optimizations

Parser/

Provider

open

read

read

...

close

System/

Library

Parser/

Provider

Activity

Datatype
Parser/

Provider

Semantics/

Replayer

10010

0110011

1001110

1001010

1101100

Buffer

Pre-Creator

Modifier

Buffer

Modifier

Environment

offline online

Julian M. Kunkel SIOX: A �exible approach 19 / 18

Database GUI

Database GUI

A PHP GUI provides access to the Postgres DB

Overview of applications, activities, chain-of-e�ects

Activity list showing I/O function and timestamps.

Julian M. Kunkel SIOX: A �exible approach 20 / 18

Database GUI

Database GUI

Detailed view of activity showing the causal chain and list of attributes.

Julian M. Kunkel SIOX: A �exible approach 21 / 18

Remembering Performance �I/O-Hints�

Optimization Plug-in: GenericHistory

Plug-in remembers hints and observable I/O performance

Does not store hints � tracks them for application life
Pre-de�ned

Proposes MPI hints based on historic knowledge

Julian M. Kunkel SIOX: A �exible approach 22 / 18

System Con�guration

System Con�guration

Test system

10 compute nodes

10 I/O nodes with Lustre

Compute Nodes

Dual-socket Intel Xeon X5650@2.67 GHz

Ubuntu 12.04

Applications are compiled with: GCC 4.7.2, OpenMPI 1.6.5

I/O Nodes

Intel Xeon E3-1275@3.4 GHz, 16 GByte RAM

Seagate Barracuda 7200.12 (ca. 100 MiB/s)

CentOS 6.5, Lustre 2.5

Julian M. Kunkel SIOX: A �exible approach 23 / 18

Overhead

Overhead

Due to asynchronous handling applications are never stalled
A call to SIOX in the order of several µs

We see room for improvement, and have some solutions in mind!

Initialization of SIOX with �xed costs
SIOX IPC handles 90,000 (1KiB) msgs per second
PostgreSQL only 3,000 activities (we'll need to invest more time)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0
2
4
6
8

10
12
14
16
18
20

SIOX plain SIOX posix fw SIOX process

of threads

M
ic

ro
se

co
n

d
s

Overhead per thread due to critical regions in the modules.
Julian M. Kunkel SIOX: A �exible approach 24 / 18

Observable Performance

Observable Performance � Discussion

Bad news

For fast I/O operations several µs is expensive

Additionally, locks protect several modules

⇒ I/O calls are synchronized (max. 100K Ops/s)

Good news

We are already monitoring overhead

⇒ We will integrate methods to control the overhead

Flexible and easy con�guration can strip costly calls

Application runs?

For the ICON climate model, only initialization overhead is measurable

A DB cache module reducing overhead

Julian M. Kunkel SIOX: A �exible approach 25 / 18

	Introduction
	The Modular Architecture of SIOX
	Instrumentation
	Modules

	Analysis and Visualization of I/O
	Trace Reader
	Reporting

	Experiments
	Parabench I/O Benchmark
	Injection of “I/O-Hints”

	News and Ongoing R&D
	Outlook & Summary
	Appendix
	Database GUI
	Remembering Performance “I/O-Hints”
	System Configuration
	Overhead
	Observable Performance

