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Introduction
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SIOX is a �exible prototype for

collecting and analyzing

activity patterns and
performance metrics

in order to

assess system performance

locate and diagnose problem

learn & apply

optimizations

intelligently steer monitoring
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The Modular Architecture of SIOX Instrumentation

Extensibility for Alternate APIs

Work�ow
1 Annotate a header �le
2 Tool siox-wrapper-generator creates intercepting libraries

Run-time instrumentation with LD_PRELOAD
Compile-time instrumentation using ld �wrap

3 siox-inst tool simpli�es instrumentation

Header annotations for MPI_File_write_at()
//@activity

//@activity_link_size fh

//@activity_attribute filePosition offset

//@splice_before ''int intSize; MPI_Type_size(datatype, &intSize);

uint64_t size=(uint64_t)intSize*(uint64_t)count;''

//@activity_attribute bytesToWrite size

//@error ''ret!=MPI_SUCCESS'' ret

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void * buf, int count,

MPI_Datatype datatype, MPI_Status * status);

Julian M. Kunkel SIOX: A �exible approach 4 / 18



The Modular Architecture of SIOX Instrumentation

Modularity of SIOX

The SIOX architecture is �exible and developed in C++ components

License: LGPL, vendor friendly

Upon start-up of (instrumented) applications, modules are loaded

Con�guration �le de�nes modules and options

Choose advantageous plug-ins
Regulate overhead

For debugging, reports are output at application termination

SIOX may gather statistics of (application) behavior / activity
Provide (internal) module statistics
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The Modular Architecture of SIOX Instrumentation

Example Work�ow (many are possible)
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Data gathered is stored via the monitoring path.

Components receive the knowledge gleaned via the knowledge path.
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The Modular Architecture of SIOX Modules

Module Interactions of an Example Con�guration
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The Modular Architecture of SIOX Modules

Features of the Working Prototype

Monitoring
Application (activity) behavior
Ontology and system information
Data can be stored in �les or Postgres database
Trace reader

Daemon
Applications forward activities to the daemon
Node statistics are captured
Energy consumption (RAPL) can be captured

Activity plug-ins
GenericHistory plug-in tracks performance, proposes MPI hints
Fadvise (ReadAhead) injector
FileSurveyor prototype � Darshan-like

Reasoner component (with simple decision engine)
Intelligent monitoring: trigger monitoring on abnormal behavior

Reporting of statistics on console or �le (independent and MPI-aware)
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Analysis and Visualization of I/O Trace Reader

Trace Reader

Concepts

Supports di�erent �le and database back-ends

Plug-in based

Text output
Time-o�set plots for �les

Example text output created by the trace-reader
0.0006299 ID1 POSIX open(POSIX/descriptor/filename="testfile",

POSIX/descriptor/filehandle=4) = 0

0.0036336 ID2 POSIX write(POSIX/quantity/BytesToWrite=10240,

POSIX/quantity/BytesWritten=10240, POSIX/descriptor/filehandle=4,

POSIX/file/position=10229760) = 0 ID1

0.0283800 ID3 POSIX close(POSIX/descriptor/filehandle=4) = 0 ID1
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Analysis and Visualization of I/O Trace Reader

Trace Reader Plug-in: AccessInfoPlotter

Plot for each �le and rank information about accessed data

Example: non-contiguous MPI I/O by 2 processes to a shared �le

Reveal underlying POSIX access pattern
Read-Modify-Write cycle of data-sieving

(a) Rank 0 (b) Rank 1
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Analysis and Visualization of I/O Reporting

Reporting: FileSurveyor

Easy to collect and track relevant application statistics
FileSurveyor prototype collects POSIX/MPI access statistics
Only 1000 LoC
... Yes we'll pretty print things at some point ...

[...] "(Aggregated over all files)"/Accesses = (40964,40964,40964)
...
[...] "/mnt/lustre/file.dat"/Accesses = (40964,40964,40964)
[...] "/mnt/lustre/file.dat"/Accesses/Reading/Random, long seek = (20481.8,20480,20482)
[...] "/mnt/lustre/file.dat"/Accesses/Reading/Random, short seek = (0,0,0)
[...] "/mnt/lustre/file.dat"/Accesses/Reading/Sequential = (0.2,0,2)
[...] "/mnt/lustre/file.dat"/Bytes = (8.38861e+09,8.38861e+09,8.38861e+09)
[...] "/mnt/lustre/file.dat"/Bytes/Read per access = (204780,204780,204780)
[...] "/mnt/lustre/file.dat"/Bytes/Total read = (4.1943e+09,4.1943e+09,4.1943e+09)
[...] "/mnt/lustre/file.dat"/Seek Distance/Average writing = (1.0238e+06,1.0238e+06,1.02382e+06)
[...] "/mnt/lustre/file.dat"/Time/Total for opening = (3.9504e+08,3.66264e+08,4.38975e+08)
[...] "/mnt/lustre/file.dat"/Time/Total for reading = (1.47169e+11,1.0968e+11,1.76617e+11)
[...] "/mnt/lustre/file.dat"/Time/Total for writing = (1.08783e+12,1.03317e+12,1.16192e+12)
[...] "/mnt/lustre/file.dat"/Time/Total for closing = (1.0856e+11,6.11782e+10,1.46834e+11)
[...] "/mnt/lustre/file.dat"/Time/Total surveyed = (1.34568e+12,1.34568e+12,1.3457e+12)

Example report created by FileSurveyor and aggregated by MPIReporter (shortened
excerpt). The number format is (average, minimum, maximum).
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Experiments Parabench I/O Benchmark

MPI 4-levels-of-Access

Each process accesses 10240 blocks of 100KiB
Several hint sets are evaluated
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Performance comparison of the 4-levels-of-access on our Lustre �le system. The hints
increase the collective bu�er size to 200MB and disable data sieving.

Observations

GenericHistory could inject the hints automatically for ind-nc cases

Overhead in read coll-ctg due to instrumentation of network!
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Experiments Injection of �I/O-Hints�

Optimization Plug-in: Read-Ahead with Fadvise

Plug-in injects posix_fadvise() for strided access

vs. no prefetching vs. in code embedded execution

Compute �Benchmark� reads data, then sleeps

100µs and 10ms for 20KiB and 1000KiB stride, respectively

Results

Experiment 20KiB stride 1000KiB stride

Regular execution 97.1µs 7855.7µs

Embedded fadvise 38.7µs 45.1µs

SIOX fadvise read-ahead 52.1µs 95.4µs

Time needed to read one 1KiB data block in a strided access pattern.
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News and Ongoing R&D

Changing I/O Behavior on the Fly

Motivation

What is the bene�t of implementing an I/O optimization in the code?

Traditional methodology: (estimate), implement, evaluate
⇒ Time consuming!

Alternative strategies

Trace and record application I/O, then alter and replay I/O

Intercept I/O and manipulate directly

Pro/Cons

+ Implement an optimization once, test/run with many applications

- Looses some performance due to interception
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News and Ongoing R&D

Modi�cations to SIOX

The proposed strategies have been implemented (for a subset of
POSIX)

We extracted the execution of calls from the monitoring path

Now, a playback plugin executes calls
The same plugins can be used in trace/replay scenarios

+ This also reduced the complexity of the interception layer

Modi�cation during trace-replay and online-playback
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Outlook & Summary

Ongoing Works

Apply SIOX to more applications on DKRZ's Mistral supercomputer

1.4 (phase 1), 3 PetaFlop/s
45 PetaByte storage

Improve intelligence

Information about predicted storage class (e.g. cached, uncached)
Performance predictors for anomaly detection
Machine learning plug-ins
Online optimization
System-wide reasoning logic

Stretch monitoring annotations to also create replay plugins

Act as source for DKRZ system-wide monitoring system

Will integrate statistics e.g. knowledge/assessments for jobs
Optional to run applications with SIOX
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Outlook & Summary

Assessing Storage Class and Performance

Simpli�ed output of an application run could be

Read I/O

Total: 200 calls/100 MiB in 5.1s

These operations are presumably in the following classes:

Cached in the page cache: 10 calls/10 MiB

Cached on the server's cache: 10 calls/20 MiB

Average disk seek time: 100 calls/40 MiB (0.4s time loss)

Unexpected slow: 5 calls/100 KiB (1.5s time loss)
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Outlook & Summary

Summary

SIOX aims to capture and optimize I/O

We can change behavior without modifying code!

Design the optimization once, apply on many applications
Useful to evaluate strategies without implementing them (again)

The goal of SIOX is a modular and open system
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A complete environment for testing alternative optimizations
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Database GUI

Database GUI

A PHP GUI provides access to the Postgres DB

Overview of applications, activities, chain-of-e�ects

Activity list showing I/O function and timestamps.
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Database GUI

Database GUI

Detailed view of activity showing the causal chain and list of attributes.
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Remembering Performance �I/O-Hints�

Optimization Plug-in: GenericHistory

Plug-in remembers hints and observable I/O performance

Does not store hints � tracks them for application life
Pre-de�ned

Proposes MPI hints based on historic knowledge
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System Con�guration

System Con�guration

Test system

10 compute nodes

10 I/O nodes with Lustre

Compute Nodes

Dual-socket Intel Xeon X5650@2.67 GHz

Ubuntu 12.04

Applications are compiled with: GCC 4.7.2, OpenMPI 1.6.5

I/O Nodes

Intel Xeon E3-1275@3.4 GHz, 16 GByte RAM

Seagate Barracuda 7200.12 (ca. 100 MiB/s)

CentOS 6.5, Lustre 2.5
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Overhead

Overhead

Due to asynchronous handling applications are never stalled
A call to SIOX in the order of several µs

We see room for improvement, and have some solutions in mind!

Initialization of SIOX with �xed costs
SIOX IPC handles 90,000 (1KiB) msgs per second
PostgreSQL only 3,000 activities (we'll need to invest more time)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0
2
4
6
8

10
12
14
16
18
20

SIOX plain SIOX posix fw SIOX process

# of threads

M
ic

ro
se

co
n

d
s

Overhead per thread due to critical regions in the modules.
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Observable Performance

Observable Performance � Discussion

Bad news

For fast I/O operations several µs is expensive

Additionally, locks protect several modules

⇒ I/O calls are synchronized (max. 100K Ops/s)

Good news

We are already monitoring overhead

⇒ We will integrate methods to control the overhead

Flexible and easy con�guration can strip costly calls

Application runs?

For the ICON climate model, only initialization overhead is measurable

A DB cache module reducing overhead
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