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About DKRZ

German Climate Computing Center

To provide high performance computing platforms,
sophisticated and high capacity data management, and
superior service for premium climate science.
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Scientific Computing

Research Group of Prof. Ludwig at the University of Hamburg

Embedded into DKRZ

Research

Analysis of parallel I/O

I/O & energy tracing tools

Middleware optimization

Alternative I/O interfaces

Data reduction techniques

Cost & energy efficiency
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Motivation

Performance benefit of I/O optimizations is non-trival to predict

Non-contiguous I/O supports data-sieving optimization
Transforms non-sequential I/O to large contiguous I/O
Tunable with MPI hints: enabled/disabled, buffer size
Benefit depends on system AND application

Data sieving is difficult to parameterize
What should be recommended from a data center’s perspective?

Example non-contiguous access pattern in which every other elementary data type is accessed.

Elementary type

Filetype

Displacement

...File view
File offset

65 8721 43

Hole - data not accessed (dhole)
Accessed data (ddata)

Logical MPI offset
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Data Sieving vs. Naive I/O

Limitations of data sieving

Data sieving accesses data always with the given buffer size

⇒ Smaller buffers may provide better performance

Data sieving does not work well with complex patterns

Data sieving does not know anything about file striping

(a) ddata = 16 KiB (b) ddata = 256 KiB

Performance for variable hole size and two block sizes measured with one client.
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Goals of the Paper

Goals

The application of machine learning to determine good settings

The extraction of rules of thumb (expert knowledge)
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Methodology

1 Measure performance for different patterns

2 Store settings and performance in CSV files

3 Create decision tree (CART) models

4 Evaluate accuracy

5 Investigate training set size

6 Compare benefit over default settings

7 Extract expert knowledge from decision trees
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Prediction Models

Alternative models

Predict performance based on parameters

Predict best (data sieving) settings

PM

Input

Buffer Size
Data Sieving
Data Size
Fill Level

Output

estimated Performance

Parameters

Buffer Size
Data Sieving
Data Size
Fill Level

Observed Values

Performance

train

(a) Performance Model

PSM
Input

Data Size
Fill Level

Output

best Buffer Size
best Data Sieving

Parameters

Buffer Size
Data Sieving
Data Size
Fill Level

Observed Values

Performance

train

(b) Parameter Setting Model

PM provides a perf. estimate, whereas PSM provides the “tunable” variable parameters to achieve it
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Transformation of the Problem

We aim to apply alternative methods from machine learning

Many require classification problems instead of regression

Performance values need to be mapped into classes

Mapping

Create 10 classes with the same length up to 5% of max. perf.

Then increase performance range covered by 10% each

0 max
| | | | | | | | |

l = ε ◦ max

equal
size classes c

i+1
=c

i
(1+2ε)

|||| || ||||||| || ||
Val

relative size
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Evaluation Data

We analyzed the validity of the approach on two systems

System 1: WR cluster

Lustre 2.5

10 server nodes

1 Gb Ethernet

1 client node (max performance 110 MiB/s)

System 2: DKRZ porting system

Lustre 2.5 provided by Seagate ClusterStor 9000

2 servers

FDR-Infiniband

1 client node (max performance 800 MiB/s)
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Validation on Data of the WR Cluster

Apply k-fold cross-validation
Split data into training set and validation set
Train data with all (k-1) folds and evaluate model on 1 fold

A baseline model is the mean performance (54.7 MiB/s)
Arithmethic mean error is 28.5 MiB/s

Linear models yield a mean error of ≥ 12.7 MiB/s

CART results

k
Performance errors in MB/s Class errors
min mean max min mean max

2 6.74 6.80 6.87 1.46 1.59 1.72
4 5.19 6.25 6.92 0.94 1.34 1.72
8 4.67 5.66 6.77 0.87 1.19 1.62

Prediction errors for training sets under k-fold cross-validation. Values for k=3..7 lie in between
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Comparing Prediction with Observation

Sorted CART prediction (trained by 387 instances)
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Comparing Prediction with Observation

Non-linear performance behavior causes errors
Mispredictions due to sparse training data

Performance prediction for ddata = 256 KiB, 387 instances
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Investigating Training Set Size

Inverse k-fold validation: learn from 1 fold and test on (k-1)
With ≥ 96 instances better than the linear model

Mean prediction error of PM by training set size under inverse k-fold cross-validation. Class prediction errors
show similar behaviorJulian M. Kunkel ISC, 2015 15 / 23
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Machine Learning vs. System-Wide Defaults

Performance gain over fixed default parameters

Best default choice would be data sieving with 1 MiB

Benefit of CART vs. default is between 25-50%

Default Choice CART PSM, 387 Inst. Loss compared to best choice

Off 4.2 MB/s 9.6 MB/s
1 MiB 1.9 MB/s 7.6 MB/s
4 MiB 6.9 MB/s 12.2 MB/s
100 MiB 6.9 MB/s 12.2 MB/s

Arith. mean perf. improvements with the PSM-learned and best choices for sbuffer compared to a default
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Extracting Knowledge

Rules can be easily extracted from decision trees

Consider a performance prediction

Rules (this is common sense for I/O experts)

Small fill levels and data sizes are slow
Large fill levels achieve good performance

First three levels of the CART classifier rules for three classes slow, avg, fast ([0, 25], (25, 75], > 75 MB/s). The
dominant label is assigned to the leaf nodes – the probability for each class is provided in brackets.
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Measured Data

Captured on DKRZ porting system for Mistral

Evaluate if machine learning could be useful for our next system

What Lustre and data sieving settings are useful defaults?

Vary lustre stripe settings

128 KiB or 2 MiB
1 stripe or 2 stripes

Vary data sieving

Off or 4 MiB

Vary block and hole size (similar to before)

408 different configurations (up to 10 repeats each)

Mean arithmetic performance is 245 MiB/s
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Comparing Advantage of Settings

With each setting a few cases achieve better performance

Turning data sieving on is better in 50% of the cases

Turning data sieving off is better in 12.5% of the cases

With DS: 2 and 1 servers in 25% better than 1 and 2

Data sieving Off On
Server count 1 2 1 2
Stripe size 128K 2 M 128K 2 M 128K 2 M 128K 2 M

Sieving Server # Stripe

Off
1

128 KiB - 5 37 1 32 32 47 46
2 MiB 2 - 35 1 32 33 54 47

2
128 KiB 61 64 - 9 43 44 36 39
2 MiB 64 64 45 - 46 50 58 54

On
1

128 KiB 125 126 132 108 - 29 76 51
2 MiB 115 115 122 96 1 - 70 36

2
128 KiB 114 114 118 109 73 74 - 47
2 MiB 119 118 114 109 69 69 9 -

Frequency in which a setting of the row is better by 10% (at least 5 MB/s) than that shown in the columns, out
of 240 hole/size configurations.
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System-Wide Defaults

All choices achieve 50-70% arith. mean perf.

Picking the best default default choice: 2 servers, 128 KiB

70% arithmetic mean performance
16% harmonic mean performance

Default Choice Best Worst Arithmethic Mean Harmonic Mean
Servers Stripe Sieving Freq. Freq. Rel. Abs. Loss Rel. Abs.

1 128 K Off 20 35 58.4% 200.1 102.1 9.0% 0.09
1 2 MiB Off 45 39 60.7% 261.5 103.7 9.0% 0.09
2 128K Off 87 76 69.8% 209.5 92.7 8.8% 0.09
2 2 MiB Off 81 14 72.1% 284.2 81.1 8.9% 0.09
1 128 K On 79 37 64.1% 245.6 56.7 15.2% 0.16
1 2 MiB On 11 75 59.4% 259.2 106.1 14.4% 0.15
2 128K On 80 58 68.7% 239.6 62.6 16.2% 0.17
2 2 MiB On 5 74 62.9% 258.0 107.3 14.9% 0.16

Performance achieved with any default choice
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Applying Machine Learning

Building a tree with different depths
Even small trees are much better than any default
A tree of depth 4 is nearly optimal

Perf. difference between learned and best choices, by maximum tree depth, for DKRZ’s porting system
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Decision Tree & Rules

Extraction of knowledge from a tree

For writes: Always use two servers; For holes below 128 KiB⇒ turn DS on, else off

For reads: Holes below 200 KiB⇒ turn DS on

Typically only one parameter changes between most frequent best choice

Decision tree with height 4. In the leaf nodes, the settings (Data sieving, server number, stripe size) and number of instances
for the two most frequent best choices
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Summary

Conclusions

Non-contiguous I/O optimization is non-trivial to parameterize

Machine learning is helpful to extract useful I/O settings

⇒ Expert knowledge can be verified or gained

Even small trees achieve much better results than best default

Ongoing and future work

Analyse performance of (now) deployed full system

Provide an optimized non-contiguous algorithm

On-line assessment of observed performance

Please see our poster
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