
E10 – High-Level Architecture

Julian Kunkel on behalf of the E10 contributors

International Supercomputing Conference

25. June 2014



Outline

1 Overview

2 Components

3 Summary

Julian Kunkel E10 – High-Level Architecture 2 / 15



Overview Components Summary

Existing HPC Environment and Stack

Julian Kunkel E10 – High-Level Architecture 3 / 15



Overview Components Summary

E10 Deployed System

Middleware: deployed on top of file systems and databases

Integrates with an existing scheduler

Data prefetching, staging of local data

Application may use advanced features / interfaces directly

Julian Kunkel E10 – High-Level Architecture 4 / 15



Overview Components Summary

High-Level Components

Resource mgmt: everything is a resource e.g. variable, hw

Service mgmt: deploys compute snippets on resources

FDMI: provide hooks for near-storage computation

Guided interfaces: expose various ways to direct system

Storage API: different views / interfaces to data, generic helpers

Monitoring: observes system (and application) behavior

Data analytics: analyze behavior and derive optimizations

Simulation: What-if analysis to predict and extrapolate behavior

Replayer: Recreate existing behavior (debugging etc).

Testing: Approach to increase testability and maintainability

Julian Kunkel E10 – High-Level Architecture 5 / 15



Overview Components Summary

Resource Management

Everything is a resource: Files, variables, hardware
IDs are handled, some resources are local (e.g. file handle)
Attributes can be set to resources
Configuration of the system is stored
Users could submit “snippet“ together with their computation
Service management places these as “managed services“

According to preferences close to required source
Example: Data compression (in-line) and data post-processing

Load-balancing required, takes information from monitoring

Julian Kunkel E10 – High-Level Architecture 6 / 15



Overview Components Summary

FDMI

Eases deployment of data services

Post-process / analyze data

Backup, Indexing, etc.

Managed service processes data

Creates e.g. an index for backup

Triggered user-space tool can read
these index files

Perform required (time-consuming)
action
Reset index file atomically (if needed)

Relies on Service management

Julian Kunkel E10 – High-Level Architecture 7 / 15



Overview Components Summary

Storage API

Schema offers view to data
Internally generic datatypes are understood

Allows to access the same data with different schemas

Placement engine decides how to place data on available
resources based on hints
Transaction engine bundles access to KV-store and OS

Provides hooks for e.g. FDMI, to notify transaction completion
Triggers starts of managed services

Julian Kunkel E10 – High-Level Architecture 8 / 15



Overview Components Summary

Guided Interfaces

Guiding vs. automatism vs. technical hints

Users provide additional information to guide an intelligent system.
The I/O stack exploits this information.

Information which could be provided by users

Semantics (consistency, value of data)
Relations between data
Lifecycle (especially usage)
Data compression

Julian Kunkel E10 – High-Level Architecture 9 / 15



Overview Components Summary

Guided Interfaces

(Easily) extendable interface offers domain specific hints
Accuracy for lossy compression
Good file layout (technical hint!)
Life cycle incl. pre-fetching and staging

Attribute repository sets generic attributes
Any layer can query attributes on resources

Julian Kunkel E10 – High-Level Architecture 10 / 15



Overview Components Summary

Monitoring and Analytics

Record system activity and hardware utilization

Uses managed services to crunch information

Start intelligent recording of activity if in an abnormal state

Julian Kunkel E10 – High-Level Architecture 11 / 15



Overview Components Summary

Simulation

Experiment with arbitrary configurations and systems

We try to build component such that they can be virtualized

Alternative – higher-level – component replacements possible

Report to monitoring (but probably different instance)

Julian Kunkel E10 – High-Level Architecture 12 / 15



Overview Components Summary

Replayer

Replay occurred events (operation log)

Eases debugging

Alter operation log to test different
scenarios

Julian Kunkel E10 – High-Level Architecture 13 / 15



Overview Components Summary

Testing

The modular approach simplifies testing:

Low-overhead dummy for many E10 Components

Vanilla activity injector

Layer specific operation-Log replay and simulation

Layer specific performance monitoring

Julian Kunkel E10 – High-Level Architecture 14 / 15



Overview Components Summary

Summary

A high-level draft of the E10 architecture is available

E10 will become a modular allround storage system

E10 will overcome limitations of the current architecture

Data-type aware storage
Multiple “views” to the same data (BigData)
Guided interfaces instead of technical hints
Data “format” handled by storage system
Multi-tiering support
Intelligent monitoring
Feedback to optimization and “what-if” analysis
Integrates active storage concept
Post-processing handled by file system

Incremental deployement on top of existing infrastructure

Huge effort to refine design

https://github.com/Exascale10/design

Julian Kunkel E10 – High-Level Architecture 15 / 15

https://github.com/Exascale10/design

	Overview
	HPC environment
	High-Level Components

	Components
	Resource Management
	FDMI
	Storage API
	Guided Interfaces
	Monitoring and Analytics
	Simulation
	Replayer
	Testing/Debugging

	Summary

