
I/O Interfaces Will Change

Chance or Curse for Programmers?

Julian M. Kunkel

German Climate Computing Center (DKRZ)

15-05-2014

Outline

1 Motivation

2 State of the Art

3 Ongoing Projects

4 Summary

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 2 / 28

Motivation State of the Art Ongoing Projects Summary

Semantical Gap of File Access (1)

Applications work with (semi)structured data

Vectors, matrices, n-Dimensional data

A file is just a sequence of bytes!

...File

offset

Applications/Programmers must serialize data into a flat namespace

Uneasy handling of complex data types

Mapping is performance-critical (on HDDs)

Vertical data access unpractical
(e.g. to to pick a slice of multiple files)

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 3 / 28

Motivation State of the Art Ongoing Projects Summary

Semantical Gap of File Access (2)

Information hidden from file systems

Data types

Data semantics

Value of data

Type: Checkpoint, computed, original, logfile

Data lifecycle: production, usage, deletion

Characteristics can even vary within a file, e.g. for metadata

Storage systems could use this information for

Improving performance: Automatic tiering, caching, replication

Simplifying management: ILM, offering alternative data views

Correctness: Ensuring data consistency

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 4 / 28

Motivation State of the Art Ongoing Projects Summary

Peeking at the Current I/O Stack – System Perspective

Coexistence of access paradigms

File (POSIX, ADIOS, HDF5), SQL, NoSQL

Semantical information is lost through layers

Suboptimal performance

Reimplementation of features across stack

Unpredictable interactions
Wasted ressources

Restricted (performance) portability

Optimizing each layer for each system?

Example I/O stack

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 5 / 28

Motivation State of the Art Ongoing Projects Summary

User Perspective: Accessing Data

Multitude of data models

POSIX File: Array of bytes
HDF5: Container like a file system

Dataset: N-D array of a (derived) datatype
Rich metadata, different APIs (tables)

Database: structured (+arrays)
NoSQL: document, key-value, graph, tuple

Choosing the right interface is difficult.
A workflow could involve different data models.

Properties / qualities

Namespace: Hierarchical, flat, relational
Access: Imperative, declarative, implicit (mmap())
Concurrency: Blocking vs. non-blocking
Consistency semantics: Visibility and durability of modifications

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 6 / 28

Motivation State of the Art Ongoing Projects Summary

Consistency Semantics

Example: Two processes accessing one file ("data", offset, size)

P1: write("1", 0, 1024) write("1", 1024, 1024) read(0, 2048)
P2: write("2", 0, 1024) write("2", 1024, 1024) read(0, 2048)

Which data is stored and read depends on the execution sequence
AND the consistency semantics.

Aspects of consistency

Visibility to the modifying processes vs. other processes

Distributed system makes consistency expensive
Delay before modifications become visible –
Inconsistency window

Granularity in which modifications are atomic

No guarantee, single operation, batch or transactions

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 7 / 28

Motivation State of the Art Ongoing Projects Summary

Consistency Models (Selection)

Strict (linear) consistency (POSIX)

Modifications made to NFS if accessed by only one node

Sequential consistency

Any possible sequential execution possible
Processes have the same view always
Atomic-Mode for MPI-IO (applicable for collective file access)

Weak consistency

Inconsistency “window”

Eventual consistency (DNS, Amazon S3)

Inconsistency window can be estimated
Especially for replicated services

Read-after-write consistency (does not include data updates)

Amazon S3 rolling upgrade in US between 2009 and 2012:
Now all clients see new data

Release consistency (like the session model of NFS)

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 8 / 28

Motivation State of the Art Ongoing Projects Summary

Performance Tweaks

There are many options to tune the I/O-stack

API: posix_fadvise(), HDF5 properties, open flags, cache size
Via command line: lfs setstripe
Setup/initialization of a storage system

Many options are of technical nature

Performance gain/loss depend on hardware, software
Specific to file system, API (MPI, POSIX, HDF5)
Many types of hints/tweaks are not portable

Performance loss forces us to use these optimization

Usually we are losing system performance!

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 9 / 28

Motivation State of the Art Ongoing Projects Summary

Performance Tweaks

There are many options to tune the I/O-stack

API: posix_fadvise(), HDF5 properties, open flags, cache size
Via command line: lfs setstripe
Setup/initialization of a storage system

Many options are of technical nature

Performance gain/loss depend on hardware, software
Specific to file system, API (MPI, POSIX, HDF5)
Many types of hints/tweaks are not portable

Performance loss forces us to use these optimization

Usually we are losing system performance!

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 9 / 28

Motivation State of the Art Ongoing Projects Summary

Critical Discussion

Questions from the users’ perspective

Why do I have to organize the file format?

It’s like taking care of the memory layout of C-structs

Why do I have to convert data between storage paradigms?
Why must I provide system specific performance hints?

It’s like telling the compiler to unroll a loop exactly 4 times

Why can’t I rely on a correct implementation of the (POSIX)
consistency model?

Parallel file systems have their issues with most models

Why is a file system not offering the consistency model I need?

My application knows the required level of synchronization

Would you rather like to code your actual application?

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 10 / 28

Motivation State of the Art Ongoing Projects Summary

Ongoing Projects

Newer, current and future projects aim to

Converge / unify the I/O stack

Abstract from existing solutions, e.g. by a middleware

Offer new ways of exploiting user information / semantics

Let’s peek at

ADIOS

Fast Forward Storage & IO

Exascale10

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 11 / 28

Motivation State of the Art Ongoing Projects Summary

ADIOS

Adaptable IO System

Alternative high-level I/O interface

Annotations of variables similar to HDF5

Offers various back-ends: POSIX, MPI-IO, NULL or in-situ vis.

Own file format (BP)

Throughput oriented, avoids synchronization
An ADIOS file may be represented by one or multiple objects
Easy conversion of BP files into NetCDF or HDF5

XML specification of variables and run-time parameters

Adapt programs to the site’s file system without code adjustment
Translate XML into C or Fortran code to read/write data

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 12 / 28

Motivation State of the Art Ongoing Projects Summary

Example code using ADIOS

1 int NX = 10, NY = 10, NZ = 100; double matrix[NX][NY][NZ];
2 MPI_Comm comm = MPI_COMM_WORLD; int64_t adios_handle;
3 int adios_err; uint64_t adios_groupsize, adios_totalsize;
4

5 MPI_Init(&argc, &argv); MPI_Comm_rank(comm, &rank);
6 adios_init("example.xml");
7

8 for (t = 0; t < 10 ; t++) {
9 adios_start_calculation();

10 /* computation */
11 adios_stop_calculation();
12 /* MPI communication */
13 adios_open(&adios_handle, "fullData", "testfile.bp", t == 0

↪→ ? "w": "a", &comm);
14 #include "gwrite_fullData.ch"
15 adios_close(adios_handle);
16 /* indicate progress for write-behind */
17 adios_end_iteration();
18 }
19

20 adios_finalize(rank); MPI_Finalize(); return 0;

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 13 / 28

Motivation State of the Art Ongoing Projects Summary

Code automatically created from XML

gwrite_fullData.ch

1 adios_groupsize = 4 \
2 + 4 \
3 + 4 \
4 + 8 * (NX) * (NY) * (NZ);
5 adios_group_size (adios_handle, adios_groupsize, &adios_totalsize);
6 adios_write (adios_handle, "NX", &NX);
7 adios_write (adios_handle, "NY", &NY);
8 adios_write (adios_handle, "NZ", &NZ);
9 adios_write (adios_handle, "matrix_data", matrix);

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 14 / 28

Motivation State of the Art Ongoing Projects Summary

Efficient I/O

Caching

ADIOS aggressively caches data

Write-behind during compute phases

Iterative programs can indicate pace by calling a function

User controls runtime behavior via XML

Choose the back-end for a supercomputer and task

Set optimal parameters such as the cache size

Instruct to create derived data (histograms)

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 15 / 28

Motivation State of the Art Ongoing Projects Summary

ADIOS XML code

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 16 / 28

Motivation State of the Art Ongoing Projects Summary

Fast Forward Program: Storage & IO

US Department of Energy; 2-year funding
Collaboration: Whamcloud/Intel, HDF5 group, Cray, EMC

Goals

Exascale storage for scientists
Support complex analysis, increase scalability
Fault-tolerance, data consistency and integrity

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 17 / 28

Motivation State of the Art Ongoing Projects Summary

High Performance Data Division Fast Forward I/O and Storage

A completely redesigned IO stack for Exascale

• Objects instead of files

• Array objects for semantic storage of multi-dimensional data

• Blob objects for traditional sequences of bytes

• Key-value stores for smaller get/put operations

• Containers instead of directories

• Snapshots for efficient COW across sets of objects

• Transactions for atomic operations across sets of objects

• List IO all the way through the stack

• Reduce trips across network

• Everything fully asynchronous

• Reads, writes, commits, unlink, etc

• Explicit Burst Buffer management exposed to app
• Migrate, purge, pre-stage, multi-format replicas, semantic resharding

• End-to-end data integrity
• Checksums stored with data, app can detect silent data corruption

Source: Presentation DOE Storage Fast Forward Quick Overview and

Programming API’s/Vignettes by Gary Grider
Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 18 / 28

Motivation State of the Art Ongoing Projects Summary

High Performance Data Division Fast Forward I/O and Storage

Fast Forward I/O Architecture

Compute
Nodes

I/O Nodes
Burst Buffer

Storage
Servers

Application Lustre Server

MPI-IO

I/O Forwarding Client

Lustre Client

(DAOS+POSIX)

I/O Forwarding Server

I/O Dispatcher

NVRAM

HDF5
VOL POSIX

HPC Fabric
MPI / Portals

SAN Fabric
OFED

Tree
Based

Server-
Server

Comms
for HA

Source: Presentation DOE Storage Fast Forward Quick Overview and

Programming API’s/Vignettes by Gary Grider
Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 19 / 28

Motivation State of the Art Ongoing Projects Summary

High	 Performance	 Data	 Division	 Fast	 Forward	 I/O	 and	 Storage	

I/O stack

Applications and tools
•  Query, search and analysis

–  Index maintenance
•  Data browsers, visualizers, editors
•  Analysis shipping

–  Move I/O intensive operations to data

Application I/O
•  Non-blocking APIs
•  Function shipping CN/ION
•  End-to-end application data/metadata integrity
•  Domain-specific API styles

–  HDFS, Posix, …
–  OODB, HDF5, …

– Complex data models

I/O Dispatcher

Application I/O

DAOS

Application

U
se

rs
pa

ce

K
er

ne
l

Storage

Tools Query

Source: Presentation Fast Forward I/O & Storage by Eric Barton

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 20 / 28

Motivation State of the Art Ongoing Projects Summary

High Performance Data Division Fast Forward I/O and Storage

New HDF5 Capabilities

• Asynchronous Operations

• All HDF5 routines that touch the file add event to an “event

queue” object

• Event queues have test/wait routines that operate on all

events in queue, etc.

• Transactions

• New “transaction” API in HDF5: open, commit, abort, etc.

• Explicitly bundle HDF5 operations into a transaction

• Explicitly push/pull data between flash and disk storage

• End-to-End Integrity

• Checksums applied to all data on CN, stored all the way to

disk, verified on reads

Source: Presentation DOE Storage Fast Forward Quick Overview and

Programming API’s/Vignettes by Gary Grider
Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 21 / 28

Motivation State of the Art Ongoing Projects Summary

High Performance Data Division Fast Forward I/O and Storage

HDF5 (the current example of a high level API to
this new IO stack)

H5TRbegin(trans1, eq1)

H5Fcreate(“FileA.h5”, … trans1, eq1)

H5Gcreate(…, trans1, eq1)

…

H5TRcommit(trans1, eq1)

<go do other work>

H5AOtest/wait(eq1)

H5TRbegin(trans2, eq2)

H5Dwrite(…, trans2,eq2)

…

H5TRcommit(trans2, eq2)

<go do other work>

H5AOtest/wait(eq2)

L1

L2

L3

AMR
HDF5 File

Time 1
Group

Time 2
Group

L1

L2

L3

• You can even start a new transaction to do metadata or data ops with trans3++ and overlap as
much IO and computation, including abort.

• You can’t be sure anything made it to storage until H5AOtest/wait says that transaction is secure.

• You can control structure, async behavior, rollback, etc.

Source: Presentation DOE Storage Fast Forward Quick Overview and

Programming API’s/Vignettes by Gary Grider
Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 22 / 28

Motivation State of the Art Ongoing Projects Summary

Exascale10

The Exascale I/O Initiative (former EIOW)
Goal: Development of a Middleware with advanced features

Complete redesign of the I/O system
Different back-ends (hardware, file systems)
Arbitrary schemas (POSIX, HDF5, Flatland, ...)
Abandon restrictions of POSIX in the long run
Guided interfaces / Behavior indicators
Embedded monitoring & performance optimization

International and open initiative

Collaboration: Xyratex, BSC, JGU Mainz, UHH, ...
Driven by the needs of the community
(e.g. in requirement workshops)
Work-in-progress

We will prepare a white-paper for ISC

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 23 / 28

Motivation State of the Art Ongoing Projects Summary

Guided Interfaces

Guiding vs. automatism vs. technical hints

Users provide additional information to guide an intelligent system.
The I/O stack exploits this information.

Information which could be provided by users

Data types
Semantics
Relations between data
Lifecycle (especially usage)

Several issues have been addressed in different access paradigms.
Also some behavioral hints exist: open() flags, fadvise(), ...

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 24 / 28

Motivation State of the Art Ongoing Projects Summary

Personal Vision of Future Storage Systems

Access paradigm
Database File system

Local storage

ILM/HSM Self-awareness
System characteristics

NoSQL HDF5

Topology aware
Hierarchical storage

Performance model

Data replication

Semi-structured data

Content aware

Semantical access

Data transformation

Dynamic “on-disk” format

Intelligence Smart

Natural storage access
Data exploration

Semantical name space Guided interface

Programmability

Data mining

Application focus U
ser

S
torage system

Arbitrary views

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 25 / 28

Motivation State of the Art Ongoing Projects Summary

Current architecture

Component decomposition (source: http://eiow.org)

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 26 / 28

http://eiow.org

Motivation State of the Art Ongoing Projects Summary

Summary & Conclusions

File access paradigm will change

Transactions
Different namespace
Away from explicit technical hints
Applications have to realize their consistency model

Guided interfaces provide insight into intended behavior

Let the storage system and infrastructure take care of

Data conversion
Data arrangement & “file“ format
Performance optimization
HSM / ILM

Take the chance to influence upcoming “standards”

Make sure your requirements are heard/handled

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 27 / 28

References

Swidler, Shlomo: Read-After-Write Consistency in Amazon S3
2009, http://shlomoswidler.com/2009/12/
read-after-write-consistency-in-amazon.html

Vogels, Werner: Eventually Consistent
Communications of the ACM, 2009,
http://doi.acm.org/10.1145/1435417.1435432

DeCandia, Giuseppe et.al.: Dynamo: Amazon’s Highly Available
Key-value Store
2007, Amazon.com http://www.allthingsdistributed.com/
files/amazon-dynamo-sosp2007.pdf

Brueckner, Rich: Slidecast: Eric Barton Updates Progress on
Fast Forward Storage & IO Program
2013, http://www.whamcloud.com/news/eric-barton-updates-
progress-on-fast-forward-storage-io-program

Barton, Eric: Fast Forward I/O & Storage 2013, Intel High
Performance Data Division (Presentation)

Julian M. Kunkel I/O Interfaces Will Change – Chance or Curse? 28 / 28

http://shlomoswidler.com/2009/12/read-after-write-consistency-in-amazon.html
http://shlomoswidler.com/2009/12/read-after-write-consistency-in-amazon.html
http://doi.acm.org/10.1145/1435417.1435432
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

	Motivation
	State of the Art
	Perspectives
	Consistency Semantics
	Performance Optimization

	Ongoing Projects
	Outlook
	ADIOS

