ICOMEX

ICOsahedral-grid Models for EXascale Earth System Simulations

Julian M. Kunkel
G8 Initiative – Final Review Meeting

Masaki Satoh, Hirofumi Tomita

Günther Zängl, Leonidas Linardakis, Thomas Ludwig (Julian Kunkel)

Thomas Dubos

John Thuburn
Outline

WP1: Model Intercomparison and Evaluation
WP2: Abstract Model Description Scheme
WP3: Feasibility Study for Using GPUs
 (*postponed / researcher left*)
WP4: Implicit solvers for massively parallel computing
WP5: Parallel Post-Processing
WP6: Parallel I/O
WP7: Vendor Communication
Lessons Learned and Future Perspective
Background and Motivation

Before G8: groups work independently on different models with icosahedral grids

Icosahedral grids with *differences in numerics and grid structure*

- **NICAM**, Structured hexagonal A-grid
- **ICON**, Unstructured triangular C-grid
- **MPAS**, Unstructured hexagonal C-grid
- **DYNAMICO**, Structured hexagonal C-grid

Diversity and competition is beneficial to overcome hurdles, however:

- Expensive replication of effort, slow progress
- Funding structures were hurdles to effective collaboration
Idea: Collaboration to solve roadblocks toward the exa-scale computing

Goals: Improve computational, I/O performance and scalability

Approach

• Each group addresses a key problem and derive generic solutions
 • Exchange information and insights
• Model intercomparision
 • Helps validating correctness
• Learn best-practises
WP1: Model Intercomparison and Evaluation

Motivation

• To exploit the synergy effects perform an comparison of the model codes
• Assess both Computational and Scientific aspects

Approach

• Evaluation on the models in 4 experiments from meteorological and climatological scientific aspects.
• Performance comparison on the models from computational scientific aspects.

Aqua Planet Experiment with 14km grid space; an example of test case with full physics
Selection of Conducted Experiments

ex1). Meteorological Aspect: Baroclinic Wave Test (i.e. mid-latitudinal low)

→ All four models simulated reasonable wave structure!!
In higher horizontal resolution, finer structures are simulated.

Temperature field around 1.5km height from sea surface after 9 days time-integration in models

ex2). Computational Performance: Weak Scaling on K computer

→ NICAM was already tuned for K computer, and achieves weak-scaling up to 655,360 cores (not shown).
→ AS-IS codes of ICON and DYNAMICO show reasonable weak-scaling with large number of cores.

* courtesy of SPIRE-3 project.
Towards Exascale Climate Simulations

Global sub-km simulation by NICAM (Miyamoto et al., 2013 GRL)
20480 PEs (163840 cores) of the K computer with 0.2 PFLOPS

Real simulation: 25 – 26, Aug, 2012
dx=870m, 97 layers, dt=2sec
870 EFLOP for 24hour simulation
8TB for restart file, total output was 160TB for 24hour simulation

Visualized by R. Yoshida (RIKEN/AICS)
WP2: Abstract Model Description Scheme

Memory abstraction: abstraction of arrays and loops via memory unaware syntax

Goals:
- Express the model in a “natural way”
- Reduce CS info unrelated to the model
- Generate “architecture depended” memory access patterns
- Facilitate architecture specific optimizations

Approach:
- Extend Fortran to include subset notation
- Use Source-to-Soucre translation
 - Simplifies the gap problem between general languages and architectures. Allows the use of other architecture-unaware language approaches
 - **Bottleneck:** no mature Source-to-Source tools
Example of subset usage:

\[
\begin{aligned}
\text{Subset, on}\text{_cells_3D} & \:: \text{all}_cells \\
\text{Element, on}\text{_cells_3D} & \:: \text{cell} \\
\text{Element, edges_of_cell_2D} & \:: \text{edge}
\end{aligned}
\]

! sum over a subset
\[
\begin{aligned}
\text{for cell in all_cells do} \\
\quad \text{div_vec_c(cell)} &= \text{sum[for edge in cell%edges] (vec_e(edge) \times} \\
\quad &\quad \text{ptr_int%geofac_div(edge))}
\end{aligned}
\]
\end{aligned}

! compact sum
\[
\begin{aligned}
\text{for cell in all_cells do} \\
\quad \text{div_vec_c(cell)} &= \text{sum[in cell%edges]} \\
\quad &\quad (\text{vec_e} \times \text{ptr_int%geofac_div})
\end{aligned}
\]
\end{aligned}

\]
Status and Outlook

Status:

• Preliminary results for the ICON nh-dycore show up to 20% speedup on traditional architectures (pwr6, Westmere)
• Evaluate optimal memory layouts for simple operators on Accelerators (in progress)

Plans:

• Design NICAM, DYNAMICO dialects with the collaboration of the ICOMEX group (community feedback is important)
• Create 'lite' DSL that does not require sophisticated Source-to-Source tools. Less powerful but more likely to be implemented in the production codes in midterm
• Seek collaboration with DSL Source-to-Source tools initiatives. Not climate specific, but potentially can provide a very powerful framework.
WP4: Implicit solvers for massively parallel computing

Motivation

- Many operational models (such as the Met Office) use 3D implicit time integration schemes to achieve excellent stability, accuracy, and robustness
- 3D implicit schemes require the solution of an elliptic problem at each time step; feared to be expensive in communication
 - Originally ICOMEX models used horizontally explicit vertically implicit (HEVI) time integration schemes

Goal

Demonstrate the feasibility of a 3D implicit scheme on massively parallel computers
 - Make the first clean comparison of cost/accuracy between 3D implicit and HEVI in one model

Approach

- We are implementing a Strang-Carryover scheme in MPAS (including Helmholtz solver)
 - Slow terms are treated with a RK3 step, similar to original scheme
 - Fast terms are treated with a trapezoidal step
 - Linear system for the unknowns gives a (elliptic) Helmholtz problem
Multigrid Helmholtz solver

- For our specific problem, a bespoke solver (rather than a general purpose package) is advantageous; e.g. vertical line solve to handle vertical stiffness

- Advantage of multigrid
 - Only local communication at each iteration
 - Does not inhibit bit-reproducibility

- Helmholtz problem is well conditioned
 - Only a shallow grid hierarchy is needed (3-4 levels)

- Utilize experience
 - ENDGame and GungHo projects
Implementation Details

- Extend MPAS data structure to handle multi-resolution fields
- New subroutines to implement new time integration scheme, including multigrid solver. Analysis of data flow to determine halo exchanges
- Communication burden is estimated to be similar to the original HEVI scheme

Hope to have a working version in the next few weeks, then compare (i) model results and (ii) parallel performance with the original HEVI scheme.
Lessons Learned

- Importance of working closely with main code owners/developers
- International collaboration very important!
- Ideas and scientific understanding should be transferable to other models
- Code is unlikely to be

- The multigrid data structure can have other applications:
 - Quickly output low-resolution output
 - Data assimilation

- We plan to apply the results of WP5 to use the multigrid solver on locally refined grids

(This WP will finish in Feb 2015)
WP5: Parallel Online Post-Processing

Motivation

- Business-as-usual not sustainable at extreme resolutions with current solutions (parallel asynchronous I/O – XIOS, XML I/O Server)

Goal: Address bottleneck caused by massive I/O

Approach

- Online post-processing to limit I/O demand
 - retaining scientifically important information
 - Local/temporal post-processing already provided by XIOS
 - In ICOMEX: Extend XIOS with a critical feature
 - Remapping to non-native grids
 - Icosahedral grid => Coarser grid, lon-lat grid

- Features:
 - Flexible, accurate (second-order, conservative), linear complexity, scalable
WP5: Parallel Online Post-Processing

Existing solutions (SCRIP) not scalable

- brute-force algorithm with quadratic complexity

Time needed by SCRIP to generate remapping weights. 1km resolution corresponds to 5×10^8 grid cells.
Achievements of the Remapping Scheme

Flexible: Supermesh from polygonal and lat-lon meshes

Accurate: Conservative 2nd order remapping

Efficient: Tree-based search for supermesh construction in $O(N \log N)$ time

![Diagram of supermesh construction](image-url)
Achievements of the Remapping Scheme

Scalable parallel remapping

- Balance remapping work based on source \textit{and} destination meshes

Work in progress

- Parallelize partitioning, tree-building and supermesh construction
 - to be achieved by Dec 2014
- XIOS now handles unstructured meshes
- Deliver remapping library(ies) for other ICOMEX models at project end
WP6: Parallel I/O

Goals: Analysis and optimization of parallel I/O

Approach

1. Analysis of ICON I/O (as archetype for other models)
2. Creation of an ICON similar benchmark
3. Evaluation of I/O performance on all involved layers
4. Localization of bottlenecks
5. Performance optimization
 - Orthogonal effort: Storage format optimization

Performance loss due to suboptimal interactions between file systems and I/O layers
Modelling of Parallel I/O

- Qualitative assessment of I/O architectures
 - Before any code is written!
- Conclusions
 - Asynchronous approaches are preferable
 - Independent parallel I/O is preferable
- Burst buffer concepts are essential
 - Currently implemented by domain scientists!
Achievement: Compression

- Pushed lossless limits with MAFISC preconditioner
 - Roughly 10% better compression ratio than best other algorithm
 - Slower than other algorithms
- Economic evaluation, example DKRZ tape archive:
 - **Good compression is more important than speed**
 - Fastest algorithm: 45068 €/a, best algorithm: 81494 €/a
 - **MAFISC has best economics: 91857 €/a**
 - MAFISC is contributed to the community => available as an HDF5 plugin
- Scientists need to consider lossy compression!

http://wr.informatik.uni-hamburg.de/research/projects/icomex/mafisc
Optimization to NetCDF: NoCache Patch

• NetCDF shows bad performance with large records
 • Culprit: NetCDF cache + data initialization
• Prepared patch to deactivate NetCDF cache
 • > 3x improvement on DKRZ supercomputer
• Problem communicated with NetCDF community

http://wr.informatik.uni-hamburg.de/research/projects/icomex/cachelessnetcdf
Optimization to HDF5: Multifile Patch

- Observation
 - best performance with parallel writing of independent files
- Patch for HDF5 accesses multiple files transparently
 - Eliminates need for synchronization
 - Reconstruction of data upon read
 - 10x faster parallel writing (measured on one node)
- Patch communicated with HDF5 community
- Conclusion: Scientists should not worry about data layout

http://wr.informatik.uni-hamburg.de/research/projects/icomex/multifile/hdf5
WP7: Vendor Communication

Goal: Communicate bottlenecks and requirements to vendors, best practices

Approach
- Invitations of vendors to meetings
- Bridged the gap to vendors/groups developing I/O middleware
 - IBM, HDF5, NetCDF
 - Satellite effort: integrated reqs. into Exascale10 initiative
- We developed a concept for better vendor communication
 - Classical bilateral approach is suboptimal
 - But: the implementation would be a project of its own
Lessons Learned During the Project

- International communication and coordination is important
 - Huge potential to share/re-use approaches and results
 - G8-initiative is perfectly suited to overcome organisational hurdles

- More interdisciplinary effort involving computer science is needed
 - e.g. co-design with storage system developers

- Challenges to overcome
 - Code portability
 - Performance portability
 - Inefficiencies in deployed software stack
 - Appropriate abstraction to formulate models

- Opportunities for international funding
 - Joint development of key components
 - Establishing of useful standards
Conclusions and Future Plans

G8 project boosted activities
- Comparing model (scientific) performance (CMIP5 in a limited scope)
- Running models on the K computer
- Exchanging best-practices well defined topics
- Some components have already been evaluated / adopted by other groups
- Involving vendors requires to create enough interest

Collaboration was a success BUT we'll need to strengthen it
- Increase communication
- Add further countries
- Involve data centers directly
 - They know their systems best, bridging the gap to vendors
 - Apply for computing time for the project
 - Strengthen collaboration with US institutions e.g. NCAR
- We'll try to build and exchange more components between the models
- Some claim: Funding was not enough to include the critical mass of people
 - => Go for larger projects